Exerciții rezolvate la Înmulțirea fracțiilor zecimale

"Fă azi ce alţii nu fac ca să trăieşti mâine cum alţii nu pot."

Zig Ziglar

Dragul meu părinte bine te-am regăsit! În articolul precedent am efectuat câteva exerciții ușoare la înmulțirea fracțiilor zecimale. Azi îți propun să rezolvăm împreună câteva exerciții cu un grad de dificultate mai ridicat!

(more…)

Exercițiul 1:

Dacă x \cdot (y-z)=2,4  și  x \cdot (z+t)=3,1 \Rightarrow  , atunci calculați:

 x \cdot 2,4 \cdot( y+ t )

Rezolvare:

 x \cdot (y-z)=2,4 \Rightarrow   x \cdot y- x \cdot z=2,4

 x \cdot (z+t)=3,1 \Rightarrow   x \cdot z+ x \cdot t=3,1

Adunăm cele două relații și obținem:

 x \cdot y- x \cdot z+x \cdot z+ x \cdot t=2,4 + 3,1

Observăm că  x \cdot z  se reduce și obținem:

  •  x \cdot y+ x \cdot t=5,5
  •  x \cdot( y+ t )=5,5
  • Înmulțim relația cu 2,4 și obținem:
  •  x \cdot( y+ t )=5,5 | \cdot 2,4
  •  x \cdot 2,4 \cdot( y+ t )=5,5 \cdot 2,4
  •  x \cdot 2,4 \cdot( y+ t )=13,20

Exercițiul 2 :

Dacă x+y=7,05 și y+z=14,1 atunci calculați:  (x+3y+2z) \cdot (z-x)

Rezolvare:

  • x+y=7,05         \Rightarrow   x+y =7,05
  • y+z=14,1   | \cdot 2    \Rightarrow  2y+2z=28,2

Adunam cele două relații si obținem:

  • x+y+2y+2z=7,05+28,2
  • x+3y+2z=35,25

Observăm ca am obținut prima paranteză.

Revenim la cele două relații inițiale:

  • x+y=7,05
  • y+z=14,1

Scădem din a doua relație prima relație  și obținem:

  • y+z-x-y=14,1-7,05
  • z-x=7,05

Înmulțim cele două relații obținute:

  •  (x+3y+2z)\cdot (z-x)=35,25 \cdot 7,05
  •  (x+3y+2z)\cdot (z-x)=248,5125

Exercițiul 3:

Determinați cifrele a și b care verifică relația:

Rezolvare:

Transformăm fracțiile zecimale în fracții ordinare și obținem:

Pentru ca avem peste tot același numitor putem scrie relația fară numitor:

Desfacem în baza 10 numerele:

   și obținem:

  •  (10 \cdot a + a+ 10 \cdot b +b)\cdot b=1287
  •  (11 \cdot a + 11 \cdot b )\cdot b=1287
  •  11 \cdot (a +b)\cdot b=1287 | : 11
  •  (a +b)\cdot b=117
  •  (a +b)\cdot b= 3^{{2}}\cdot 13
  • Verificăm varianta b=3
  •  (a+3)\cdot 3=117
  •  3a+9=117
  •  3a=117 -9
  •  3a=108
  •  a=108 : 3
  •  a=36

Această variantă nu ne convine deoarece a trebuie să fie cifră.

Verificăm cea de-a doua variantă  b=3 ^{2} =9 și obținem:

  •  (a+9)\cdot 9=117
  •  9a+81=117
  •  9a=117-81
  •  9a=36
  •  a=36:9
  •  a=4

Această variantă este ok deci obținem soluția  a=4 și b=9.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la Formulele de Calcul Prescurtat

"Invata tot ce poti, in orice moment disponibil, de la oricine si intotdeuna va veni o vreme cand te vei simti recompensat pentru ceea ce ai invatat."
Sarah Caldwel

Bine te-am regăsit dragul meu părinte. Azi te invit să efectuăm  împreună câteva exerciții la formulele de calcul prescurtat.

(more…)

EXERCIŢIUL 1: Efectuați, folosind formula de calcul prescurtat: 

  • a)       (2x+1) ^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=2x şi b=+1. Aplicând formula obţinem:

 (2x+1)^{2}=(2x)^{2}+2\cdot 2x\cdot (+1)+(+1)^{2}

 (2x+1)^{2}=4x^{2}+4 x+1

  •     b)  (4x - 7y)^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=4x şi b=7y

. Aplicând formula obţinem:

 (4x - 7y)^{2}=(4x)^{2}-2\cdot 4x\cdot 7y +(7y)^{2}

 

 (4x - 7y)^{2}=16x^{2}-56xy +49y^{2}

  • c)  (2x+\sqrt{3})^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=2x şi b=\sqrt{3}. Aplicând formula obţinem:

