Categorie: Uncategorized

Testul 1 de antrenament 2022

„Învingătorii nu renunţă niciodată şi învinşii niciodată nu câştigă.”

Vince Lombardi 

Dragul meu bine ai venit ! Te invit sa vizionezi rezolvarea pas cu pas a exercitiilor date la Testul 1 de antrenament pentru Evaluare Nationala 2022 dată la Constanta .


Am rezolvat si explicat pas cu pas Testul 1 de antrenament propus de Ministerul Educatiei pentru Evaluare Nationala 2022
Subiectul pdf rezolvat il gasesti aici:

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor

Descompunere in factori Metoda Factorului Comun

"Educaţia este ştiinţa de a asculta aproape orice fel de spuse fără a-ţi pierde stăpânirea, sau încrederea în tine însuţi. "

Winston Churchill

Dragul meu bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas    Descompunerea in factori - Metoda gruparii termenilor!

Succes!

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor

Operații cu Intervale

"Educaţia nu este cât de mult ai memorat, nici măcar cât ştii. Este capacitatea de a diferenţia între ceea ce ştii şi ceea ce nu ştii "

 Anatole France

Dragul meu bine te-am regăsit! Azi revin cu o lecție pentru clasa a VIII a :Operații cu  Intervale de Numere Reale.

Cum fac reuniunea a două intervale?  Cum fac intersecția a două intervale? Cum fac diferența a două intervale?

Daca vrei sa afli, te invit sa urmarești următorul video si nu uita: Like , Share , Subscribe!

Succes!

Daca te ajuta poti descarca lecția in format pdf de aici:Operatii-Cu-Intervale (2) pdf

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor

Intervale de Numere Reale

Educaţia nu este cât de mult ai memorat, nici măcar cât ştii. Este capacitatea de a diferenţia între ceea ce ştii şi ceea ce nu ştii – Anatole France

Dragul meu bine te-am regăsit! Azi revin cu o lecție pentru clasa a VIII a : Intervale de Numere Reale.

Ce sunt Intervalele de Numere Reale?  Cum se pun parantezele la Intervalele de Numere Reale?

Ce paranteza se pune la minus infinit și la plus infinit?

Daca vrei sa afli, te invit sa urmarești următorul video si nu uita: Like , Share , Subscribe!

Daca te ajuta poti descarca lecția in format pdf de aici: Intervale-In-R pdf

Succes!

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor

 

Evaluare Nationala 2020

 

 

„Efortul îşi arată roadele după ce o persoană refuză să se oprească.”

Napoleon Hill

Bine te-am regasit!

Rezolvare detaliata a Examenului de  Evaluare Nationala 2020 matematica  sesiunea iunie.

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 # e.n. 2021

Evaluare Nationala 2021

 „Cea mai frecventă caracteristică pe care am întâlnit-o la oamenii de succes este aceea că îşi înving tentaţia de a renunţa.”

Peter Lowe 

Bine te-am regasit!

Rezolvare detaliata a modelului de Evaluare Nationala 2021 matematica  propus de M.E.C. pentru Evaluarea Nationala 2021

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 # e.n. 2021

Suma Gauss la Puteri

 

"Nu am dat greş. Pur şi simplu am descoperit 10.000 de idei care nu funcţionează."

Thomas Edison 

Bine te-am regăsit! 

Azi îți propun nouă lectie online de matematica  clasa a V-a, vom scrie formulele matematice necesare și vom rezolva cateva exerciții la "Suma Gauss  la Puteri" .

Suma Gauss la Puteri

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la Divizorul și Multiplul unui număr natural.

"Lucrează la visul tău sau altcineva te va angaja să lucrezi la visul lui."

Dragul meu părinte, bine te-am regăsit!

Data trecută am vorbit despre:Divizorul unui număr natural. Multiplul unui număr natural

Astăzi te invit să rezolvăm și să explicăm pas cu pas câteva exerciții cu noțiunile pe care le-am învățat împreună după care îți voi propune o fisă cu exerciții asemănătoare pe care să le rezolve singurel copilul tău.

