Planul

” Dacă începi astăzi, vei vedea rezultate cu o zi mai devreme decât dacă aștepți până mâine. Începe astăzi! “

Dragul meu părinte bine te-am regăsit! Azi te invit sa parcurgem împreună încă o lecție de Geometrie: Planul. 

(more…)

Planul:
  • Ni-l imaginăm ca o suprafață netedă, întinsă la nesfârșit în toate direcțiile, alcătuită din puncte.
  • Îl notăm cu o literă din alfabetul grecesc:  \alpha, \beta, \gamma, \Delta ,\Psi , \Omega ............., sau cu trei litere mari într-o paranteză rotundă cu condiția să reprezinte trei puncte necoliniare ce-i aparțin (ABC).

Pozițiile Relative A  Unui Punct Față De Un Plan:

  • Punct Interior unui plan: 

  • Punct Exterior unui plan:

Dreaptă inclusă în plan:

Dacă o dreaptă d are toate punctele într-un plan \alpha, atunci dreapta este inclusă în planul \alpha. Se notează: d \subset \alpha .

Observație: 

Dacă A \in \alpha și B \in \alpha\Rightarrow AB \subset \alpha

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor 

dacă ai întrebări sau nevoie de ajutor.

                                          Cu mare drag și mult respect Alina Nistor!

Punctul și Dreapta

“Efortul își arată roadele după ce o persoană refuză să se oprească.

Napoleon Bonaparte

Dragul meu părinte bine te-am regăsit! Azi te invit sa parcurgem împreună prima lecție de Geometrie în plan: Punctul și Drapta.Punctul și dreapta sunt noțiunile cele mai simple din Geometrie fiind create de mintea umană.

(more…)

Punctul: 
  • Ni-l putem imagina ca fiind urma lăsată pe hârtie de vârful unui creion bine ascuțit.
  • Îl reprezentăm grafic printr-o bulină sau printr-un “x” (două liniuțe care se intersectează).
  • Punctele se notează cu litere mari.

Poziții relative a două puncte: 

  • puncte identice (coincid) dacă cele două puncte sunt situate în același loc
  • puncte distincte (diferite) dacă cele două puncte sunt situate locuri diferite.

Dreapta: 
  • Ne-o putem imagina ca fiind un fir de ață întins prelungit la infinit.
  • Dreptele se notează cu literele mici ale alfabetului sau cu două litere mari prin care am notat două puncte distincte ce aparțin dreptei.
  • Dreapta este o figură geometrică (o mulțime de puncte) și este nelimitată.
  • Pentru a reprezenta grafic o dreaptă folosim rigla.

Axioma dreptei: 

Două puncte distincte determină o dreaptă și numai una.

Orice dreaptă conține cel puțin două puncte distincte.

Pozițiile relative ale uni punct față de o dreaptă: 

  • Punct exterior unei drepte: atunci când punctul nu este situat pe dreapta d

Punct interior unei drepte: atunci când punctul  este situat pe dreapta d sau mai spunem că punctul aparține dreptei d.

Puncte coliniare: Trei (sau mai multe puncte) sunt coliniare dacă există o dreaptă care să  conțină cele trei puncte.

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

Exerciții rezolvate la Pătrate Perfecte!

“Nu poți împinge pe nimeni să urce pe o scară dacă nu este dispus să o urce singur ”

Andrew Carnegie

Dragul meu părinte bine te-am regăsit! În articolul anterior am prezentat cateva “Exerciții Rezolvate la Ultima Cifră a unui Număr Natural”. Astăzi te invit să rezolvăm și să explicăm câteva exerciții la Pătrate Perfecte. Să vedem cum putem arăta că un număr foarte mare poate fi sau nu pătrat perfect!

(more…)

Exercițiul 1: 

Arătați că numărul a=2003 + 2\cdot (1+2+3+................+ 2002) este pătrat perfect.

  • Rezolvare: Pentru a arăta că numărul “a” este pătrat perfect trebuie să arătam că numărul “a”se poate scrie ca un număr natural la puterea a doua.
  • Observăm că în paranteză avem  Suma Gauss a primelor 2002 numere naturale consecutive așa că vom aplica formula de calcul a lui Gauss.
  • a=2003 + 2\cdot (1+2+3+................+ 2002)
  • a=2003 + 2\cdot [2002\cdot (2002+1)\ : \ 2]
  • a=2003 + 2\cdot [2002\cdot 2003 \ : \ 2]
  • Pentru că înmulțirea și împărțirea sunt operații de același ordin putem efectua mai întâi operația de împărțire.
  • a=2003 + 2\cdot [2002\ \ : \ 2 \cdot 2003]
  • a=2003 + 2\cdot 1001 \cdot 2003
  • a=2003 + 2002 \cdot 2003
  • Dăm factor comun pe 2003.
  • a=2003\cdot (1 + 2002)
  • a=2003\cdot 2003
  • a=2003^2.
  • \Rightarrow numarul \ este pătrat perfect.
Exercițiul 2: 

Arătați că numărul  a=81+81 \cdot 2+ 81 \cdot 3+.....................+81 \cdot 49 este pătrat perfect.

