Categorie: Numere Naturale

Suma Gauss la Puteri

 

"Nu am dat greş. Pur şi simplu am descoperit 10.000 de idei care nu funcţionează."

Thomas Edison 

Bine te-am regăsit! 

Azi îți propun nouă lectie online de matematica  clasa a V-a, vom scrie formulele matematice necesare și vom rezolva cateva exerciții la "Suma Gauss  la Puteri" .

Suma Gauss la Puteri

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la Metoda Mersului Invers

"Învingătorii nu renunță, iar cei care renunță nu ajung învingători!"

Aristotel

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții rezolvate  la Metoda Mersului Invers!

(mai mult…)

Exercițiul 1:     3(x+2) - 7=14

Rezolvare:  Știm din clasele mici că într-un exerciţiu în care sunt folosite paranteze rotunde, atunci efectuăm întâi operaţiile din paranteze după care efectuam restul operaţiilor în ordinea în care sunt scrise. Analizând exercițiul nostru observăm că nu putem efectua calculele din paranteza rotunda deoarece avem o necunoscută. În acest caz pentru a-l afla pe x prima oară îl mutăm pe 7 cu semn schimbat în partea dreaptă a egalului.

3(x+2) - 7=14   / +7  \Rightarrow   3(x+2)=14+7 \Rightarrow

3(x+2)=21/ :\ \ \ \ 3  \Rightarrow   x+2=21 \ \ \ :\ \ \ 7  \Rightarrow

x+2=3/ -2  \Rightarrow   x=3-2   \Rightarrow   x=1

 

Exercițiul 2:  90+[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=212

Rezolvare: De data aceasta primul termen mutat cu semn schimbat este 90 cu semnul -

90+[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=212    /-90

[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=212-90

[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=122    /\cdot 4

[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] =122 \cdot 4

(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18 =488 / - 18

(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2=488-18

(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2=470   / \ \ \ :\ \ \ 2

(420\ \ \ :\ \ \ 4 +5\cdot a)=470 \ \ \ :\ \ \ 2   \Rightarrow (420\ \ \ :\ \ \ 4 +5\cdot a)=235

105 +5a =235     / -105

5a =235 -105

5a = 130

a = 130 : 5

a = 26

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor

Exerciții rezolvate la Factorul Comun la Puteri

"Un ratat nu știe ce va face dacă pierde, dar vorbește despre ce va face dacă va castiga. Un învingător nu vorbește despre ce va face dacă va caștiga, dar știe ce va face dacă pierde."
Eric Berne
Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună cateva exerciții la "Factorul comun la Puteri".

Exercițiul 1:

Efectuați calculele, folosind factorul comun:

a) 3^{96}+3^{98}+3^{100}

b) 2\cdot2^{47}+3\cdot2^{48}+2^{50}

c) 8^{300}-24\cdot8^{298}-64\cdot8^{297}

d) 3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}

e) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

(mai mult…)

  • Rezolvare: 
  • a) 3^{96}+3^{98}+3^{100}
  • Adunarea este o operație de gradul I și ridicarea la putere este o operație de gradul III, iar ordinea efectuării operațiilor ne spune că trebuie să facem mai întâi operațiile de gradul III și apoi cele de gradul I

Observăm că avem puteri foarte mari și nu putem ridica la putere așa că ne vom folosi de factorul comun și vom da factor comun puterea cea mai mică.

Observăm că 3^{96} este puterea cea mai mică asa ca îl dăm factor comun pe 3^{96} și obținem:

3^{96}\cdot(3^{96-96}+3^{98-96}+3^{100-96})

Scădem puterile și obținem:

3^{96}\cdot(3^{0}+3^{2}+3^{4})

Ridicăm la putere termenii din paranteza rotundă:

3^{96}\cdot(1+9+81)=3^{96}\cdot91

  • b)      2\cdot2^{47}+3\cdot2^{48}+2^{50}

Observăm că  2^{47} este puterea cea mai mică așa că îl dăm factor comun pe 2^{47} și obținem:

2^{47}\cdot(2\cdot2^{47-47}+3\cdot2^{48-47}+2^{50-47})

Scădem puterile și obținem:

2^{47}\cdot(2\cdot2^{0}+3\cdot2^{1}+2^{3})

Ridicăm la putere termenii din paranteza rotundă și obținem:

2^{47}\cdot(2\cdot 1+3\cdot2+8)

Efectuăm  înmulțirile și obținem:

2^{47}\cdot(2+6+8)=

Efectuăm adunarea din paranteză și obținem:

2^{47}\cdot 16=

Știm că 16 îl putem scrie în baza 2 ca 2^{4} și obținem

2^{47}\cdot2^{4}=

Aplicăm Regulile de calcul cu puteri și scriem baza și adunam exponenții:

2^{47+4}=2^{51}

  • c)   8^{300}-24\cdot8^{298}-64\cdot8^{297}

Observăm că 8^{297} este cea mai mică putere, îl dăm factor comun pe 8^{297} și obținem:

8^{297}\cdot(8^{300-297}-24\cdot8^{298-297}-64\cdot8^{297-297})

Scădem puterile și obținem:

8^{297}\cdot(8^{3}-24\cdot8^{1}-64\cdot8^{0})

Ridicăm la putere termenii din paranteză și obținem:

8^{297}\cdot(512-24\cdot8-64\cdot1) =

Efectuăm înmulțirile din paranteză și obținem:

  • 8^{297}\cdot(512-192-64) =

Efectuăm scăderea din paranteza rotundă și obținem:

8^{297}\cdot 256 =

Știm că putem scrie 8=2^3 și 256=2^8 și obținem:

(2^3)^{297}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri înmulțim puterile și obținem:

2^{3\cdot297}\cdot 2^8=2^{891}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri, scriem baza și adunam puterile și obținem astfel:

2^{891+8}=2^{899}

  • d)  3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}=

Aplicăm Regulile de calcul cu puteri și obținem:

3^{2n}\cdot3^2+7\cdot 3^{2n}\cdot3^1-6\cdot3^{2n}=

Observăm că se repetă în fiecare termen al adunării 3^{2n},  îl dăm factor comun și obținem:

3^{2n}\cdot(3^2+7\cdot3^1-6\cdot1)=

Ridicăm la putere termenii din paranteza rotundă și obținem:

3^{2n}\cdot(9+7\cdot3-6)=

Efectuăm Înmulțirea din paranteză și obținem:

3^{2n}\cdot(9+21-6)=

Efectuăm calculele din paranteza rotundă și obținem:

3^{2n}\cdot 24=3^{2n}\cdot 3\cdot8=

Aplicăm Regulile de calcul cu puteri scriem baza și adunăm exponenții și obținem:

3^{2n+1}\cdot8

  • d) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri  transformăm bazele pe 6 îl scriem 6=2\cdot3 , pe 4=2^2, 9=3^2 , pe  18=2\cdot3^2  și obținem:

(2\cdot3)^{2n+1}+6\cdot (2^2)^{n+1}\cdot (3^2)^{n+2}+(2\cdot3^2)^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri, distribuim puterea și obținem:

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2\cdot(n+1)}\cdot 3^{2\cdot(n+2)}+2^{n+1}\cdot3^{2(n+1)}\cdot2^{n+1}

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2n+2}\cdot 3^{2n+4}+2^{n+1}\cdot3^{2n+2}\cdot2^{n+1}

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n}\cdot2^1\cdot3^{2n}\cdot3^2\cdot2^{n}\cdot2^1

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n+n}\cdot2^{1+1}\cdot3^{2n}\cdot3^2

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{2n}\cdot2^{2}\cdot3^{2n}\cdot3^2

Observăm că se repeta 2^{2n}\cdot3^{2n} și îl dăm factor comun, astfel obținem:

2^{2n}\cdot3^{2n}\cdot(2^1\cdot3^1+6\cdot2^2\cdot3^4+2^{2}\cdot3^2)

Ridicăm la putere termenii din paranteza rotundă:

2^{2n}\cdot3^{2n}\cdot(2\cdot3+6\cdot4\cdot81+4\cdot9)

Efectuăm înmulțirile din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot(6+1944+36)

Efectuăm calculele din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot 1986=(2\cdot3)^{2n}\cdot 6\cdot331=(6)^{2n}\cdot 6^1\cdot331=(6)^{2n+1}\cdot331

Exerciții rezolvate la Pătrate Perfecte!

"Nu poți împinge pe nimeni să urce pe o scară dacă nu este dispus să o urce singur "

Andrew Carnegie

Dragul meu părinte bine te-am regăsit! În articolul anterior am prezentat cateva "Exerciții Rezolvate la Ultima Cifră a unui Număr Natural". Astăzi te invit să rezolvăm și să explicăm câteva exerciții la Pătrate Perfecte. Să vedem cum putem arăta că un număr foarte mare poate fi sau nu pătrat perfect!
 