(mai mult…)

Exercițiul 1: 

Scrieți divizorii proprii și divizorii improprii ai numărului 21:

  • Rezolvare:
  • Divizorii proprii ai numărului 21 sunt: 3 și 7.
  • Divizorii improprii ai numărului 21 sunt: 1 și 21.

Exercițiul 2: 

Determinați numărul natural x știind că: x-3 este divizorul numărului 15.

  • Rezolvare:
  •  x-3 \in D_{{15}}  \Rightarrow   x-3 \in \left \{ 1,3,5,15 \right \} \Rightarrow
  •  x-3=1  | +3 \Rightarrow x=1+3\Rightarrow x=4
  •  x-3=3 | +3 \Rightarrow x=3+3 \Rightarrow x=0
  • x-3=5 | +3  \Rightarrow x=5+3 \Rightarrow x=8
  • x-3=15  | +3 \Rightarrow x=15+3 \Rightarrow x=18
  • \Rightarrow x=\left \{ 4,6,8,18 \right \}

Exercițiul 3: Determinați :

  • a) D_{{28}} \cup D_{{12}}
  • b) D_{{28}} \cap D_{{12}}

Rezolvare:

D_{{28}}  reprezintă mulțimea divizorilor numărului natural 28. Iar D_{{12}}  reprezintă mulțimea divizorilor numărului natural 12.

Dacă cumva copilul tău a uitat aceste noțiuni le găsești aici:  Divizorul unui număr natural. Multiplul unui număr natural.

  • D_{{28}} =\left \{ 1,2,4,7,14,28 \right \}
  • D_{{12}} =\left \{ 1,2,3,4,6,12 \right \}

Acum facem reuniunea celor două mulțimi:

 

 

 

 

 

 

 

 

 

 

Exerciții rezolvate la Amplificarea Rapoartelor

"Zadarnic vei vrea să-l înveţi pe cel ce nu e dornic să fie învăţat, dacă nu-l vei fi făcut mai întâi dornic de a învăţa."

Comenius

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva Exerciții ușoare rezolvate la Amplificarea Rapoartelor. (mai mult…)

Exercițiul 1: Amplificați cu x \in R^{*} rapoartelor:

a)  \frac{13}{x}

b) -\frac{11x+3}{x^2-1}

Rezolvare:

a)  ^{x)}_\textrm{\frac{13}{x}}={\frac{13\cdot x}{x\cdot x}}={\frac{13x}{x^2}}

Amplificarea raportului algebric  \frac{13}{x} constă în înmulțirea atât a numărătorului cât si a numitorului cu  expresia algebrică x.

b)  _{{^{x)}\textrm{-\frac{11x+3}{x^2-1}}=-\frac{x\cdot (11x+3)}{x\cdot (x^2-1)}}=-\frac{(11x^2+3x)}{ (x^3-x)}}

Exercițiul 2:  Amplificați cu x+1 următoarele rapoarte, oricare ar fi x\in R\setminus\left \{ -1 \right \}:

a) \frac{2-5x}{7x-3}

b)\frac{x-1}{x+1}

c) \frac{x-1}{4x^2+x+1}

Rezolvare:

  • a)   _{}^{x+1)}\textrm{\frac{2-5x}{7x-3}}

Amplificarea raportului algebric \frac{(2-5x)}{(7x-3)} constă în înmulțirea atât a numărătorului(2-5x) cât si a numitorului (7x-3) cu  expresia algebrică x+1.

_{}^{x+1)}\textrm{\frac{2-5x}{7x-3}}=\frac{(x+1)\cdot (2-5x)}{(x+1)\cdot (7x-3)}=

Desfacem parantezele atât la numărător cât și la numitor înmulțind fiecare termen din prima paranteză cu fiecare termen din cea de-a doua paranteză tinând cont de semne:

=\frac{(x+1)\cdot (2-5x)}{(x+1)\cdot (7x-3)}=\frac{(x\cdot 2-x\cdot 5x+1\cdot 2-1\cdot 5x)}{(x\cdot 7x-x\cdot 3+1\cdot 7x-1\cdot 3)}=\frac{( 2x-5x^2+ 2-5x)}{( 7x^2- 3x+7x-3)}

Socotim termenii asemenea și obținem:

=\frac{( 2x-5x^2+ 2-5x)}{( 7x^2- 3x+7x-3)}=\frac{( -5x^2-3x+ 2)}{( 7x^2+4x-3)}.