  • Rezolvare: Pentru a arăta că numărul “a” este pătrat perfect trebuie să arătam că numărul “n”se poate scrie ca un număr natural la puterea a doua.
  • Observăm că 81 se repetă și îl putem da factor comun.
  • a=81\cdot (1+ 2+ 3+.....................+49).
  • În paranteză obținem   Suma Gauss a primelor 49 numere naturale consecutive așa că vom aplica metoda de calcul a lui Gauss.
  • a=81\cdot [49 \cdot(49+1) \ \ : \ 2 ]
  • a=81\cdot [49 \cdot 50 \ \ : \ 2 ]
  • a=81\cdot 49 \cdot 25
  • a=9^2\cdot 7^2 \cdot 5^2
  • Aplicăm Regulile de Calcul cu Puteri și obținem:
  • a=(9\cdot 7 \cdot 5)^2
  • a=315^2
Exercițiul 3:  

Arătați că numărul   n= 27^9 \cdot 32^{11} \ \ : \ \ 2 - 16^6\cdot 2\cdot 6^{27} este pătrat perfect.

  • Rezolvare:  Pentru a arăta că numărul “n” este pătrat perfect trebuie să arătăm că se poate scrie ca un număr natural la puterea a doua.
  • Observăm că pe 27 îl putem scrie ca bază 3, pe 16 și 32 îi putem scrie ca baza 2 iar pe 6 îl putem scrie ca produsul 2\cdot 3
  • n= (3^3)^9 \cdot (2^5)^{11} \ \ : \ \ 2^1 - (2^4)^6\cdot 2^1 \cdot (2\cdot3)^{27}
  • Aplicăm Regulile de calcul cu puteri și obținem:
  • n= 3^{3\cdot9} \cdot 2^{5\cdot 11} \ \ : \ \ 2^1 - 2^{4\cdot 6}\cdot 2^1 \cdot 2^{27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{55} \ \ : \ \ 2^1 - 2^{24}\cdot 2^1 \cdot 2^{27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{55-1} - 2^{24+1+27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{54} - 2^{52}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{52} \cdot 2^2 - 2^{52}\cdot 3^{27}
  • Observăm că se repetă  3^{27} \cdot 2^{52} și îi dăm factor comun.
  • n= 3^{27} \cdot 2^{52} \cdot (2^2 - 1)
  • n= 3^{27} \cdot 2^{52} \cdot (4 - 1)
  • n= 3^{27} \cdot 2^{52} \cdot 3
  • n= 3^{27} \cdot 2^{52} \cdot 3^1
  • n= 3^{27+1} \cdot 2^{52}
  • n= 3^{28} \cdot 2^{52}
  • n= (3^{14} \cdot 2^{26} )^2 \Rightarrow n este pătrat perfect
Exercițiul 4:  

Arătați că numărul  n= 2^{2011}- 2^{2010}-2^{2009}-2^{2008}  este pătrat perfect.

  • Rezolvare: Pentru a arăta că numărul “n” este pătrat perfect trebuie să arătăm că se poate scrie ca un număr natural la puterea a doua.
  • Aplicând Regulile de Calcul cu Puteri  putem scrie: 2^{2011}= 2^{2008}\cdot 2^{3}2^{2010}= 2^{2008}\cdot 2^{2} și 2^{2009}= 2^{2008}\cdot 2^{1}. Obținem astfel:
  •  n= 2^{2008}\cdot 2^{3} - 2^{2008}\cdot 2^{2} - 2^{2008}\cdot 2^{1} -2^{2008}
  • Observăm că se repetă  2^{2008} și putem sa îl dăm factor comun:
  •  n= 2^{2008}\cdot (2^{3} - 2^{2} - 2^{1} - 1)
  •  n= 2^{2008}\cdot (8 - 4 - 2 - 1)
  •  n= 2^{2008}\cdot 1
  •  n= 2^{2008}
  •   n= (2^{1004})^2 \Rightarrow n este pătrat perfect

 

Exercițiul 5: 

Arătați că numărul a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002}   nu este pătrat perfect.

  • Rezolvare: Observăm că avem Suma Gauss a puterilor lui 2. Pentru a rezolva acest exercițiu înmultim întreaga expresie matematică cu un 2. 
  • a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002} | \ \ \ \cdot2
  • 2\cdot a= 2\cdot 2^{1504} + 2\cdot 2^{1505} + 2\cdot 2^{1506} +..............+2\cdot 2^{2002}
  • 2\cdot a= 2^{1504+1} + 2^{1505+1} + 2^{1506+1} +..............+ 2^{2002+1}
  • 2\cdot a= 2^{1505} + 2^{1506} + 2^{1507} +.............+2^{2002}+ 2^{2003}
  • Scădem cele două relații și obținem:
  • suma gauss a puteror lui 2