Exercițiul 1: 
Arătați că numărul a=2003 + 2\cdot (1+2+3+................+ 2002) este pătrat perfect.
  • Rezolvare: Pentru a arăta că numărul "a" este pătrat perfect trebuie să arătam că numărul "a"se poate scrie ca un număr natural la puterea a doua.
  • Observăm că în paranteză avem  Suma Gauss a primelor 2002 numere naturale consecutive așa că vom aplica formula de calcul a lui Gauss.
  • a=2003 + 2\cdot (1+2+3+................+ 2002)
  • a=2003 + 2\cdot [2002\cdot (2002+1)\ : \ 2]
  • a=2003 + 2\cdot [2002\cdot 2003 \ : \ 2]
  • Pentru că înmulțirea și împărțirea sunt operații de același ordin putem efectua mai întâi operația de împărțire.
  • a=2003 + 2\cdot [2002\ \ : \ 2 \cdot 2003]
  • a=2003 + 2\cdot 1001 \cdot 2003
  • a=2003 + 2002 \cdot 2003
  • Dăm factor comun pe 2003.
  • a=2003\cdot (1 + 2002)
  • a=2003\cdot 2003
  • a=2003^2.
  • \Rightarrow numarul \ este pătrat perfect.
Exercițiul 2: 
Arătați că numărul  a=81+81 \cdot 2+ 81 \cdot 3+.....................+81 \cdot 49 este pătrat perfect.
  • Rezolvare: Pentru a arăta că numărul "a" este pătrat perfect trebuie să arătam că numărul "n"se poate scrie ca un număr natural la puterea a doua.
  • Observăm că 81 se repetă și îl putem da factor comun.
  • a=81\cdot (1+ 2+ 3+.....................+49).
  • În paranteză obținem   Suma Gauss a primelor 49 numere naturale consecutive așa că vom aplica metoda de calcul a lui Gauss.
  • a=81\cdot [49 \cdot(49+1) \ \ : \ 2 ]
  • a=81\cdot [49 \cdot 50 \ \ : \ 2 ]
  • a=81\cdot 49 \cdot 25
  • a=9^2\cdot 7^2 \cdot 5^2
  • Aplicăm Regulile de Calcul cu Puteri și obținem:
  • a=(9\cdot 7 \cdot 5)^2
  • a=315^2
Exercițiul 3:  
Arătați că numărul   n= 27^9 \cdot 32^{11} \ \ : \ \ 2 - 16^6\cdot 2\cdot 6^{27} este pătrat perfect.
  • Rezolvare:  Pentru a arăta că numărul "n" este pătrat perfect trebuie să arătăm că se poate scrie ca un număr natural la puterea a doua.
  • Observăm că pe 27 îl putem scrie ca bază 3, pe 16 și 32 îi putem scrie ca baza 2 iar pe 6 îl putem scrie ca produsul 2\cdot 3
  • n= (3^3)^9 \cdot (2^5)^{11} \ \ : \ \ 2^1 - (2^4)^6\cdot 2^1 \cdot (2\cdot3)^{27}
  • Aplicăm Regulile de calcul cu puteri și obținem:
  • n= 3^{3\cdot9} \cdot 2^{5\cdot 11} \ \ : \ \ 2^1 - 2^{4\cdot 6}\cdot 2^1 \cdot 2^{27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{55} \ \ : \ \ 2^1 - 2^{24}\cdot 2^1 \cdot 2^{27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{55-1} - 2^{24+1+27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{54} - 2^{52}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{52} \cdot 2^2 - 2^{52}\cdot 3^{27}
  • Observăm că se repetă  3^{27} \cdot 2^{52} și îi dăm factor comun.
  • n= 3^{27} \cdot 2^{52} \cdot (2^2 - 1)
  • n= 3^{27} \cdot 2^{52} \cdot (4 - 1)
  • n= 3^{27} \cdot 2^{52} \cdot 3
  • n= 3^{27} \cdot 2^{52} \cdot 3^1