  • b) _{}^{x+1)}\textrm{\frac{x-1}{x+1}}={\frac{(x+1)(x-1)}{(x+1)^2}}=

Aplicăm formulele de calcul prescurtat : (a+b)\cdot (a-b)=a^2-b^2 pentru numărător și (a+b)^2=a^2+2\cdot a\cdot b+b^2 pentru numitor și obținem:

={\frac{(x+1)(x-1)}{(x+1)^2}}={\frac{x^2-1^2}{x^2+2\cdot x \cdot 1+1^2}}={\frac{x^2-1}{x^2+2 x +1}}

c)  _{}^{x+1)}\textrm{\frac{x-1}{4x^2+x+1}}= {\frac{(x+1)(x-1)}{(x+1)(4x^2+x+1)}}={\frac{x^2-1^2}{x\cdot 4x^2+x\cdot x+x\cdot 1+1\cdot 4x^2+1\cdot x+1\cdot 1}}={\frac{x^2-1}{ 4x^3+x^2+x+4x^2+ x+1}}={\frac{x^2-1}{ 4x^3+5 x^2+2x+1}}

 

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții Ușoare la Amplificarea Rapoartelor  pentru copilul tău, pe care o gasești aici:

Amplificarea rapoarte

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Transformarea fracțiilor zecimale (periodice)

„Cu un talent și o perseverență extraordinare toate lucrurile pot fi atinse.”

Thomas Foxwell Buxton

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva exerciții la Transformarea fracțiilor zecimale în fracție ordinare.

Dacă copilul tau preferă o lecție video vă invit pe canalul meu de YouTube să urmărești lecțiaTransformarea fractiilor periodice in fractii ordinare!

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  ! (mai mult…)

Exercițiul 1:  Transformați în fracții ordinare următoarele fracții zecimale:

a)7,5   ;             b)0,03 ;

c)13,(2) ;          d) 0,2(5) ;

e) 0,2(5);          f) 15,14(15);

Rezolvare: 

  • a) 7,5 este o fracție zecimală finită     \Rightarrow  7,5=\frac{75}{10}^{(5}=\frac{15}{2}

Pentru că avem o singură cifră după virgulă numitorul este 10. În cazul în care vom avea mai multe cifre după virgulă vom pune atâția dea 0 cate cifre avem după virgulă.

  • b) 0,03=\frac{3}{100}.

În acest caz avem două cifre după virgulă am pus doi de 0 la numitor.

  • c) 13,(2) este o fracție periodică simplă.

Pentru a transforma o fracție periodică simplă într-o fracție ordinară vom scrie la numărător întreg numărul (în cazul nostru 132) din care scădem numărul format din cifrele din fața virgulei (în cazul nostru 13), iar la numitor punem o cifră de 9 deoarece avem o singură cifră în perioadă. Astfel obținem:

13,(2)=\frac{132-12}{9}=\frac{119}{9}

Observație :   În  cazul în care avem mai multe cifre în perioadă punem atâția de 9 câte numere avem în perioadă.

  • d) 0,2(5)  este o fracție periodică mixtă (deoarece avem o cifră între virgulă și perioadă)

Pentru a transforma o fracție periodică mixtă într-o fracție ordinară vom scrie la numărător întreg numărul (în cazul nostru 25) din care scădem numărul format din cifrele din fața virgulei (în cazul nostru 2), iar la numitor punem o cifră de 9 deoarece avem o singură cifră în perioadă și o cifră de 0 deoarece avem o cifră între virgulă și perioadă. Astfel obținem:

0,2(5)=\frac{25-2}{90}=\frac{23}{90}

Observație :   În  cazul în care avem mai multe cifre în perioadă punem atâția de 9 câte numere avem în perioadă, iar dacă avem mai multe cifre între virgulă și perioadă punem atâția de 0 câte numere avem între virgulă și perioadă.