 (2x+\sqrt{3})^{2}=(2x)^{2}+2\cdot 2x\cdot\sqrt{3}+(\sqrt{3})^{2}

 (2x+\sqrt{3})^{2}=4x^{2}+4\sqrt{3} x+3

  • d)  (5x-\sqrt{2})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=5x şi b=\sqrt{2}. Aplicând formula obţinem:

 (5x-\sqrt{2})^{2}=(5x)^{2}-2\cdot 5x\cdot \sqrt{2}+(\sqrt{2})^{2}

 (5x-\sqrt{2})^{2}=25x^{2}-10 \sqrt{2}x+2

  • e) (\frac{2}{3}x+\frac{1}{3})^{2}=

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru:  a=\frac{2}{3}x şi  b=\frac{1}{3} . Aplicând formula obţinem:

 (\frac{2}{3}x+\frac{1}{3})^{2}=(\frac{2}{3}x)^{2}+2\cdot \frac{2}{3}x\cdot \frac{1}{3}+(\frac{1}{3})^{2}

 (\frac{2}{3}x+\frac{1}{3})^{2}=\frac{4}{9}x^{2}+ \frac{4}{9}x +\frac{1}{9}

  • f) (\frac{2}{7}x-\frac{7}{4})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru:  a=\frac{2}{7}x şi  b=\frac{7}{4}. Aplicând formula obţinem:

 (\frac{2}{7}x-\frac{7}{4})^{2}=(\frac{2}{7}x)^{2}-2\cdot \frac{2}{7}x\cdot \frac{7}{4}+(\frac{7}{4})^{2}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-\frac{28}{28}x+\frac{49}{16}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-x+\frac{49}{16}

f)  (x+9)(x-9)

Aplicăm formula de calcul prescurtat:  (a+b)(a-b)= a^{2}-b^{2}

În cazul exerciţiului  nostru: a=x şi b=9. Aplicând formula obţinem:

 (x+9)(x-9)= x^{2}-9^{2}

 (x+9)(x-9)= x^{2}-81

EXERCIŢIUL 2:  Efectuaşi calculele :

  •  a)  (x+2)^{2}+ (x-1)^{2}

Aplicând formulele de calcul prescurtat obţinem:

 (x+2)^{2}+ (x-1)^{2}=x^{2}+2\cdot x\cdot 2+ 2^{2}+x^{2}-2\cdot x\cdot 1+1^{2}= aplicatii-formule-de-calcul-prescurtat-ex-2

  •  b) (2\sqrt{2}-3\sqrt{3}) ^{2}-2(\sqrt{3}+3\sqrt{2}) ^{2}

Aplicând formulele de calcul prescurtat obţinem:

 [(2\sqrt{2})^{2}-2\cdot 2\sqrt{2}\cdot 3\sqrt{3}+(3\sqrt{3})^{2}]-2[(\sqrt{3})^{2}+2\cdot \sqrt{3}\cdot 3\sqrt{2}+(3\sqrt{2})^{2}] =

 (4\cdot 2-12\sqrt{2\cdot3}+9\cdot 3)-2(3+6 \sqrt{2\cdot3}+9\cdot2)=

 8-12\sqrt{6}+27-6+12 \sqrt{6}-36=

 8+27-6+12 -36=5

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Înmulțirea fracțiilor zecimale

„Este uimitor ce pot face oamenii obişnuiţi dacă se apucă de treabă fără idei preconcepute.” — Charles F. Kettering
Dragul meu părinte bine te-am regăsit. Data trecută am efectuat exerciții la "Adunarea și Scăderea Fracțiilor Zecimale".  Astăzi te invit să efectuam împreună câteva exerciții la Înmulțirea fracțiilor zecimale.

(more…)

Exercițiul 1:
Efectuați următoarele înmulțiri:
  1.  2,75 \cdot 3=
  2.  125,75 \cdot 33=
  3.  0,7 \cdot 3,8=
  4.  2,57 \cdot 1,77=
  5.  12,4 \cdot 3,5 \cdot 5,2=
  • Rezolvare:
  1.    2,75 \cdot 3=

 

 

 

 

  • Înmulțim numerele ca la numerele naturale (facem excepție de virgulă).

  • Pentru că fracția zecimală 2,5  are o zecimală punem la produs virgula după o cifră numărând de la dreapta la stânga.

2.   125,75 \cdot 33=

  • Înmulțim numerele ca la numerele naturale (facem excepție de virgulă)

  • Pentru că fracția zecimală  125,75   are două zecimale punem la produs virgula după două cifre numărând de la dreapta la stânga.

  •  0,7 \cdot 3,8=

  • Pentru că fracția zecimală 0,7   are o zecimală după virgulă iar fracția zecimală 3,8  are tot o zecimală după virgulă, am pus la produs virgula după două cifre numărând de la dreapta la stânga.
  •   2,57 \cdot 1,77 =

  • Pentru că fracția zecimală 2,57   are două zecimale după virgulă iar fracția zecimală 1,77   are tot două zecimale după virgulă, am pus la produs virgula după patru cifre numărând de la dreapta la stânga.
  •  12,4 \cdot 3,5 \cdot 5,2=

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

Probleme rezolvate Teorema lui Pitagora

„Cu putin talent şi o perseverenţă extraordinară toate lucrurile pot fi atinse.”