  •  a = 2^{2003} - 2^{1504}
  • Pentru a demonstra că numărul  a = 2^{2003} - 2^{1504} nu este pătrat perfect trebuie să arătăm că Ultima cifră a lui a aparține mulțimii: \left \{ 2,3, 7,8 \right \}.
  • Calculăm Ultima cifră a numărului a = 2^{2003} - 2^{1504}
  •  U(a) = U(2^{2003} - 2^{1504})
  •  U(a) = U(2^{2003}) - U(2^{1504})
  • Calculăm  U(2^{2003}) .
  • Mai întâi calculăm puterilelui 2.
  • Observăm că ultima cifră se schimbă din 4 în 4.
  • Împărțim 2003 la 4 și obținem câtul 500 și restul 3.
  •  U(2^{2003})=U(2^{4\cdot 500+3})=U[(2^4)^{500}\cdot 2^3]=U[(2^4)^{500}]\cdot U(2^3)
  • Dacă privim atent puterile lui 2 observăm ca ultima cifră a lui 2^4 este 6 și astfel obținem:
  • U[(2^4)^{500}]\cdot U(2^3)= U[U(6^{500})\cdot 8]
  • Știm că 6 ridicat la orice putere are ultima cifra tot 6.
  • Și obținem: U[U(6^{500})\cdot 8]=U(6 \cdot 8)= U(48)=8
  • Am obținut că  U(2^{2003})=8
  • Calculăm  U(2^{1504}).
  • Împărțim 1504 la 4 și obținem câtul 376.
  •  U(2^{1504})=U(2^{4\cdot 376})=U[(2^4)^{376}]
  • U(2^4)=6\Rightarrow U[(2^4)^{376}]=U(6^{376})=6
  • Am obținut astfel:  U(a) = U(2^{2003}) – U(2^{1504})=8-6=2
  • Știm că ultima cifră a unui pătrat perfect nu poate fi 2 \Rightarrow  a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002} nu este pătrat perfect

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

 

Criteriile de divizibilitate

“Mintea umană este ca o parașută. E inutilă dacă nu se deschide.”

Frank Zappa

Dragul meu părinte bine te-am regăsit! În articolul anterior ți-am prezentat lecția “Divizorul unui număr natural. Multiplul unui număr natural”. Am învățat împreună care sunt divizorii unui număr, care sunt multiplii unui număr natural și cum arătăm dacă un număr natural divide sau nu un alt număr natural. Astăzi voi continua cu o noua lecție la acest capitol “Criteriile de divizibilitate” .

(more…)

Criteriul de divizibilitate cu 2

  • Un număr natural este divizibil cu 2 dacă și numai dacă ultima cifră a numărului este o cifră pară.
  • numar-divizibil-cu-2

Criteriul de divizibilitate cu 5

  • Un număr natural este divizibil cu 5 dacă și numai dacă ultima cifră a numărului este 0 sau 5
  • numar-divizibil-cu-5

Criteriul de divizibilitate cu 10.

  • Un număr natural este divizibil cu 10 dacă și numai dacă ultima cifră a numărului este 0.
  • numar-divizibil-cu-10

Criteriul de divizibilitate cu 100(1000, 10000, etc).

  • Un număr natural este divizibil cu 100(respectiv 1000, 10000, etc) dacă și numai dacă ultimile două (respectiv trei, patru, etc) cifre ale numărului sunt egale cu 0.
  • numar-divizibil-cu-100

Criteriul de divizibilitate cu 3 (respectiv 9).

  • Un număr natural este divizibil cu 3 (respectiv 9) dacă și numai dacă suma cifrelor sale se divide cu 3 (respectiv 9).
  • numar-divizibil-cu-3

Criteriul de divizibilitate cu 4.

  • Un număr natural este divizibil cu 4  dacă și numai dacă numărul format din ultimele două cifre se divide cu 4
  • numar-divizibil-cu-4

Criteriul de divizibilitate cu 25.

  • Un număr natural este divizibil cu 25  dacă și numai dacă  ultimele două cifre ale sale sunt 00, 25, 50 sau 75.
     

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor  dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

Exerciții rezolvate la Ultima Cifră a unui Număr Natural

“Zadarnic vei vrea să-l înveți

pe cel ce nu e dornic să fie învățat, dacă nu-l vei fi făcut mai întâi dornic de a învăța.”

Comenius

Dragul meu părinte bine te-am regăsit. În articolul anterior am vorbit despre cum putem afla Ultima cifră a unui număr natural. Azi îți propun câteva exemple de exerciții rezolvate și explicate pas cu pas la această lecție dificilă pentru clasa a V-a.

(more…)

Exercițiul 1:

Calculați ultima cifră a numerelor:

a)  2^{1299}; \ \ \ 2^{2020};

b)  21^{324}; \ \ \ 19^{257}; \ \ \ 17^{2020};

Rezolvare:

  • a) Pentru a calcula  2^{1299}; mai întâi privim atent puterile numărului 2.

Observăm că ultima cifră se repetă din 4 în 4.

Împărțim puterea 1299 la 4 și obținem:  1299 \ \ \ : \ \ \ 4=324 \ \ \ rest \ \ \ 3 \Rightarrow 1299=4\cdot 324 +3

Atunci putem scrie că: U(2^{1299})=U(2^{4\cdot 324 +3})=U[(2^{4})^{ 324} \cdot 2^3)] =U[(2^{4})^{ 324}] \ \ \ \cdot \ \ \ U( 2^3)

Consultăm tabelul cu puterile lui 2 și observăm că 2^{4} are ultima cifră 6 astfel obținem:

 U[(2^{4})^{ 324}] \ \ \ \cdot \ \ \ U( 2^3)=U(6^{ 324}) \ \ \ \cdot \ \ \ 8

Consultăm tabelul cu puterile lui 6.

Observăm că  6 ridicat la orice putere are ultima cifră 6 astfel obținem:

U(6^{ 324}) \ \ \ \cdot \ \ \ 8=U(6 \cdot 8)=U(48)=8

Am obținut că U(2^{ 1299})=8

Calculăm acum pentru U(2^{ 2020})=?