  • n= 3^{27+1} \cdot 2^{52}
  • n= 3^{28} \cdot 2^{52}
  • n= (3^{14} \cdot 2^{26} )^2 \Rightarrow n este pătrat perfect
Exercițiul 4:  
Arătați că numărul  n= 2^{2011}- 2^{2010}-2^{2009}-2^{2008}  este pătrat perfect.
  • Rezolvare: Pentru a arăta că numărul "n" este pătrat perfect trebuie să arătăm că se poate scrie ca un număr natural la puterea a doua.
  • Aplicând Regulile de Calcul cu Puteri  putem scrie: 2^{2011}= 2^{2008}\cdot 2^{3}2^{2010}= 2^{2008}\cdot 2^{2} și 2^{2009}= 2^{2008}\cdot 2^{1}. Obținem astfel:
  •  n= 2^{2008}\cdot 2^{3} - 2^{2008}\cdot 2^{2} - 2^{2008}\cdot 2^{1} -2^{2008}
  • Observăm că se repetă  2^{2008} și putem sa îl dăm factor comun:
  •  n= 2^{2008}\cdot (2^{3} - 2^{2} - 2^{1} - 1)
  •  n= 2^{2008}\cdot (8 - 4 - 2 - 1)
  •  n= 2^{2008}\cdot 1
  •  n= 2^{2008}
  •   n= (2^{1004})^2 \Rightarrow n este pătrat perfect
Exercițiul 5: 
Arătați că numărul a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002}   nu este pătrat perfect.
  • Rezolvare: Observăm că avem Suma Gauss a puterilor lui 2. Pentru a rezolva acest exercițiu înmultim întreaga expresie matematică cu un 2. 
  • a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002} | \ \ \ \cdot2
  • 2\cdot a= 2\cdot 2^{1504} + 2\cdot 2^{1505} + 2\cdot 2^{1506} +..............+2\cdot 2^{2002}
  • 2\cdot a= 2^{1504+1} + 2^{1505+1} + 2^{1506+1} +..............+ 2^{2002+1}
  • 2\cdot a= 2^{1505} + 2^{1506} + 2^{1507} +.............+2^{2002}+ 2^{2003}
  • Scădem cele două relații și obținem:
  • suma gauss a puteror lui 2
  •  a = 2^{2003} - 2^{1504}
  • Pentru a demonstra că numărul  a = 2^{2003} - 2^{1504} nu este pătrat perfect trebuie să arătăm că Ultima cifră a lui a aparține mulțimii: \left \{ 2,3, 7,8 \right \}.
  • Calculăm Ultima cifră a numărului a = 2^{2003} - 2^{1504}
  •  U(a) = U(2^{2003} - 2^{1504})
  •  U(a) = U(2^{2003}) - U(2^{1504})
  • Calculăm  U(2^{2003}) .
  • Mai întâi calculăm puterilelui 2.
  • Observăm că ultima cifră se schimbă din 4 în 4.
  • Împărțim 2003 la 4 și obținem câtul 500 și restul 3.
  •  U(2^{2003})=U(2^{4\cdot 500+3})=U[(2^4)^{500}\cdot 2^3]=U[(2^4)^{500}]\cdot U(2^3)
  • Dacă privim atent puterile lui 2 observăm ca ultima cifră a lui 2^4 este 6 și astfel obținem:
  • U[(2^4)^{500}]\cdot U(2^3)= U[U(6^{500})\cdot 8]
  • Știm că 6 ridicat la orice putere are ultima cifra tot 6.
  • Și obținem: U[U(6^{500})\cdot 8]=U(6 \cdot 8)= U(48)=8
  • Am obținut că  U(2^{2003})=8
  • Calculăm  U(2^{1504}).
  • Împărțim 1504 la 4 și obținem câtul 376.
  •  U(2^{1504})=U(2^{4\cdot 376})=U[(2^4)^{376}]
  • U(2^4)=6\Rightarrow U[(2^4)^{376}]=U(6^{376})=6
  • Am obținut astfel:  U(a) = U(2^{2003}) - U(2^{1504})=8-6=2
  • Știm că ultima cifră a unui pătrat perfect nu poate fi 2 \Rightarrow  a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002} nu este pătrat perfect

