Categorie: a V-a

Suma Gauss la Puteri

 

"Nu am dat greş. Pur şi simplu am descoperit 10.000 de idei care nu funcţionează."

Thomas Edison 

Bine te-am regăsit! 

Azi îți propun nouă lectie online de matematica  clasa a V-a, vom scrie formulele matematice necesare și vom rezolva cateva exerciții la "Suma Gauss  la Puteri" .

Suma Gauss la Puteri

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Model Rezolvat Teza clasa a V-a Semestrul II

Dacă A reprezintă succesul în viață, Atunci A= x+y+z, în care x reprezintă munca, y reprezintă joaca, iar z să știi să-ți ții gura. – Albert Einstein.

Dragul meu părinte bine te-am regăsit! Azi este ultima zi de vacantă! De mâine începe școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(mai mult…)

Model Propus Teza clasa a V-a Semestrul II

Exercițiul 1 (1punct):

Scrieți sub formă de fracție ordinară numerele: 0,3;     2,07;     2,1(3).

Rezolvare:

 0,3=\frac{3}{10} ;

   2,07=\frac{207}{100} ; 

2,1(3)=\frac{213-21}{90}=  \frac{192}{90}^{{(2}}=  \frac{96}{45}^{{(3}}=  \frac{32}{15}

Exercițiul 2 (1punct):

Calculați: 9,35 : 5 - 0,87=

  • Rezolvare:

9,35 : 5 - 0,87=1,87 - 0,87=1

Exercițiul 3 (1punct):

Aflați numărul x care este soluție a ecuației:

7,18-x=3,21

Rezolvare:

 7,18-x=3,21 \Rightarrow x=7,18 - 3,21 \Rightarrow x=3,97

Exercițiul 4 (1,5puncte):

Calculați:  1,5\cdot \left [ 6,4+2,2\cdot (3,1^2-4,61) \right ] : 2=

Rezolvare:

Conform ordinii efectuarii operațiilor,mai întâi trebuie să ridicăm la putere.

 1,5\cdot \left [ 6,4+2,2\cdot (3,1^2-4,61) \right ] : 2=

 1,5\cdot \left [ 6,4+2,2\cdot (9,61-4,61) \right ] : 2=

Următoarea operație pe care trebuie să o facem este scăderea din paranteza rotundă. Pentru că am efectuat toate operațiile din paranteza rotundă, transformăm paranteza pătrată în paranteză rotundă.

 1,5\cdot (6,4+2,2\cdot 5 ) : 2=

Următoarea  operație este înmulțirea din paranteza rotundă.

 1,5\cdot (6,4+11 ) : 2=

Apoi adunarea din paranteza rotundă.

 1,5\cdot 17,4 : 2=

Pentru că înmulțirea și împărțirea sunt operații de același ordin și nu mai avem nici o paranteză efectuăm operațiile în ordinea în care sunt scrise. Astfel obținem:

26,10 : 2=13,05

Exercițiul 5 (1,5 puncte):

Rezolvați ecuația:  \left [ 3\cdot(x+2,7)-4,2 \right ] : 1,5 = 7,2

Rezolvare:

Această ecuație se rezolvă pe metoda pasului invers.

 \left [ 3\cdot(x+2,7)-4,2 \right ] : 1,5 = 7,2

Prima oară îl eliminăm pe 1,5 prin operația inversă împărțirii, adică înmulțim întreaga relație cu 1,5.

 \left [ 3\cdot(x+2,7)-4,2 \right ] : 1,5 = 7,2 / \cdot1.5

 \left [ 3\cdot(x+2,7)-4,2 \right ] = 7,2\cdot1.5

Putem elimina și paranteza pătrată.

 3\cdot(x+2,7)-4,2 = 10,8

La pasul II scăpăm de 4,2 prin operația inversă scăderii și anume adunare.

 3\cdot(x+2,7)-4,2 = 10,8 / +4,2

 3\cdot(x+2,7) = 10,8 +4,2

 3\cdot(x+2,7) = 15

Următorul pas (III) împărțim cu trei întreaga relație.

 3\cdot(x+2,7) = 15 / :3

 (x+2,7) = 15 :3

 x+2,7 = 5

Ultima operație scădem 2,7.

 x+2,7 = 5 / -2,7

 x= 5-2,7

 x= 2,3

Exercițiul 6 (1,5 puncte):

Media aritmetică a două numere este 8,6. Aflați cele două numere dacă se știe că diferența lor este 1,5.

  • Rezolvare:
  • Notăm cu a și b cele două numere.
  • Scriem formula mediei aritmetice pentru cele două numere

M_{{a}}= \frac{a+b}{2}

M_{{a}}=8,6 \Rightarrow  \frac{a+b}{2}=8,6 \Rightarrow  \frac{a+b}{2}=8,6 / \cdot2 \Rightarrow    a+b=8,6 \cdot 2

\Rightarrow  a+b=17,2

Dar mai știm din enunțul problemei că diferența celor două numere este 1,5.