Avem mai sus tabelul cu puterile lui 2 și am observat că ultima cifră se repetă din 4 în 4.

Împărțim puterea 2020 la 4 și obținem: 2020 \ \ \ : \ \ \ 4=505 \ \ \ rest \ \ \ 0

Atunci putem scrie că: U(2^{2020})=U(2^{4\cdot 505 +0})=U[(2^{4})^{ 505} \cdot 2^0)] .

Știm că orice număr ridicat la puterea 0 este egal cu 1 \Rightarrow 2^{0}=1.

Am văzut mai sus că  2^{4} are ultima cifră 6 astfel obținem:

=U[(6^{ 505} \cdot 1)]=U(6 \cdot1)=6 .

Am obținut că: U(2^{ 2020}) = 6

b)   21^{324}; \ \ \ 19^{257}; \ \ \ 17^{2020};

  • Calculăm  U(21^{ 324}) = ?

 U(21^{ 324}) = U(1^{ 324})

Știm că 1 ridicat la orice putere este egal cu 1.  \Rightarrow U(1^{ 324}) = 1

  • Calculăm  U(19 ^{ 257}) = ?

 U(19 ^{ 257}) = U(9^{ 257}) =

Calculăm puterile lui 9.

Observăm că ultima cifră se repetă din 2 în 2.

Împărțim 257 la 2 și obținem: 257 \ \ \ : \ \ \ 2 = 128 \ \ \ rest \ \ \ 1

Atunci putem scrie că: U(9^ {257})= U(9^ {2\cdot128+1})= U(9^ {2})^{128} \cdot U(9^1)=

Consultând tabelul cu puterile lui 9 observăm că 9^2 are ultima cifră egală cu 1, astfel obținem:  U(9^ {2})^{128} \cdot U(9^1)= U(1^{128})\ \ \ \cdot \ \ \ 9=U(1 \cdot 9 )=9

Am obținut că U(19^{ 257}) = 9

  • Calculăm U(17^{ 2020}) = ?

U(17^{ 2020}) = U(7^{ 2020}) = ?

Calculăm puterile lui 7.

Observăm că ultima cifră se repetă din 4 în 4.

Împărțim 2020 la 4 și obținem: 2020 \ \ \ : \ \ \ 4 = 505 \ \ \ rest \ \ \ 0

Atunci putem scrie că:  U(7^{ 2020}) = U[(7^4)^{ 505}]

Consultând tabelul cu puterile lui 7 observăm că 7^4 are ultima cifră egală cu 1, astfel obținem:

U[(7^4)^{ 505}] = U(1^{505})=1

Am obținut că U(17^{ 2020})=1

Învăț pentru mine

Dragul meu părinte își propun câteva exerciții pe care să le rezolve copilul tău urmărind exemplele explicate și rezolvate mai sus!

Determină ultima cifră a numerelor:

a)  2^{99}; \ \ \ 2^{2018}; \ \ \ 2^{2024};

b)  41^{2017}; \ \ \ 125^{2017}; \ \ \ 2017^{2018};

c)  4^{1999}; \ \ \ 129^{2022}; \ \ \ 2016^{2018};

 

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

Mulțimea Numerelor Raționale.

Nu îți coborî așteptările pentru a se potrivi cu performanța ta. Ridică-ți nivelul de performananță pentru a se potrivi cu așteptările tale.” 

Ralph Marston

 

Dragul meu părinte bine te-am regăsit. Azi revin cu o lecție pentru clasa a VII-a. (more…)

Copilul tău a învățat în clasa a VI-a Numerele Raționale pe care le vom repeta și  acum în clasa a VII-a.

Începem clasa a VII-a cu recapitularea lecției  “Mulțimea numerelor Raționale. Forme de scriere a Numerelor Raționale.”

Definiție Număr Rațional: 

Un număr x se numește număr rațional dacă există o pereche de numere întregi (a,b) cu b\neq 0, astfel încât \frac{a}{b}=x.

  • Mulțimea numerelor raționale se notează cu Q și se poate defini astfel:
  • Q=\left \{ x| (\exists)\ \ \ a,\ b \in Z;\ \ b\neq 0 \ \ \ \ x=\frac{a}{b} \right \}

Observații: 

  • N \subset Z \subset Q
  •  Q^{{\star}}=Q \setminus \left \{ 0 \right \};
  •  Q^{{\star}} se numește mulțimea numerelor raționale nenule.
  • Q=Q_{{-}} \cup \left \{ 0\right \} \cup Q_{{+}}
  •  Q_{{-}} reprezintă mulțimea numerelor raționale negative
  •  Q_{{+}} reprezintă mulțimea numerelor raționale pozitive.
  • orice număr natural x se poate scrie ca un număr rațional cu numitor 1: x=\frac{x}{1}.

Scoaterea Întregilor din Fracție: 

  • Dacă avem un număr rațional x=\frac{a}{b} cu b\neq 0, pentru a scoate întregii din fracție efectuăm operația de împărțire a : b și obținem câtul c si restul r .
  • Putem scrie că  \frac{a}{b}=c\frac{r}{b}, unde c este partea întreagă , iar \frac{r}{b} este partea fracționară a numărului rațional \frac{a}{b} .