Exerciții rezolvate la Ultima Cifră a unui Număr Natural

"Zadarnic vei vrea să-l înveți pe cel ce nu e dornic să fie învățat, dacă nu-l vei fi făcut mai întâi dornic de a învăța."

Comenius

Dragul meu părinte bine te-am regăsit. În articolul anterior am vorbit despre cum putem afla Ultima cifră a unui număr natural. Azi îți propun câteva exemple de exerciții rezolvate și explicate pas cu pas la această lecție dificilă pentru clasa a V-a.

 Exercițiul 1:

Calculați ultima cifră a numerelor:

a)  2^{1299}; \ \ \ 2^{2020};

b)  21^{324}; \ \ \ 19^{257}; \ \ \ 17^{2020};

Rezolvare:

  • a) Pentru a calcula  2^{1299}; mai întâi privim atent puterile numărului 2.
Observăm că ultima cifră se repetă din 4 în 4. Împărțim puterea 1299 la 4 și obținem:  1299 \ \ \ : \ \ \ 4=324 \ \ \ rest \ \ \ 3 \Rightarrow 1299=4\cdot 324 +3 Atunci putem scrie că: U(2^{1299})=U(2^{4\cdot 324 +3})=U[(2^{4})^{ 324} \cdot 2^3)] =U[(2^{4})^{ 324}] \ \ \ \cdot \ \ \ U( 2^3) Consultăm tabelul cu puterile lui 2 și observăm că 2^{4} are ultima cifră 6 astfel obținem:  U[(2^{4})^{ 324}] \ \ \ \cdot \ \ \ U( 2^3)=U(6^{ 324}) \ \ \ \cdot \ \ \ 8 Consultăm tabelul cu puterile lui 6. Observăm că  6 ridicat la orice putere are ultima cifră 6 astfel obținem: U(6^{ 324}) \ \ \ \cdot \ \ \ 8=U(6 \cdot 8)=U(48)=8 Am obținut că U(2^{ 1299})=8 Calculăm acum pentru U(2^{ 2020})=? Avem mai sus tabelul cu puterile lui 2 și am observat că ultima cifră se repetă din 4 în 4. Împărțim puterea 2020 la 4 și obținem: 2020 \ \ \ : \ \ \ 4=505 \ \ \ rest \ \ \ 0 Atunci putem scrie că: U(2^{2020})=U(2^{4\cdot 505 +0})=U[(2^{4})^{ 505} \cdot 2^0)] . Știm că orice număr ridicat la puterea 0 este egal cu 1 \Rightarrow 2^{0}=1. Am văzut mai sus că  2^{4} are ultima cifră 6 astfel obținem: =U[(6^{ 505} \cdot 1)]=U(6 \cdot1)=6 . Am obținut că: U(2^{ 2020}) = 6 b)   21^{324}; \ \ \ 19^{257}; \ \ \ 17^{2020};
  • Calculăm  U(21^{ 324}) = ?
 U(21^{ 324}) = U(1^{ 324}) Știm că 1 ridicat la orice putere este egal cu 1.  \Rightarrow U(1^{ 324}) = 1
  • Calculăm  U(19 ^{ 257}) = ?
 U(19 ^{ 257}) = U(9^{ 257}) = Calculăm puterile lui 9. Observăm că ultima cifră se repetă din 2 în 2. Împărțim 257 la 2 și obținem: 257 \ \ \ : \ \ \ 2 = 128 \ \ \ rest \ \ \ 1 Atunci putem scrie că: U(9^ {257})= U(9^ {2\cdot128+1})= U(9^ {2})^{128} \cdot U(9^1)= Consultând tabelul cu puterile lui 9 observăm că 9^2 are ultima cifră egală cu 1, astfel obținem:  U(9^ {2})^{128} \cdot U(9^1)= U(1^{128})\ \ \ \cdot \ \ \ 9=U(1 \cdot 9 )=9 Am obținut că U(19^{ 257}) = 9
  • Calculăm U(17^{ 2020}) = ?
U(17^{ 2020}) = U(7^{ 2020}) = ? Calculăm puterile lui 7. Observăm că ultima cifră se repetă din 4 în 4. Împărțim 2020 la 4 și obținem: 2020 \ \ \ : \ \ \ 4 = 505 \ \ \ rest \ \ \ 0 Atunci putem scrie că:  U(7^{ 2020}) = U[(7^4)^{ 505}] Consultând tabelul cu puterile lui 7 observăm că 7^4 are ultima cifră egală cu 1, astfel obținem: U[(7^4)^{ 505}] = U(1^{505})=1 Am obținut că U(17^{ 2020})=1
Învăț pentru mine
Dragul meu părinte își propun câteva exerciții pe care să le rezolve copilul tău urmărind exemplele explicate și rezolvate mai sus! Determină ultima cifră a numerelor: a)  2^{99}; \ \ \ 2^{2018}; \ \ \ 2^{2024}; b)  41^{2017}; \ \ \ 125^{2017}; \ \ \ 2017^{2018}; c)  4^{1999}; \ \ \ 129^{2022}; \ \ \ 2016^{2018};

Ultima cifră a unui număr natural

"Cu cât un copil a văzut și a înțeles mai mult, cu atât vrea el să vadă și să înțeleagă mai mult." 