Thomas Foxwell Buxton

Dragul meu părinte, bine te-am regăsit. Astăzi te invit să exersăm câteva probleme de geometrie la Teorema lui Pitagora. Această teoremă este foarte importantă iar copilul tău trebuie să o înțeleagă foarte bine deoarece o vom utiliza foarte des în clasa a VIII-a la Geometria în spațiu.

(more…)

Problema 1: În triunghiul MNP, unghiul M este de 90 ^{\circ} și înălțimea

MQ \perp NP cu MQ = 12 cm, iar  m(\widehat{MNP})=30^{\circ} . Calculați laturile: MN, NP, MP, NQ și QP.

Rezolvare:

Scriem datele problemei:

Facem desenul respectând datele problemei.

Demonstrație:

  • Pentru că avem m(\widehat{MNP})=30^{\circ} aplicăm în \bigtriangleup MQN(m(\widehat{MQN})=90^{\circ}) teorema unghiului de 30^{\circ} care îmi spune că lungimea catetei care se opune unghiului de 30^{\circ} este jumătate din ipotenuză.

\bigtriangleup MQN(m(\widehat{MQN})=90^{\circ})   : m(\widehat{MNQ})=30^{\circ}  \Rightarrow MQ=\frac{MN}{{2}} \Rightarrow    \frac{MQ}{{1}}=\frac{MN}{{2}} \Rightarrow \frac{12 cm}{{1}}=\frac{MN}{{2}} \Rightarrow   MN=12 cm \cdot 2 \Rightarrow MN= 24 cm

Observăm că putem aplica Teorema lui Pitagora în triunghiul \bigtriangleup MQN(m(\widehat{MQN})= 90^{\circ})pentru a afla latura NQ.

\bigtriangleup MQN(m(\widehat{MQN})= 90^{\circ}) \Rightarrow (T.P) :  MN^{2}= NQ^{2}+MQ^{2} \Rightarrow

 24^{2}= NQ^{2}+12^{2} \Rightarrow     576= NQ^{2}+144 \Rightarrow

NQ^{2}= 576 - 144 \Rightarrow  NQ^{2}= 432 cm^{2} \Rightarrow

NQ= \sqrt{ 432 cm^{2}}  \Rightarrow  NQ=12 \sqrt{ 3} cm

  • Am aflat MN și NQ atunci putem aplica în \bigtriangleup MNP( m(\widehat{NMP}))= 90^{\circ} Teorema Catetei pentru cateta MN  și aflăm lungimea ipotenuzei BC.

\bigtriangleup MNP( m(\widehat{NMP}))= 90^{\circ} \Rightarrow (T.C.)  MN^{2} = NQ \cdot NP \Rightarrow  (24cm)^{2} = 12 \sqrt{3}cm \cdot NP  \Rightarrow   576cm^{2} = 12 \sqrt{3}cm \cdot NP  \Rightarrow  NP = \frac{576cm^{2} }{{12 \sqrt{3}cm }}   \Rightarrow QP = 16 \sqrt{3}cm -12 \sqrt{3}cm

Dacă am aflat NP putem afla și latura QP prin scădere.

QP = NP-NQ

 QP= 16 \sqrt{3}cm -12 \sqrt{3}cm

QP = 4 \sqrt{3}cm

Dacă știm MN și NP putem aplica teorema lui Pitagora în triunghiul MNP  \bigtriangleup MNP( m(\widehat{NMP}))= 90^{\circ}  pentru a  afla latura MP.

\bigtriangleup MNP( m(\widehat{NMP}))= 90^{\circ}  \Rightarrow (T.P)  NP^{{2}}= MP^{{2}}+MN^{{2}} \Rightarrow  (16 \sqrt{3}cm )^{{2}}= MP^{{2}}+(24cm)^{{2}}  \Rightarrow

768 cm = MP ^{2} + 576 cm  \Rightarrow

MP ^{2} = 768 cm-576 cm  \Rightarrow

MP ^{2} = 192 cm ^{2}  \Rightarrow

MP= \sqrt{192 cm^{2} }  \RightarrowMP =8\sqrt{3} cm

Problema 2:

În triunghiul dreptunghic MNP cu unghiul \Delta MNP (m(\widehat{NMP})= 90^{\circ}) : , are înălțimea MQ \perp NP, Q \in (NP), \frac{NQ}{QP} = \frac{9}{16} , iar perimetrul triunghiului P_{{\bigtriangleup MNP}} = 120 cm . Aflați:

a) Dimensiunea laturilor: MN, MP și NP;

b) Lungimea înălțimii MQ;

Rezolvare:

Pornim de la raportul: \frac{NQ}{QP} = \frac{9}{16}  și scoatem dimensiunea laturii NQ în funcție de QP.