Exemplu:

  • Efectuăm operația de scoatere a întregilor din fracția  \frac{19}{4}
  • Efectuăm împărțirea 19\ \ \ :\ \ 4 = 4 \ \ \ rest \ \ 3
  • Putem scrie astfel: \frac{19}{4}=4\frac{3}{4}.

Introducerea Întregilor în fracție: 

Definiție : Numărul rațional scris sub forma a\frac{b}{c}  se poate scrie sub forma unei fracții ordinare astfel: a\frac{b}{c}= \frac{a\cdot c +b}{c}.

Exemplu:

  • Efectuăm operația de introducere a întregilor din fracție  pentru numărul rațional: 9\frac{3}{5}.
  • Conform definiției enunțate mai sus 9\frac{3}{5}= \frac{9 \cdot 5+3}{5}= \frac{45+3}{5}= \frac{48}{5} .

Forme de scriere:

Un număr rațional poate fi reprezentat prin fracții ordinare echivalente sau printr-o fracție zecimală finită sau periodică.

Teoremă:  Pentru orice număr rațional nenul “q”  există o unică fracție ireductibilă \frac{a}{b}, \ \ \ cu \ \ \ a\in Z \ \ \ si \ \ \ b\in Z^*, astfel încât q= \frac{a}{b}.

Transformarea Fracțiilor Ordinare în Fracții Zecimale:

Un număr rațional pozitiv reprezentat printr-o fracție ireductibilă \frac{a}{b} , cu  a,b \in N^{*}, b\geq 2, se poate transforma, folosind algoritmul de împărțire a numerelor naturale în:

  • fracție zecimală finită;
  • fracție periodică simplă;
  • fracție periodică mixtă.

Exemple: 

  • fracție zecimală finită;

\frac{39}{4}=9,75;

impartire

  • fracție periodică simplă;

\frac{122}{6}=20,(3)

  • fracție periodică mixtă.

\frac{125}{6}=20,8(3)

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

Ultima cifră a unui număr natural

 

Cu cât un copil a văzut și a înțeles mai mult, cu atât vrea el să vadă și să înțeleagă mai mult.” 

Jean Piaget

Dragul meu părinte bine te-am regăsit! În articolul anterior am vorbit despre “Pătratul unui număr natural”. Astăzi îți propun o nouă lecție care mă ajută să demonstrez dacă un număr natural este pătrat perfect sau nu: “Ultima cifră a unui număr natural”.

(more…)

Șirul de numere: 0, 1, 4, 9, 16, 25, 36, …………… este șirul 0 ^{2}, 1 ^{2}, 2 ^{2}, 3 ^{2}, 4 ^{2}, 5 ^{2}, 6 ^{2}, .............., n ^{2}, .......... și se numește șirul numerelor naturale pătrate perfecte.

Fie x un număr natural. Notăm cu U(x) ultima cifră a numărului x.

Să privim cu atenție următorul tabel:

Observăm ca ultima cifră a unui pătrat perfect poate fi: 0, 1, 4, 5, 6 \ \ sau \ \ \ 9 .

Observație:

  • Dacă ultima cifră a unui număr natural este 2, 3, 7\ \ sau \ \ \ 8 atunci acel număr natural nu poate fi pătrat perfect.
  • Dacă ultima cifră a unui număr natural este 0, 1, 4, 5, 6 \ \ sau \ \ \ 9 acel număr natural este pătrat perfect.

Pentru a afla ultima cifră a unui număr vor avea în vedere următoarele reguli de calcul:

  • U(x+y)=U(U(x)+U(y))
  • U(x\cdot y)=U(U(x)\cdot U(y))
  • U(x^n)=U[(U(x))^n]

Exemple:

  • U(79 +24)=U(U(79) +U(24))=U(9+4)=U(13)=3
  • U(98 \cdot 82)=U(U(98) \cdot U(82))=U(8 \cdot 2)=U(16)=6
  • U(36 ^{89})=U(U(36) ^{89})=U(6^ ^{89})=6

Să analizăm atent următorul tabel:

Puterile numerelor naturale

Observație:

  • Numerele 1,5 \ \ \ si \ \ \ 6 ridicate la orice putere îmi dă ultima cifră 1,5 \ \ \ si \ \ \ respectiv \ \ \ 6 .
  • La numerele 2,3, 7 \ \ \ si \ \ \ 8 se repetă ultima cifră din patru în patru puteri. La aceste numere ca să pot afla ultima cifră împart exponentul la 4, iar ultima cifră va fi egală cu ultima cifră a numărului 2,3,7 sau respectiv 8  ridicat la puterea egală cu restul împărțirii.
  • Iar la numerele 4 \ \ \ si \ \ \ 9 se repetă ultima cifră din două în două puteri.La aceste numere ca să pot afla ultima cifră împart exponentul la 2, iar ultima cifră va fi egală cu ultima cifră a numărului 4 sau respectiv 9 ridicat la puterea egală cu restul împărțirii.

 

Exemple:

Determinați ultima cifră a numerelor:

  •  2^{{2017}}\ \ \ si \ \ 4^{{2017}}

Rezolvare: 

  • Calculăm pentru  2^{{2017}}. Scriem puterile lui 2.

Puterile lui 2

Observăm ca ultima cifră se repetă din 4 în 4.