  • e) 10,12(3)=\frac{10123-1012}{900}=\frac{9111}{{900}}^{(3}=\frac{3037}{{300}}
  • f)  15,14(15)=\frac{151415-1514}{9900}=\frac{149901}{{9900}}^{(3}=\frac{49967}{{300}}

Exercițiul 2:  Se consideră numărul x=2,1(39).

a) Determinați a 2018-a zecimală a numărului x.

b) Calculați suma primelor 100 zecimale ale lui x.

c) Transformați numărul x în fracție ordinară.

Rezolvare:

Observăm că numărul x are după virgulă o cifră (1), iar în perioadă două cifre (39). Știm că cifra dintre virgulă și perioadă nu se repetă iar cifrele din perioada se repetă la nesfârșit.

Scris ca număr zecimal fară perioadă numărul x ar arăta așa:

x=2,1(39)=2,139393939..........39......

Pentru a determina a 2018-a zecimală a lui x scădem din 2018 - 1=2017 (deoarece avem o singură cifră între virgulă și perioadă).

După care împărțim 2017 la 2 (deoarece avem 2 cifre în perioadă).

2017\ \ \ :\ \ \ \ 2=1008 \ \ \ rest \ \ 1

Pentru că am obținut restul 1 a 2018-a zecimală a lui x este 3 (prima cifră din perioadă).

  • b) Pentru a calcula suma primelor 100 zecimale ale lui x scădem :

100-1=99 (deoarece avem o singură cifră între virgulă și perioadă)

După care împărțim 99 la 2 (deoarece avem 2 cifre în perioadă) și obținem:

99\ \ \ \ :\ \ \ \ 2=49 \ \ \ rest \ \ \ 1

Obținem că suma celor 100 de zecimale ale lui x sunt:

S=1+3+9+3+9+3+9+......+3 =

Pentru că 99\ \ \ \ :\ \ \ \ 2=49 \ \ \ rest \ \ \ 1  \Rightarrow 3+9 se repetă de 49 de ori.

Astfel putem scrie: S=1+49\cdot (3+9)+3 \Rightarrow S=1+49\cdot 12 +3 \Rightarrow S=1+588 +3  \Rightarrow S= 592

  • c)  x=2,1(39) \Rightarrow x=\frac{2139-21}{{990}}=\frac{2118}{{990}}^{(2}=\frac{1059}{{495}}^{(3}=\frac{353}{{165}}

Exercițiul 3:  Determinați cifra a știind că :

\overline{0,1a}+\overline{0,(a)}+\overline{0,a(1)} \in N

Rezolvare:

Transformăm fracțiile zecimale în fracții ordinare:

\overline{0,1a}+\overline{0,(a)}+\overline{0,a(1)} =\frac{\overline{1a}-1}{{90}}+ \frac{a}{9}+ \frac{\overline{a1}-a}{90}=

Aducem la același numitor prin amplificarea celei de-a doua fracții cu 10. Astfel obținem:

\frac{\overline{1a}-1}{{90}}+ ^{10)_}\textrm{\frac{a}{9}}+ \frac{\overline{a1}-a}{90}=\frac{\overline{1a}-1}{{90}}+ \frac{10a}{90}}+ \frac{\overline{a1}-a}{90}=\frac{\overline{1a}-1+10a+\overline{a1}-a}{{90}}

Desfacem în baza 10 numerele: \overline{1a} și \overline{a1} astfel:\overline{1a}= 10 +a iar \overline{a1}= 10a +1.

Obținem: \frac{10 +a -1+10a+10a+1 -a}{{90}} =\frac{10+20a}{{90}}= =\frac{10\cdot(1+2a)}{{90}}^{(10}= =\frac{1+2a}{{9}} \in N\Rightarrow 1+2a=9 |\ \ -1

\Rightarrow 2a=9 -1   \Rightarrow 2a=8 \ \ | \ \ \ \ :\ \ \ 2     \Rightarrow a=8 \ \ \ \ :\ \ \ 2   \Rightarrow a=4.

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții Ușoare Transformarea  fracților zecimale în fracții ordinare  pentru copilul tău, pe care o gasești aici: Fisa de lucru fractii periodice

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”