Jean Piaget

Dragul meu părinte bine te-am regăsit! În articolul anterior am vorbit despre "Pătratul unui număr natural". Astăzi îți propun o nouă lecție care mă ajută să demonstrez dacă un număr natural este pătrat perfect sau nu: "Ultima cifră a unui număr natural".
Șirul de numere: 0, 1, 4, 9, 16, 25, 36, ............... este șirul 0 ^{2}, 1 ^{2}, 2 ^{2}, 3 ^{2}, 4 ^{2}, 5 ^{2}, 6 ^{2}, .............., n ^{2}, .......... și se numește șirul numerelor naturale pătrate perfecte. Fie x un număr natural. Notăm cu U(x) ultima cifră a numărului x. Să privim cu atenție următorul tabel: Observăm ca ultima cifră a unui pătrat perfect poate fi: 0, 1, 4, 5, 6 \ \ sau \ \ \ 9 . Observație:
  • Dacă ultima cifră a unui număr natural este 2, 3, 7\ \ sau \ \ \ 8 atunci acel număr natural nu poate fi pătrat perfect.
  • Dacă ultima cifră a unui număr natural este 0, 1, 4, 5, 6 \ \ sau \ \ \ 9 acel număr natural este pătrat perfect.
Pentru a afla ultima cifră a unui număr vor avea în vedere următoarele reguli de calcul:
  • U(x+y)=U(U(x)+U(y))
  • U(x\cdot y)=U(U(x)\cdot U(y))
  • U(x^n)=U[(U(x))^n]
Exemple:
  • U(79 +24)=U(U(79) +U(24))=U(9+4)=U(13)=3
  • U(98 \cdot 82)=U(U(98) \cdot U(82))=U(8 \cdot 2)=U(16)=6
  • U(36 ^{89})=U(U(36) ^{89})=U(6^ ^{89})=6
Să analizăm atent următorul tabel:
Puterile numerelor naturale
Observație:
  • Numerele 1,5 \ \ \ si \ \ \ 6 ridicate la orice putere îmi dă ultima cifră 1,5 \ \ \ si \ \ \ respectiv \ \ \ 6 .
  • La numerele 2,3, 7 \ \ \ si \ \ \ 8 se repetă ultima cifră din patru în patru puteri. La aceste numere ca să pot afla ultima cifră împart exponentul la 4, iar ultima cifră va fi egală cu ultima cifră a numărului 2,3,7 sau respectiv 8  ridicat la puterea egală cu restul împărțirii.
  • Iar la numerele 4 \ \ \ si \ \ \ 9 se repetă ultima cifră din două în două puteri.La aceste numere ca să pot afla ultima cifră împart exponentul la 2, iar ultima cifră va fi egală cu ultima cifră a numărului 4 sau respectiv 9 ridicat la puterea egală cu restul împărțirii.
Exemple: Determinați ultima cifră a numerelor:
  •  2^{{2017}}\ \ \ si \ \ 4^{{2017}}
Rezolvare: 
  • Calculăm pentru  2^{{2017}}. Scriem puterile lui 2.
Puterile lui 2
Observăm ca ultima cifră se repetă din 4 în 4. Împărțim 2017 la 4 Obținem astfel 2017\ \ \ : \ \ \ 4 =504 \ \ \ rest \ \ \ 1 Rezultă că U(2^{2017})= U[(2^4)^{2017} \cdot 2^1]=U(2^4)^{2017}\cdot U(2^1) Privind puterile lui 2 observăm că ultima cifră a lui 2^4 este 6, iar ultima cifră a lui 2^1 este 2. Astfel obținem că U(6^{2017})\cdot 2= U(6 \cdot 2) = U(12) = 2
  • Observație: Am precizat mai sus ca 6 la orice putere are ultima cifră egala tot cu 6.
  • Calculăm ultima cifră pentru numărul U(4^{2017})=
Scriem puterile lui 4. Observăm că la numărul 4 ultima cifră se repetă din 2 în 2. Împărțim 2017 la 2 : Obținem astfel: 2017 \ \ \ :\ \ \ 2 = 1008 \ \ \ rest\ \ \ 1 Rezultă că: U(4^{2017})=U[(4^2)^{1008} \cdot 4^1]=U[(4^2)^{1008}] \cdot U(4^1)= Ultima cifră a lui 4^2 este 6 iar ultima cifră a lui 4^1 este 4. Înlocuiesc și obțin: U(6^{1008})\cdot U(4^1)= U(6 \cdot 4)= U(24)= 4. Te invit să exersezi și tu 3 exerciții identice pe care ți le propun în rubrica:
Învăț pentru viitorul meu: Determină ultima cifră a numerelor: 9^{2017}; \ \ \ 3^{2019} ;\ \ \ 8^{2021}.
Succes! PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  ! Math More Easy - YouTubehttps:/ https://www.facebook.com/MathMoreEasy. Cu mare drag şi mult respect Alina Nistor

Pătratul unui număr natural

Clasa a V-aDragul meu părinte bine te-am regăsit! In articolul de azi vreau să îţi vorbesc despre "Pătratul unui număr natural". În articolele anterioare am vorbit despre "Ridicarea la putere a unui număr natural" şi " Regulile de calcul cu puteri". Azi vom studia "Pătratele perfecte" .

(mai mult…)
Să analizăm următorul sir de pătrate:
  • Definiţie: Un număr obţinut prin ridicarea la puterea a doua aunui număr natural se numeşte pătrat perfect.
Exemple:     81=9 ^{2} putem spune că 81 este pătrat perfect
  • Observaţie: Pentru a arăta că un număr nu este pătrat perfect este suficient să arătăm că numărul este cuprin între două pătrate perfecte.
Exemplu: 115 nu este pătrat perfect pentru că 10 ^{2}=100 \lt 115 \lt121=11 ^{2} Să analizăm următorul tabel: patrat-perfect
  • Observăm că ultima cifră a unui pătrat perfect poate fi: 0,1, 4,5,  6 sau 9.
  • Numerele care au ultima cifră 2, 3, 7 sau 8 nu pot fi pătrate perfecte.
  • Observaţie: Nu întotdeauna numerele care au ultima cifră 0; 1; 4; 5; 6 sau 9  sunt pătrate perfecte
  • Exemplu: 10, 11, 15, 26 sau 39 nu sunt pătrate perfecte.
Dacă dorești să ai acces la mai multe exemple de exerciții cu un grad de dificultate ridicat rezolvate și explicate pas cu pas te invit alături de mine in Clubul de Matematică "Math More Easy" sau accesează link-ul de mai jos: http://mathmoreeasy.ro/exercitii-rezolvate-la-patrate-perfecte/
Succes! PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  ! Math More Easy - YouTubehttps:/ https://www.facebook.com/MathMoreEasy. Cu mare drag şi mult respect Alina Nistor

Exerciții rezolvate „Reguli de Calcul cu puteri”

clasa a VI-aDragul meu părinte, în lecţia anterioară „Reguli de calcul cu puteri” am vorbit despre noţiunile pe care trebuie sa le reţină copilul tău la această lecţie.