Împărțim 2017 la 4

Obținem astfel 2017\ \ \ : \ \ \ 4 =504 \ \ \ rest \ \ \ 1

Rezultă că U(2^{2017})= U[(2^4)^{2017} \cdot 2^1]=U(2^4)^{2017}\cdot U(2^1)

Privind puterile lui 2 observăm că ultima cifră a lui 2^4 este 6, iar ultima cifră a lui 2^1 este 2.

Astfel obținem că U(6^{2017})\cdot 2= U(6 \cdot 2) = U(12) = 2

  • Observație: Am precizat mai sus ca 6 la orice putere are ultima cifră egala tot cu 6.

 

  • Calculăm ultima cifră pentru numărul U(4^{2017})=

Scriem puterile lui 4.

Observăm că la numărul 4 ultima cifră se repetă din 2 în 2.

Împărțim 2017 la 2 :

 

Obținem astfel: 2017 \ \ \ :\ \ \ 2 = 1008 \ \ \ rest\ \ \ 1

Rezultă că: U(4^{2017})=U[(4^2)^{1008} \cdot 4^1]=U[(4^2)^{1008}] \cdot U(4^1)=

Ultima cifră a lui 4^2 este 6 iar ultima cifră a lui 4^1 este 4. Înlocuiesc și obțin:

U(6^{1008})\cdot U(4^1)= U(6 \cdot 4)= U(24)= 4.

Te invit să exersezi și tu 3 exerciții identice pe care ți le propun în rubrica:

Învăț pentru viitorul meu:

Determină ultima cifră a numerelor:

9^{2017}; \ \ \ 3^{2019} ;\ \ \ 8^{2021}.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un grad de dificultate ridicat rezolvate și explicate pas cu pas te invit alături de mine in Clubul de Matematică “Math More Easy”  sau accesează link-ul de mai jos:http://mathmoreeasy.ro/exercitii-rezolvate-la-ultima-cifra-a-unui-numar-natural/

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și  pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai  nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor! 

Divizorul unui număr natural. Multiplul unui număr natural.

“Dimensiunea succesului tău este măsurata de puterea dorinței tale, de mărimea visului tău și de cum gestionezi dezamăgirile pe drumul către succes.”

Dragul meu părinte bine te-am regăsit! Azi revin cu o lecție pentru clasa a VI-a.

Copilul tău a învățat în clasa a V-a noțiunile de Divizor. Multiplu dar și Criteriile de divizibilitate pe care acum în clasa a VI-a le vom repeta.

(more…)

Definiție:  Numărul natural “a”  este divizibil (sau se divide) cu numărul natural “b”, dacă există un număr natural “c” astfel încât: ”  a=b\cdot c” .

Observație:

Numărul natural “a”  nu este divizibil (sau nu se divide) cu numărul natural “b”, dacă există un număr natural “c” astfel încât: ”  a\neq b\cdot c” .

Divizori improprii. Divizori proprii.

Fie n \geq 2 un număr natural. Numerele 1 și n  se numesc divizori improprii ai numărului n .

Ceilalți divizori ai numărului n  (dacă există) se numesc divizori proprii.

Mulțimea divizorilor naturali ai numărului natural n este mulțimea D_{{n}} a tuturor numerelor naturale care divid pe n.

Se notează  D_{{n}}=\left \{ d \in N| n \ \vdots\ d \right \} .

Mulțimea multiplilor naturali ai numărului natural n  este mulțimea tuturor elementelor naturale care se divid cu n .

Se notează  M_{n}=\left \{ k\in N |\ \ \ \ \ \ \ k \ \vdots\ n \right \}.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Unități de Măsură pentru Arie. Aria Pătratului și Aria dreptunghiului.

“Invatatul este asemeni navigarii in amonte: daca nu avansezi esti tras inapoi.”
Proverb chinezesc

Dragul meu părinte bine te-am regăsit.Ultimul capitol din programa la matematică de clasa a V-a este rezervat Elementelor de Geometrie.

Cele mai vechi urme ale geometriei se găsesc în Egiptul Antic și Babilon, în jurul anului 3000 î.Hr și a fost descoperită din nevoia de a măsura pământul. De aici și denumirea de Geometrie: în limba Greacă geo = pământ, metria = măsură. (more…)

Dragul meu părinte, te invit azi să aprofundăm noțiunile despre: Unități de Măsură pentru Arie. Aria Pătratului și Aria dreptunghiului.

Exercițiul 1: Determinați x din: 10^4 cm^2 + 10^6 mm^2- x=1,6 m^2

Rezolvare:

Prima oară transformăm cm^2  și mm^2  în m^2 .

Pentru a face transformările desenăm scara unităților de măsură:

Scara unitati de masura pentru arie

Pentru a transforma cm^2  în m^2  urcăm 2 trepte deci împărțim la 100^2 .

 10^4 cm ^2=10^4 \div 100^2=10^4 \div (10^2)^2=10^4 \div 10^4=1 m^2

Pentru a transforma mm^2  în m^2  urcăm 3 trepte deci împărțim la 100^3.