16 \cdot NQ = 9\cdot QP \Rightarrow  NQ = \frac{9 \cdot QP}{{16}}

Aflăm dimensiunea laturii NP în funcție de QP.

 NP = NQ + QP \Rightarrow  NP = \frac{9 \cdot QP}{{16}}+ _{}}^{16)}QP{} \Rightarrow

NP = \frac{9 \cdot QP+16 QP}{{16}}\Rightarrow

NP= \frac{25 \cdot QP}{{16}}

Aplicăm în triunghiul dreptunghic MNP Teorema Catetei pentru catetele: MN și MP și determinăm lungimile acestora în functie de latura QP.

\Delta MNP (m(\widehat{NMP})= 90^{\circ}) :  \Rightarrow(T.C)\Rightarrow   MN^{{2}}= NQ \cdot NP \Rightarrow

 MN^{{2}}= \frac{9 \cdot QP}{{16}} \cdot \frac{25 \cdot QP}{{16}} \Rightarrow

 MN^{{2}}= \frac{225 \cdot QP^{{2}}}{{256}} \Rightarrow    MN = \sqrt{\frac{225 \cdot QP^{{2}}}{{256}} }\Rightarrow

 MN = \frac{15 \cdot QP}{{16}} }

\Delta MNP (m(\widehat{NMP})= 90^{\circ}) :   \Rightarrow(T.C)\Rightarrow   MP^{{2}}= QP \cdot NP \Rightarrow

 MP^{{2}}= \frac{QP}{{1}} \cdot \frac{25 \cdot QP}{{16}} \Rightarrow    MP^{{2}}= \frac{25 QP^{{2}}} {{16}}\Rightarrow

 MP^{{2}}= \sqrt{\frac{25\cdot QP^{{2}}} {{16}}} \Rightarrow

 MP= \frac{5\cdot QP} {{4}}}

După ce am obținut toate dimensiunile laturilor  \Delta MNP  în funcție de latura QP le înlocuim în Perimetrul  \Delta MNP  și îl aflăm de aici pe QP.

P_{{\bigtriangleup MNP}} = 120 cm

P_{{\bigtriangleup MNP}} = MN + MP + NP      \Rightarrow

{}}^{16)}120 cm = \frac{15 \cdot QP}{{16}} } + {}}^{4)}\frac{{5\cdot QP}} {{ 4}}} + \frac{25 \cdot QP}{{16}}   \Rightarrow

1920 cm =15 QP + 20 QP +25 QP   \Rightarrow

 60 QP = 1920 cm \Rightarrow

 QP = 32 cm

 NQ = \frac{9}{{16}} \cdot 32 cm \Rightarrow NQ = 18 cm

 MN = \frac{15}{{16}} \cdot 32 cm \Rightarrow MN = 30 cm

 MP = \frac{5}{{4}} \cdot 32 cm \Rightarrow MP = 40 cm

 NP = \frac{25}{{16}} \cdot 32 cm \Rightarrow NP = 50 cm

b) Pentru rezolvarea punctului b) aplicăm Teorema Înălțimii în triunghiul dreptunghic  \Delta MNP.

\Delta MNP (m(\widehat{NMP})= 90^{\circ}) :   \Rightarrow(T.I)\Rightarrow   MQ^{{2}}= NQ \cdot QP \Rightarrow

 MQ^{{2}}= 18 cm \cdot 32 cm \Rightarrow    MQ^{{2}}= 576 cm^{{2}} \Rightarrow

MQ^{{2}}= \sqrt{576 cm^{{2}} } \Rightarrow MQ= 24 cm

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la Adunarea și Scăderea la Fracții Zecimale.

"Ambiția este o pasiune atât de puternică a omului, încât oricât de sus am ajunge niciodată nu vom fi multumiți".

Nicollo Machiavelli

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva exerciții la adunarea și scăderea fracțiilor zecimale.

(more…)

Exercițiul 1:

Calculați:

  • 0,235 + 10,81
  • 0,05+0,5+0,005
  • 2+3,12+14,203
  • 23,34-14,8
  • 4,3-2,93

Rezolvare:

Petru a aduna două fracții zecimale procedăm astfel: așezăm fracțiile zecimale una sub alta, astfel încât partea întreagă să fie sub partea întreagă, virgula sub virgulă, zecimile sub zecimi, sutimile sub sutimi ș.a.m.d, iar apoi efectuăm adunarea ca la numere naturale.

  • 0,235 + 10,81=11,045

  • 0,05+0,5+0,005=0,555
adunarea fractiilor zecimale

fractii zecimale

 

  • 2+3,12+14,203=19,323

 

Pentru a scădea două fracții zecimale procedăm astfel: așezăm scăzătorul sub descăzut, astfel încât virgula să fie sub virgulă, scădem numerele ca și când ar fi numere naturale.

Dacă descăzutul are mai puține zecimale decât scăzătorul, atunci se adaugă la partea zecimală zerouri pentru a avea același număr de zecimale.