In acest articol, vreau să îţi prezint câteva exemple de exerciţii cu un grad de dificultate diferit, explicate pas cu pas, pentru a te ajuta să-i explici şcolarului tău modul în care trebuiesc abordate exerciţiile de la această lecţie.

(mai mult…)

  • Exerciţiul 1:  Calculaţi:
  •  15^{38} : 5^{38} - (3^{19})^{2}=

Dragul meu părinte, observăm că în acest exerciţiu avem operaţii de ridicare la putere care sunt operaţii de ordin III, operaţii de împărţire a numerelor naturale care sunt operaţii de ordinul II şi operaţia de scădere care este o operaţie de ordinul I.

Comform ordinii efectuarii operaţiilor numerelor naturale, mai întâi efectuăm operaţiile de ordinul III (ridicarea la putere), apoi operaţiile de ordinul II (împărţirea), iar la urmă efectuăm operaţiile de ordinul I (scăderea).

Pentru că avem ridicare la putere cu un exponent mare( şi ar dura mult timp) aplicăm regulile de calcul cu puteri pentru a simplifica rezolvarea exerciţiului, după cum urmează:

Astfel obţinem:

(5\cdot3) ^{38} : 5^{38} - (3^{19})^{2}=

5^{38}\cdot3 ^{38} : 5^{38} - (3^{19})^{2}=

1\cdot3 ^{38} - (3^{19})^{2}=

"1\cdot3

3 ^{38} - 3^{38}=0

Exerciţiul 2:  Calculaţi: a=(b-c) ^{2011}dacă :                                  b=[(2 ^{3})^{2}-1954^{0}] : 3^{2^{1^{7}}}-(4^{1^{2^{3}}}-1^{4^{3^{2}}})

c=32\cdot7 ^{5}-14^{5}+3<br /><br />

Rezolvare:

Mai întâi aducem la o formă mai simplă pe „b” şi pe „c”.

Avem :  1954 ^{0}=1

deoarece  ştim ca orice număr la puterea 0 este egal cu 1.

Deasemenea ştim că 1 ridicat la orice putere este egal cu 1

Astfel obţinem:         b=(2 ^{3\cdot2}-1) : </p> <p>3 ^{2^{1}}-( </p> <p>4 ^{1^{8}}-1 ^{4^{9}}</p> <p>)

                                b=(2 ^{6}-1) : </p> <p>3 ^{2}-( </p> <p>4 ^{1}-1</p> <p>)

                               b=(64-1) : 9 - 3

                              b=63 : 9 - 3<br />

                              "b=

                              b=4<br />

                             c=32\cdot7 ^{5}-14 ^{5}+3

                             c=32\cdot7 ^{5}-(2\cdot7) ^{5}+3

                            c=2^{5}\cdot7 ^{5}-(2\cdot7) ^{5}+3

                           c=(2\cdot7) ^{5}-(2\cdot7) ^{5}+3

                           c=0+3

                           c=3

Calculăm numărul „a”:       a=(4-3) ^{2011}

                                          a=1 ^{2011}

                                          a=1

  • Exerciţiul 3:
  • Determinaţi numărul natural "n" pentru care sunt adevărate egalităţile:
  • "7

Dragul meu părinte, observăm ca in acest exerciţiu avem suma lui Gauss.

"11+12+13+..............+30=<br

"(11+30)+(12+29)+..............=<br

Avem 20 termeni grupati in 10 paranteze, iar suma fiecarei paranteze este egală cu 41.

"41+41+............+41=<br

(de 10 ori)

"10\cdot41<br

Astfel obţinem: 7 ^{10\cdot41}=7^{n\cdot3}\cdot7^{2}

7 ^{410}=7^{3n+2}   \Rightarrow410={3n+2}  /(-2)

410-2 =3n+2-2

408 =3n /: 3

408 : 3 =3n : 3

136 =n

  • Exerciţiul 4:
  • Demonstraţi că pentru orice număr natural "n" este adevărată relaţia:
  • 15 / A= 72 ^{n+1}+3^{2n+1}\cdot2^{3n+2}+3^{2n}\cdot2^{3n}\cdot6

Pentru a demonstra că 15 divide numărul A trebuie să demonstrăm că numărul A este un multiplu de 15. Să aducem numărul A la o formă mai simplă.

 A= 72 ^{n+1}+3^{2n+1}\cdot2^{3n+2}+3^{2n}\cdot2^{3n}\cdot6

Pentru început îl descompunem pe 72 in factori primi şi obţinem:

 A= (2 ^{3}\cdot3 ^{2}) ^{n+1}+3^{2n+1}\cdot2^{3n+2}+3^{2n}\cdot2^{3n}\cdot6

La următorul pas aplicăm regula de calcul cu puteri: "(a

A=2 ^{3(n+1)}\cdot3 ^{2(n+1)}+3 ^{2n+1}\cdot2 ^{3n+2}+3 ^{2n}\cdot2 ^{3n}\cdot6

A=2 ^{3n+3}\cdot3 ^{2n+2}+3 ^{2n+1}\cdot2 ^{3n+2}+3 ^{2n}\cdot2 ^{3n}\cdot6

La următorul pas aplicăm regula de calcul cu puteri:  a ^{m+n}=a ^{m}\cdot a ^{n}