10^6 mm ^2=10^6 \div 100^3=10^6 \div (10^2)^6=10^6 \div 10^6=1 m^2

Înlocuim în ecuația noastră și obținem:

10^4 cm^2 + 10^6 mm^2- x=1,6 m^2 \Rightarrow 1 m^2 + 1 m^2- x=1,6 m^2 \Rightarrow 2 m^2 - x=1,6 m^2 \Rightarrow x=2 m^2 - 1,6 m^2 \Rightarrow x=2,0 m^2 - 1,6 m^2 \Rightarrow x =0,4 m^2

Exercițiul 2: Determinați x din:  5 \cdot x - 3 \cdot 0,0004 Km^2= 315 m^2

Rezolvare:

Pentru a transforma Km^2 în m^2  coborâm 3 trepte deci înmulțim cu 100^3.

 0,0004 Km^2= 0,0004 \cdot 100^3 = 0,0004 \cdot 1000000   =0,000400 \cdot 1000000= 400 m^2

Înlocuim în ecuația noastră și obținem:

5 \cdot x - 3 \cdot 0,0004 Km^2= 315 m^2  \Rightarrow 5 \cdot x - 3 \cdot 400 m^2= 315 m^2  \Rightarrow 5 \cdot x - 1200 m^2= 315 m^2  \Rightarrow 5 \cdot x = 315 m^2 + 1200 m^2  \Rightarrow 5 \cdot x = 1515 m^2   >\Rightarrow 5 \cdot x = 1515 m^2 / : 5  \Rightarrow x = 1515 m^2 \div 5  \Rightarrow x = 303 m^2

Exercițiul 3: Determinați x din:  x + 23,615 ha= 2363 ari

Rezolvare:

 1 ar = 1 dam^2 \Rightarrow 2363 ari = 2363 dam ^2

 1 ha = 1 hm^2 \Rightarrow 23,615 ha = 23,615 hm ^2 \Rightarrow  23,615 hm ^2= 23,615 \cdot 10^2 = 2361,5 dam^2

Înlocuim în ecuația dată și obținem:

x + 2361,5 dam^2= 2363 dam^2

x + 2361,5 dam^2= 2363 dam^2 / -2361,5 dam^2

x = 2363 dam^2 -2361,5 dam^2

x = 1,5 dam^2

Exercițiul 4: Calculați aria unui pătrat ce are perimetrul egal cu 5,92 m.

Rezolvare:

 P_{{ ABCD}}= 4\cdot l \Rightarrow 4\cdot l = 5,92 m \Rightarrow   l = 5,92 m : 4 \Rightarrow l = 1,48 m

 A_{ABCD}= l^2 \Rightarrow A_{ABCD}= (1,48 m)^2 \Rightarrow    A_{ABCD}= 1,48 m \cdot 1,48 m \Rightarrow A_{ABCD}= 2,1904 m^2

Exercițiul 5: Câte plăci de beton în formă de pătratică având latura de 50 cm sunt necesare pentru a pava curtea unei case care are formă de dreptunghi cu dimensiunile de 47 m lungime și 21m lățime.

Rezolvare:

Pentru a rezolva problema facem mai întâi suprafața curții, adică Aria dreptunghiului.

 A_{curte}= L \cdot l \Rightarrow A_{curte}= 47m \cdot 21 m \Rightarrow A_{curte}= 987 m^2   \Rightarrow A_{curte}= 987 \cdot 10 000 \Rightarrow A_{curte}= 9870000 cm^2

Calculăm și aria plăcii de beton.

A_{placa beton}= l^2 \Rightarrow A_{placa beton}= (50 cm)^2   \Rightarrow A_{placa beton}= 2500 cm^2

 A_{curte} \div A_{placa beton}= 9870000 cm^2 : 2500 cm^2 \Rightarrow

 A_{curte} \div A_{placa beton}= 98700 : 25 \Rightarrow   A_{curte} \div A_{placa beton}= 3948  bucăți plăci beton.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

 

Model Rezolvat Teza clasa a VI-a Semestrul II

 

„Cel care mută un munte începe întotdeauna prin a îndepărta pietrele mai mici.”

Confucius

Dragul meu părinte bine te-am regăsit!  De o săptămână a început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(more…)

Model Teza clasa a VI-a Semestrul II

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului : (-24) : (-8)+(-2)^3= ………………………………..

  • Rezolvare:

(-24) : (-8)+(-2)^3=3 +(-8)=3 - 8= - 5

Exercițiul 2 (1 punct):

Termenul necunoscut x din proporția: \frac{11}{x}=1,4 este: ……………………………..

  • Rezolvare:

Transformăm fracția zecimală 1,4 în fracție ordinară.

 \frac{11}{x}=1,4 \Rightarrow  \frac{11}{x}=\frac{14}{10} \Rightarrow 14\cdot x=11\cdot 10 \Rightarrow 14\cdot x=110 \Rightarrow

14\cdot x=110 / : 14 \Rightarrow x=\frac{110}{14} \Rightarrow  x=\frac{110}{14}^{(2} \Rightarrow  x=\frac{55}{7}

Exercițiul 3 (1 punct):

18 % din 450 este egal cu: ……………………………………

  • Rezolvare:

18 % =\frac{18}{100}

 \frac{18}{100}\cdot450=  \frac{18\cdot450 }{100} =   \frac{18\cdot45 }{10} =  \frac{810 }{10} =   \frac{81 }{1} =  81

Exercițiul 4 (1 punct):

Dacă \frac{a}{b}=\frac{3}{10} atunci \frac{5a+b}{3b-2a}=?……………………………….

  • Rezolvare:
  • Dăm factor comun și la numărător și la numitor pe “b”.

\frac{5a+b}{3b-2a}= \frac{b(5\frac{a}{b}+1)}{b(3-2\frac{a}{b})}^{ (b} =

Înlocuim fracția  \frac{a}{b}  cu fracția  \frac{3}{10}

\frac{5\frac{3}{10}+1}{3-2\frac{3}{10}}= \frac{\frac{15}{10}+_{{}}^{10)}\textrm{1}}{_{{}}^{10)}\textrm{3}-\frac{6}{10}}=

Aducem la același numitor : \frac{\frac{15}{10}+\frac{10}{10}}{\frac{30}{10}-\frac{6}{10}}=  \frac{\frac{25}{10}}{\frac{24}{10}}=

Fracția de la numărător {\frac{25}{10}}  o împărțim la fracția {\frac{24}{10}}  adică o înmulțim cu răsturnata acestei fracții:  \frac{25}{10 } : {\frac{10}{24}}=   \frac{25}{10}\cdot {\frac{10}{24}}=   \frac{250}{240}^{(10}=   \frac{25}{24}

Exercițiul 5 (1punct):

Soluția ecuației (-2)\cdot (-4+x)=-12  este:…………………………..

  • Rezolvare:

(-2)\cdot (-4+x)=-12

(-2)\cdot (-4+x)=-12 / : (-2) \Rightarrow  -4+x = 6 \Rightarrow  x = 6+4 \Rightarrow  x = 10

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete.

Exercițiul 1 (1,5 puncte):

Rezolvați în Z inecuația:  3(2x-1) \leq x-14

Rezolvare:

Desfacem paranteza după care separăm termenii cu x într-o parte iar cei fara x în cealaltă parte.

 3(2x-1) \leq x-14 \Rightarrow   6x-3 \leq x-14 \Rightarrow   6x-x \leq -14 +3 \Rightarrow   5x \leq -11 / : 5 \Rightarrow x \in \left \{- \infty; ..........; -5; -4; -3 \right \}

Exercițiul 2 (1,5 puncte):

Rezolvați în Z ecuația: \left \| 2x+1 \right \|=5

  • Rezolvare:

2x+1 =- 5 \Rightarrow  2x+1 =- 5 /-1\Rightarrow 2x =- 5 -1\Rightarrow 2x =- 6 / : 2\Rightarrow x =- 3

2x+1 = 5 \Rightarrow 2x+1 = 5 /-1\Rightarrow  2x= 5 -1\Rightarrow 2x= 4 / : 2\Rightarrow x= 2

 x \in \left \{ -3; 2 \right \}

Exercițiul 3 (1,5 puncte):

Fie triunghiul dreptunghic ABC cu (\widehat{BAC})=90^\circ ), având (\widehat{ACB})=30^\circ ).

Se construiesc  AD\perp BC,  DM\perp AB, cu  D \in (BC),  M \in (AB) și  N \in (AC). Să  se arate:

a)  DM \parallel AC

b)  AC = 4\cdot DM

c)  AB = 4\cdot BM

Rezolvare:

Scriem datele problemei:

Realizăm desenul respectând datele problemei.

triunghi dreptunghic

  • a) DM \perp AB\Rightarrow m(\widehat{DMA})=90^\circ
  •    m(\widehat{BAC})=90^\circ \Rightarrow AB \perp AC            \rbrace  \Rightarrow DM \parallel AC

 

  • b)   \bigtriangleup ABC m(\widehat{BAC})=90^\circ  și m(\widehat{BCA})=30^\circ    \Rightarrow m(\widehat{ABC})=60^\circ

\bigtriangleup BDM :  m(\widehat{BMD})=90^\circ   și m(\widehat{MBD})=60^\circ  \Rightarrow

\Rightarrow m(\widehat{BDM})=30^\circ  dar  m(\widehat{BDA})=90^\circ   \Rightarrow m(\widehat{MDA})=60^\circ

În \bigtriangleup AMD avem : m(\widehat{AMD})=90^\circ  și  m(\widehat{MDA})=60^\circ   \Rightarrow m(\widehat{MAD})=30^\circ   \Rightarrow(Conform teoremei unghiului de  30^\circ) \Rightarrow MD=\frac{AD}{2}

Dar în \bigtriangleup ADC  m(\widehat{ADC})=90^\circ  și m(\widehat{ACD})=30^\circ  \Rightarrow(Conform teoremei unghiului de  30^\circ) \Rightarrow AD=\frac{AC}{2}

Dar mai sus am gasit  MD=\frac{AD}{2} \Rightarrow MD=\frac{\frac{AC}{2}}{{2}}  \Rightarrow MD=\frac{AC}{{4}}  AC= 4\cdot MD

c) \bigtriangleup BMD: m(\widehat{BMD})=90^\circ  și m(\widehat{BDM})=30^\circ  \Rightarrow  BM=\frac{BD}{{2}}

\bigtriangleup ADB : m(\widehat{ADB})=90^\circ  și m(\widehat{BAD})=30^\circ  \Rightarrow BD=\frac{AB}{{2}}

\Rightarrow  BM=\frac{\frac{AB}{2}}{{2}}  \Rightarrow BM=\frac{AB}{4}  \Rightarrow AB=4 \cdot BM

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

 

 

 

 

 

 

1 2 3 8