  • 23,34-14,8=8,54

  • 4,3-2,93=1,37

Exercițiul 2:

Rezolvare:

Asezăm termenii adunării unii sub alții astfel:

Exercițiul 3:

0,9+1,9+2,9+3,9+........................................+99,9=

Observăm că sunt foarte multe numere și ca să le adunăm ne-ar lua timp foarte mult. Mai observăm ca este o Suma Gauss de fracții zecimale.

Așa că vom face un mic artificiu matematic și vom scrie fiecare fracție zecimală asa: spre exemplu  0,9=1 - 0,1   iar pe 1,9=2 - 0,1 , s.a.m.d.

Rezolvare:

0,9+1,9+2,9+3,9+........................................+99,9=

(1-0,1)+(2-0,1)+(3-0,1)+.............................+(100-0,1)=

1-0,1+2-0,1+3-0,1+.............................+100-0,1=(1+2+2+.............+100) - (0,1+0,1+0,1+......................+0,1)=

Observăm că prima paranteză este Suma Gauss a primelor 100 numere naturale consecutive, iar în a doua paranteză 0,1 se repetă de 100 de ori.

Aplicăm formula lui Gauss

100\cdot (100+1) : 2 - 100\cdot 0,1=

100\cdot 101 : 2 - 10=

5050 - 10= 5040

PS: Dragul meu părinte dacă copilul tău nu a înțeles Suma Gauss sau nu-și mai amintește cum se calculează te invit sa descarci PDF-ul gratuit (special conceput cu foarte multe exemple pentru fiecare clasa de la a V-a la a-VIII-a) de aici:

http://mathmoreeasy.ro/pdf-gratuit-suma-gauss-explicatie-definitie-si-exercitii-rezolvate/

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Teorema Catetei

Dragul meu părinte bine te-am regăsit.  Astăzi te invit să studiem împreună Teorema Catetei. În articolul trecut am vorbit despre Proiecții ortogonale pe o dreaptă. Teorema Înălțimii. Am vorbit despre  proiectia unui punct pe o dreaptă, despre proiectia unui segment pe o dreaptă și despre Teorema Înălțimii în triunghiul dreptunghic. Azi vreau să discutăm despre Teorema Catetei în triunghiul dreptunghic.

(more…)

Teorema Catetei:

Într-un triunghi dreptunghic lungimea fiecărei catete este media geometrică a lungimii proiecției ei pe ipotenuză și a lungimii ipotenuzei.


 

 

 

 

 

Reciproca 1 a Teoremei Catetei:

Într-un triunghi ABC, dacă AD \perp BC,  D \in (BC) și are loc una din egalitățile: AB^{2}=BC \cdot BD   sau  AC^{2}=BC \cdot CD , atunci m(\widehat{BAC})=90 ^{\circ}

 

Reciproca 2 a Teoremei Catetei:

În triunghiul ABC, dacă  D \in (BC) este un punct astfel încât AB^{2}=BC \cdot BD  și  AC^{2}=BC \cdot CD , atunci m(\widehat{BAC})=90 ^{\circ} .

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la Amplificarea și Simplificarea Fracțiilor.

„Fii încăpățânat! Uneori, perseverența face minuni.” — Donald Trump.

Dragul meu părinte, bine te-am regăsit. Azi îți propun o nouă lecție la capitolul Fracții care ridică ceva dificultăți elevilor de clasa a V-a: Exerciții Rezolvate la Amplificarea și Simplificarea Fracțiilor.

Am să explic pas cu pas rezolvarea unor exerciții cu un grad de dificultate mai ridicat la care elevii întâmpină dificultăți.

(more…)

EXERCIŢIUL 1:  Amplificați cu 3 următoarele fracții:

\frac{2x}{3y} , \frac{x+2}{y+1} , \frac{a+b}{x+y}

Rezolvare:

EXERCIŢIUL 2:  Simplificați  următoarele fracții, obținând fracții ireductibile:

\frac{20}{30} , \frac{5a}{10b}, \frac{10a+10b}{25x+25y}, \frac{2^7\cdot3^2\cdot5^4 }{2^7\cdot3^3\cdot5^2\cdot11} , \frac{6^3 }{10^4}

Rezolvare:

 \frac{20 }{30}^{(10}=\frac{2 }{3}

 \frac{5a }{10b}^{(5}=\frac{a }{2b}

 \frac{10a+10b }{25x+25y}

Observație: Nu avem voie să simplificăm decât dacă dăm factor comun și la numărător și la numitor. Observăm că la  numărător putem da factor comun pe 10, iar la numitor îl putem da factor comun pe 25.

 \frac{10a+10b }{25x+25y}=    \frac{10\cdot (a+b) }{25\cdot (x+y)}^{{(5}}=  \frac{2\cdot (a+b) }{5\cdot (x+y)}

\frac{2^7\cdot3^2\cdot5^4 }{2^7\cdot3^3\cdot5^2\cdot11}

Această fracție o simplificăm prin bazele care se repetă și la numărător și la numitor la puterea cea mai mică. Pentru că prin simplificare trebuie să fac operația de împărțire, scriu baza și scad exponentii.