A=2 ^{3n}\cdot2 ^{3}\cdot3 ^{2n}\cdot3 ^{2}+3 ^{2n}\cdot3 ^{1}\cdot2 ^{3n}\cdot2 ^{2}+3 ^{2n}\cdot2 ^{3n}\cdot6

La următorul pas dăm factor comun pe: 2 ^{3n}\cdot 3 ^{2n}

A=2 ^{3n}\cdot3 ^{2n}(2 ^{3}\cdot3 ^{2}+3 \cdot2 ^{2}+6)

A=2 ^{3n}\cdot3 ^{2n}(8\cdot9+3 \cdot4+6)

A=2 ^{3n}\cdot3 ^{2n}(72+12+6)

A=2 ^{3n}\cdot3 ^{2n}\cdot90<br />

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor

REGULI DE CALCUL CU PUTERI

clasa a VI-aDragul meu părinte, copilul tău a învăţat prima oară această lecţie: „ Reguli de calcul cu puteri” în anul anterior, în clasa a V-a.

În acest an, în clasa a VI-a această lecţie este reamintită, deoarece noţiunile învăţate în această lecţie îi sunt utile copilului tău la următoarea lecţie: „ Criterii de diviozibilitate”.

(mai mult…)

Dar să vedem, dragul meu părinte, ce ar trebui să reţină copilul tău la această lecţie: „Reguli de calcul cu puteri”:

  • Definiţie:

    Fie „a” şi „n” , două numere naturale, cu n ≥ 2.Produsul a „n” factori egali cu „a” se numeşte puterea a n-a a numărului „a” şi se notează :

  • Se scrie:      a^{n}

  • Se citeşte: „ a la puterea n”.

  • a” se numeşte bază.

  • n” se numeşte exponent.

  • Exemplu:

                    a · a = a²

a · a · a= a³

a · a· a· ................· a =   a^{n}

  • Excepţie:   a^{1}= a şi  a^{0} = 1
  • Orice număr la puterea 1 este egal cu el însuşi.
  • Orice număr la puterea 0 este egal cu 1.

Dar să vedem, dragul meu părinte, care sunt regulile cu puteri:

  • Înmulţirea puterilor cu aceeaşi bază:

  •  a^{m}\cdot a ^{n}=a^{m+n}
  • - se scrie baza şi se adună exponenţii

  • Împărţirea puterilor cu aceeaşi bază:

  •  a^{m}\div a ^{n}=a^{m-n}
  • se scrie baza şi se scad exponenţii
  • Puterea unei puteri:

  • <br /><br /><br /><br /> (a^{m}) ^{n}=a^{m\cdot n}
  • -se scrie baza şi se înmulţesc exponenţii
  • Puterea unui produs:

  • <br /><br /><br /><br /> (a\cdot b) ^{n}=a^{n}\cdot b^{n}
  • Puterea unui cât:

  •  (a\div b) ^{n}=a^{n}\div b^{n}

Dragul meu părinte, la această lecţie, copilul tău trebuie să reţină şi prioritatea pe care o are ridicarea la putere în calcul.

  • Ridicarea la putere este o înmulţire repetată.

  • Exponentul arată de câte ori se repetă produsul prin care se calculează puterea.

  • Ridicarea la putere este o operaţie de ordinul III.

  • Dacă într-un exerciţiu nu există paranteze, atunci se efectuează întâi redicările la putere, apoi înmulţirile şi împărţirile, iar la final, adunările li scăderile.

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor

Ridicarea la putere a unui număr natural

Clasa a V-aDragul meu părinte, bine te-am regăsit! Până acum copilul tău a învăţat adunarea, scăderea, înmulţirea şi împărţirea numerelor naturale. În clasele primare a învăţat că înmulţirea este o adunare repetată.

Iată că a sosit timpul să înveţe şi noţiuni noi cum ar fi ridicarea la putere a unui număr natural.

(mai mult…)

Să observăm:

ridicarea-la-putere-foto-1

  • Definiţie:Puterea "n" a unui număr natural "a" este produsul a n-factori egali cu numărul "a"  ridicarea-la-putere-foto-2
  • Convenţie matematică: a ^{1}=a
  •                                     a ^{0}=1    ; pentru orice    a\neq 0

ridicarea-la-putere-foto-3

  • Citim "a la puterea n"

ridicarea-la-putere-foto-4

  •  Putem reprezenta 16=4^{2}=4\cdot 4 printr-un pătrat cu 4 linii şi 4 coloane.reprezentare-16
  • O importanţă deosebită au puterile lui 10. Acestea se folosesc pentru a compara numerele foarte mari:

puterile-lui-10

  • Ce priorităţi au puterile în calcul?

rezolvare-corectarezolvare-corecta-2

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor