Categorie: Numere Reale

Rationalizarea numitorilor

"Un element important pentru succes este increderea in sine. Un element important pentru increderea in sine este pregatirea." 

Arthur Ashe

Bine te-am regasit!

Cum rezolv fractiile cu radical la numitor radical?
Cum scap de radicalulu de la numitorul fractiei?
Cum rationalizez numitorii?
Azi îți propun să o noua lectie la Rationalizarea radicalilor! #rationalizarea radical, #radical, #numar real, #exercitii rezolvate cu radicali, #meditatii, #Putting Radicals on a Number Line, #Simplifying Radicals, ##YouCanLearnAnythingwww.mathmoreeasy.ro

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

Scoaterea si Introducerea factorilor sub radical

 

"Şcoala are rostul să te ridice undeva de unde să-ţi fie ruşine să mai cobori.

Paul Louis Lampert

Dragul meu părinte, bine te-am regăsit! Te invit alături de mine la o nouă lecție Scoaterea și Introducerea factorilor sub radical.

În articolul de azi vreau să îți explic pas cu pas "Cum scot si introduc factorii sub radical? Cum compar sau ordonez numerele cu radical" .

În articolul precedent ți-am vorbit despre Cum repreze ntăm pe Axă un Număr Real și cum Aproximăm Numerele Reale. Azi trebuie să aflăm  "Cum scoatem si introducem  factorii sub radical? Cum compar sau ordonez numerele cu radical" .

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Reprezentarea pe Axă a Numerelor Reale. Aproximări!

„Curajul şi perseverenţa au un talisman magic înaintea căruia toate problemele şi obstacolele se evaporă.”

Dragul meu părinte, bine te-am regăsit!

În articolul de azi vreau să îți explic pas cu pas "Cum se Reprezintă pe Axă un Număr Real și cum Aproximăm Numerele Reale " . În articolul precedent ți-am vorbit despre Algoritmul de Extragere a Rădăcinii pătrate azi trebuie să aflăm cum  reprezintă pe Axă un Număr Real și cum Aproximăm Numerele Reale.

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Algoritmul de extragere a rădăcinii pătrate.

Dragul meu părinte, bine te-am regăsit! În articolul de azi vreau să îți explic pas cu pas "Algoritmul de extragere a rădăcinii pătrate" . În articolul precedent ți-am vorbit despre Rădăcina pătrată a unui număr natural pătrat perfect  azi trebuie să aflăm care este  algoritmul de extragere al radicalului unui număr real.

(mai mult…)

Pentru a înțelege cât mai bine algoritmul de extragere a rădăcinii pătrate voi lua un exemplu pe care îl voi explica pas cu pas.

Exemplu :   Reguli de calcul cu Radical

 

 

 

 

 

 

 

 

 

 

 

 

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Rădăcina pătrată a unui număr natural pătrat perfect

clasa a VII-aDragul meu părinte, bine te-am regăsit!Până în clasa a VII-a copilul tău a studiat următoarele Mulţimi de Numere: Mulţimea Numerelor Naturale, Mulţimea Numerelor Întregi şi Mulţimea Numerelor Raţionale.Capitolul II din programa de matematica pentru clasa a VII-a prevede studierea Numerelor Reale. Prima lecţie din acest capitol este Rădăcina pătrată a unui număr natural pătrat perfect.

 

 

  • Definiţie:Un număr natural "a" se numeşte pătrat perfect dacă există un număr natural "n" astfel încât : n ^{2}=a
  • Rădăcina Pătrată:

    Fie "a" un număr natural pătrat perfect. Numărul natural "n" cu proprietatea: n ^{2}=a se numeşte rădăcină pătrată a numărului "a" şi se notează: n=\sqrt{a}

  • Exemple:   \sqrt{25}=\sqrt{5^{2}}=5
  •  \sqrt{100}=\sqrt{10^{2}}=10
  •  \sqrt{0}=\sqrt{0^{2}}=0

Observaţie: Evident numai unul este număr natural : \sqrt{n}=n

EXEMPLU: 

 \sqrt{ 25\cdot a^{4}\cdot b^{2}}=\sqrt{ (5\cdot a^{2}\cdot b)^{2}}=\left \| 5\cdot a^{2}\cdot b \right \|=5\cdot a^{2}\cdot \left \| b \right \|

Dacă te intrebi cum se aplica algoritmul de extragere a rădăcinii pătrate te invit sa citesti si lectia: http://mathmoreeasy.ro/algoritmul-de-extragere-a-radacinii-patrate/ 

Sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!