\frac{2^7\cdot3^2\cdot5^4 }{2^7\cdot3^3\cdot5^2\cdot11} ^{(2^7\cdot3^2\cdot5^2}=     \frac{2^0\cdot3^0\cdot5^2 }{2^0\cdot3^1\cdot5^0\cdot11} =    \frac{1 \cdot1\cdot25 }{1\cdot3\cdot1\cdot11} = \frac{25 }{33}

\frac{6^3 }{10^4}

Pentru a simplifica această fracție mai întâi trebuie să aplicăm regulile de calcul cu puteri.

Dacă nu-ți mai aduci aminte regulile de calcul cu puteri le găsești aici: http://mathmoreeasy.ro/reguli-de-calcul-cu-puteri/

\frac{6^3 }{10^4} =  \frac{(2\cdot 3)^3 }{(2\cdot 5)^4} =  \frac{2^3\cdot 3^3 }{2^4\cdot 5^4} =  \frac{2^3\cdot 3^3 }{2^1\cdot 2^3\cdot5^4}^{{( 2^3}}=  \frac{2^0\cdot 3^3 }{2^1\cdot 2^0\cdot5^4}=  \frac{1\cdot 3^3 }{2\cdot 1\cdot5^4}=  \frac{ 3^3 }{2\cdot5^4}

 

EXERCIŢIUL 3:  Simplificați  următoarea fracție,  obținând fracție ireductibilă:

 \frac{4^{{25}}+8^{{17}}}{2^{{52}}-16^{{12}}}}

Rezolvare:

Pentru a simplifica această fracție mai întâi trebuie să aplicăm regulile de calcul cu puteri.

Dacă nu-ți mai aduci aminte regulile de calcul cu puteri le găsești aici: http://mathmoreeasy.ro/reguli-de-calcul-cu-puteri/

 

 \frac{4^{{25}}+8^{{17}}}{2^{{52}}-16^{{12}}}}=   \frac{(2^2)^{{25}}+{(2^3)^{{17}}}}{2^{{52}}-(2^4)^{{12}}}}=  \frac{2^{{2\cdot 25}}+{2^{{3\cdot 17}}}}{2^{{52}}-2^{{4\cdot12}}}}= \frac{2^{{50}}+{2^{{51}}}}{2^{{52}}-2^{{48}}}}= \frac{2^{{50}}(1+{2^{{51-50}})}}{2^{{52}}(2^{{52-48}}-1) }}=\frac{2^{{50}}\cdot(1+{2)}}{2^{{48}}\cdot(2^{{4}} -1)}}=  \frac{2^{{50}}\cdot3}{2^{{48}}\cdot 15}}^{{(2^{{48}}}}=  \frac{2^{{50-48}}\cdot3}{2^{{48-48}}\cdot 15}}= \frac{2^{{2}}\cdot3}{2^{{0}}\cdot 15}}^{{(3}}=   \frac{2^{{2}}}{1 \cdot 5}}=  \frac{4}{5}}

 

EXERCIŢIUL 4:  Simplificați  următoarea fracție,  obținând fracție ireductibilă:

\frac{2+4+6+.............+400}{3+6+9+.............+600}}

Rezolvare:

Observăm că la numărător și la numitor avem câte o sumă Gauss. La numărător putem da factor comun pe 2, iar la numitor putem da factor comun pe 3.

\frac{2+4+6+.............+400}{3+6+9+.............+600}} =  \frac{2\cdot(1+2+3+.............+200)}{3\cdot(1+2+3+.............+200)}}

Calculăm Suma Gauss cu formula  S= n\cdot(n+1) : 2

S=1+2+3+..........+200

S=200\cdot(200+1) : 2

S=200\cdot201 : 2

S=100\cdot201

\frac{2\cdot(1+2+3+.............+200)}{3\cdot(1+2+3+.............+200)}}=   \frac{2\cdot 100\cdot 201 }{3\cdot 100 \cdot 201}} ^{{(100\cdot 201}}=  \frac{2}{3}

PS: Dragul meu părinte dacă copilul tău nu a înțeles Suma Gauss sau nu-și mai amintește cum se calculează te invit sa descarci PDF-ul gratuit (special conceput cu foarte multe exemple pentru fiecare clasa de la a V-a la a-VIII-a) de aici:

http://mathmoreeasy.ro/pdf-gratuit-suma-gauss-explicatie-definitie-si-exercitii-rezolvate/

EXERCIŢIUL 4:  Simplificați  următoarea fracție,  obținând fracție ireductibilă:

 \frac{2^{n}\cdot3^{n}+2^{n}\cdot3^{n}\cdot5+6^{n+1}}{6^{n}\cdot3+6^{n}\cdot7-6^{n}}

Rezolvare:

Pentru a simplifica această fracție mai întâi trebuie să aplicăm regulile de calcul cu puteri.

 \frac{2^{n}\cdot3^{n}+2^{n}\cdot3^{n}\cdot5+6^{n+1}}{6^{n}\cdot3+6^{n}\cdot7-6^{n}} =   \frac{(2\cdot3)^{n}+(2\cdot3)^{n}\cdot5+6^{n}\cdot 6}{6^{n}\cdot (3+7-1)} =   \frac{6^{n}+6^{n}\cdot5+6^{n}\cdot 6}{6^{n}\cdot (10-1)} =   \frac{6^{n}(1+5+ 6)}{6^{n}\cdot 9} =   \frac{6^{n}\cdot12}{6^{n}\cdot 9}^{(6^{n}} = \frac{12}{ 9}^{(3}} =  \frac{4}{ 3}

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăti în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Probleme rezolvate cu Teorema lui Thales

Dragul meu părinte bine te-am regăsit. In articolul de ieri am discutat despre Teorema lui Thales, despre Reciproca Teoremei lui Thales, despre Teorema Bisectoarei și ți-am povestit și legenda Teoremei lui Thales. Astăzi vreau să rezolvăm împreuna câteva probleme de geometrie în care se aplică teoremele menționate mai sus.

(more…)

Problema 1:

În  \Delta ABC se dau AB=52 cm, AC=72 cm și  P_{{ \Delta ABC}}=2+6+10+14+......+38 . Dacă  M \in (AB),  N \in (AC) astfel încât MN \parallel BC , și   P_{{\Delta MNP}}=50 cm  calculați lungimile segmentelor [AM], [AN] și [MN].

Rezolvare:

Această problemă se rezolvă cu teorema lui Thales.

Observăm că  P_{{ \Delta ABC}}=2+6+10+14+......+38   este o sumă Gauss. Rezolvăm Suma Gauss pentru a afla perimetrul.

 P_{{ \Delta ABC}}=2+6+10+14+......+38 .

Observăm că putem da factor comun pe 2.

 P_{{ \Delta ABC}}=2\cdot(1+3+5+7+......+19)

Calculăm numărul de termeni cu formula lui Gauss.

n=(19-1) : 2 +1

n=18 : 2 +1

n=9 +1

n=10 (termeni)

Calculăm Suma Gauss cu formula

 P_{{ \Delta ABC}}=2\cdot[10\cdot (19+1) :2]

 P_{{ \Delta ABC}}=2\cdot[10\cdot 20 :2]

 P_{{ \Delta ABC}}=2\cdot[200 :2]

 P_{{ \Delta ABC}}=2\cdot 100

 P_{{ \Delta ABC}}=200 cm .

PS: Dragul meu părinte dacă copilul tău nu a înțeles Suma Gauss sau nu-și mai amintește cum se calculează te invit sa descarci PDF-ul gratuit (special conceput cu foarte multe exemple pentru fiecare clasa de la a V-a la a-VIII-a) de aici:

http://mathmoreeasy.ro/pdf-gratuit-suma-gauss-explicatie-definitie-si-exercitii-rezolvate/

Din perimetru putem afla dimensiunea laturii BC.

 P_{{ \Delta ABC}}=AB +AC +BC

 200 cm = 52 cm + 72 cm +BC

 BC= 200 cm - 124 cm

 BC= 76 cm

Știm din datele problemei că  MN \parallel BC  deci putem aplica teorema lui Thales

 MN \parallel BC \Rightarrow \frac{AM}{{AB}}=\frac{AN}{{AC}}=\frac{MN}{{BC}}=k

\Rightarrow \frac{AM}{{52 cm}}=\frac{AN}{{72cm}}=\frac{MN}{{76cm}}=k

\Rightarrow \frac{AM}{{52 cm}}=k    \Rightarrow AM=52cm \cdot k

\Rightarrow \frac{AN}{{72cm}}=k    \Rightarrow AN= 72cm\cdot k

\Rightarrow \frac{MN}{{76cm}}=k \Rightarrow MN= 76cm\cdot k

 P_{{ \Delta MNP}}= MN +MP +NP

50 cm = 52cm \cdot k+ 72 cm \cdot k+76 cm \cdot k

50 cm = 200cm \cdot k

k = 200cm : 50 cm

k=\frac{1}{4}

\Rightarrow AM=52cm \cdot k=52cm \cdot \frac{1}{{4}}   \Rightarrow AM=13cm

\Rightarrow AN=72cm \cdot k=72cm \cdot \frac{1}{{4}}  \Rightarrow AN=18cm

\Rightarrow MN=76cm \cdot k=76cm \cdot \frac{1}{{4}}  \Rightarrow MN=19cm

Problema 2:

Un trapez ABCD, AB \parallel CD, AB \gt CD are AB = 26 cm și linia mijlocie MN = 18 cm, M \in (AD), N \in (BC).

a) Calculați lungimea bazei mici a trapezului.

b) Dacă P și Q sunt două puncte, P \in (AB), Q \in (DC) și PQ \cap MN= \left \{ R \right \}, arătați că R este mijlocul lui \left [ PQ \right ].

Rezolvare:

a) Știm că MN este linie mijlocie.

MN=\frac{AB+CD}{{2}}     \Rightarrow 2\cdot MN=AB+CD    \Rightarrow 2\cdot 18 cm=26 cm+CD  \Rightarrow 36cm -26 cm=CD   \Rightarrow CD = 10 cm

b)

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului pentru a afla la timp tot ce postez pe blog:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Teorema lui Thales

Dragul meu părinte bine te-am regăsit. Continuăm  să ne pregătim la Geometrie cu o nouă lecție la capitolul "Asemănarea triunghiurilor". Azi discutăm despre Teorema lui Thales.

Legenda spune că Thales care a învățat matematică de la Egipteni și Babylonieni a măsurat înălţimea piramidelor din Egipt, măsurând umbra lor în momentul în care umbra unui băţ vertical era egală cu lungimea lui vezi figura de mai jos. Procedeul este, fără îndoială, ingenios, dar nu e foarte sigură utilizarea lui de către Thales. Aici este evident implicat un caz particular al „teoremei lui Thales”; dar procedeul s-ar fi putut baza pe observaţia că dacă pentru un băţ (vertical) umbra lui este egală cu lungimea sa, această relaţie are loc pentru orice obiect (de exemplu o piramidă, un obelisc etc.).

Thales ar fi folosit cazul general al teoremei de asemănare „După ce ai aşezat toiagul perpendicular pe pământ, la capătul umbrei aruncate de piramidă, a arătat că prin căderea razei de lumină s-au format două triunghiuri; raportul existent între o umbră şi cealaltă era identic cu cel dintre înălţimea piramidei şi lungimea toiagului.

Theorema lui Thales:

O paralelă dusă la una dintre laturile unui triunghi determină pe celelalte două laturi sau prelungirile lor, segmente proporționale.

 

Reciproca Teoremei lui Thales:

Fie triunghiul ABC și punctele E \in AB, F \in AC , aflate în același semiplan determinat de paralela prin A la BC.

Dacă:\frac{AE}{AB}=\frac{AF}{AC}  \Rightarrow EF \parallel BC

  • OBSERVAȚIE:  Dacă \frac{AE}{AB}\neq \frac{AF}{AC}   \Rightarrow EF \not \parallel BC

Aplicații ale Teoremei lui Thales:

  • Teorema Paralelelor Neechidistante:

Mai multe drepte paralele determină pe două secante oarecare segmente proporționale.

 

 

Dacă:  d_{1}\parallel d_{2}\parallel d_{3}\parallel d_{4}\parallel.............  \Rightarrow \frac{A_{{1}}A_{{2}}}{{B_{{1}}B_{{1}}}}=\frac{A_{{2}}A_{{3}}}{{B_{{2}}B_{{3}}}}=\frac{A_{{3}}A_{{4}}}{{B_{{3}}B_{{4}}}}=..................

  • Teorema Bisectoarei:

Într-un triunghi bisectoarea unui unghi determină pe latura opusă două segmente proporționale cu celelalte două laturi.

  •  Pentru unghiul exterior:

  • Împărțirea unui segment în părți proporționale cu numerele (segmentele) date:

Pentru a împărți un segment [AB] în părți proporționale cu numerele 2,3 și 5 procedăm astfel. Considerăm semidreapta [AX și pe ea, cu ajutorul compasului construim 10 segmente congruente (2+3+5=10)  astfel A_{{1}}A_{{2}}=2u, A_{{2}}A_{{5}}=3u, A_{{5}}A_{{10}}=5u. Unim A_{{10}} cu B și apoi ducem A_{{5}}N \parallel A_{{10}}B  și A_{{2}}M \parallel A_{{10}}B.  Cu ajutortul paralelelor echidistante obținem:

\frac{AM}{2}=\frac{MN}{3}=\frac{NB}{5}

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

 

 

 

 

 

 

 

 

Raportul a două segmente

Dragul meu părinte bine te-am regăsit. Azi deschid un capitol nou și foarte important al Geometriei:  "Asemănarea triunghiurilor". Este unul dintre cele mei importante capitole din geometria în plan și se bazează pe Teorema lui Thales.

Thales din Milet (624 - 546 î.Hr.), ar fi cunoscut teoremele privitoare la triunghiurile asemenea, cu ajutorul cărora a măsurat depărtarea unui vas de la țărmul mării. De asemenea, tot cu ajutorul lor  el ar fi măsurat înălțimea Marii Piramide a lui Keops.

(more…)

Segmente proporționale:

Def: Raportul a două segmente este raportul lungimilor lor, exprimate cu aceeași unitate de măsură.

Definiție:  Patru segmente se numesc proporționale dacă se poate forma o proporție cu lungimile acestora.

Teorema paralelelor echidistante:

Dacă mai multe drepte paralele determină pe o secantă segmente congruente, atunci ele determină pe orice altă decantă segmente congruente.

 

 

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

1 2 3 7