Astfel obținem următoarea relație:  a-b=1,5.

Dar mai sus am obținut și relația:    a+b=17,2

Adunăm cele două relații și obținem:  a+b+a-b=17,2+1,5 \Rightarrow

 2a=18,7 \Rightarrow  a=18,7:2 \Rightarrow   a=9,35

Înlocuim a în prima relație și îl aflăm pe b.

 9,35 +b =17,2 \Rightarrow b= 17,2 - 9,35 \Rightarrow  b=7,85

Exercițiul 7 (1 punct):

Calculați și exprimați rezultatul în  m^{2}: 0,07 dam^2 -2,3 m^2+140 dm^2=?m^2

Rezolvare:

Transformăm  0,07 dam^2  și 140 dm^2  în m^2 .

Știm că 1 dam =10 m atunci 1 dam^2 =100 m^2

și 1 dm =0,1 m atunci 1 dm^2 =0,01 m^2

Astfel 0,07 dam^2 =7 m^2 și 140 dm^2 =1,4 m^2

Înlocuim și obținem: 0,07 dam^2 -2,3 m^2+140 dm^2=7m^2 -2,3 m^2 +1,4 m^2

4,7m^2 +1,4 m^2=6,1 m^2

Exercițiul 7 (1,5 puncte):

Un dreptunghi are perimetrul egal cu 16 dm. Știind că lățimea este egală cu o treime din lungime, aflați aria dreptunghiului.

Rezolvare:

dreptunghi

Știm că perimetrul este suma laturilor și că P_{{ABCD}}=2\cdot L+2\cdot l

Din datele problemei mai știm l = \frac{1}{3}\cdot L   \Rightarrow L =3\cdot l

Înlocuim în formula perimetrului și aflăm lățimea.

P_{{ABCD}}=2\cdot L+2\cdot l \Rightarrow  P_{{ABCD}}=2\cdot 3\cdot l+2\cdot l \Rightarrow  P_{{ABCD}}=6\cdot l+2\cdot l \Rightarrow  P_{{ABCD}}=8\cdot l \Rightarrow  8\cdot l = 16 dm \Rightarrow l= 16 dm :8  l= 2 dm

Înlocuim și aflăm lungimea :  L =3\cdot l \Rightarrow L=3\cdot 2 dm \Rightarrow L=6 dm

Știm Aria dreptunghiului : A_{{ABCD}}=L \cdot l \Rightarrow  A_{{ABCD}}=6dm \cdot 2dm \Rightarrow  A_{{ABCD}}=12dm^2

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

"Math More Easy Club"

Cu mare drag şi mult respect Alina Nistor!

Propunere Model Teza Semestriala (I) clasa a V-a

Clasa a V-a"Succesul înseamnă a fi în stare să mergi din eșec în eșec, fără să-ți pierzi entuziasmul" spunea Winston Churchill.

Dragul meu părinte, bine te-am regăsit!Pentru că de mâine începe perioada tezelor semestriale, iar copilul tău trebuie să repete toate noţiunile învăţate în acest semestru m-am gândit să vă ajut cu un model de teză care îl va ajuta să parcurgă materia studiată pâna în acest moment.

(mai mult…)

  • Toate subiectele sunt obligatorii.
  • Se acordă 20 puncte din oficiu.
  • Timp de lucru 50 minute.

Subiectul I. Pe foaia de test se trec numai rezultatele (30p):

  • 5p     1 Rezultatul calculului 12 – 12 : 2  este………….
  • 5p     2. Dacă   2x + 3 = 7 , atunci x= ……………...5p     3. Dintre numerele :  a=2 ^{72} şi b=4 ^{37} mai mare este numărul:                 .....................………………….5p    4. Rotunjind prin lipsă la sute numărul 5247 obţinem:  ...................5p    5. Restul împărţirii numărului natural 177 la 18 , este….…………….5p    6. Numărul divizorilor numărului natural 16 , este………………..
  • Subiectul II. Pe foaia de teză se alege răspunsul corect prin încercuire (20p):

 5p   7.Numărul natural divizibil cu 2, dar care nu este divizibil cu 5, este :

80                            ‚82                       ƒ85                     „ 87

5p   8.Media aritmetică a două numere natural este 14, atunci numerele sunt :

12 şi 18                    ‚18 şi 14              ƒ14 şi 16             „12 şi 16

5p   9. Soluţia inecuaţiei   x \in N^{\star} , 7x + 12 < 26 , este:

1                               ‚ 2                ƒ 3                    „   4

5p   10.Numărul natural 25487 aproximat , prin adaos la sute de unităţi este :

 25000                 ‚ 25400       ƒ 25500     „ 30000

  • Subiectul III. Pe foaia de test se trec rezolvările complete(30p):

5p     9. O persoană cumpără de la piaţă 12 kg cartofi, 16 kg roşii şi 18 kg castraveţi. Ştiind că 1kg de cartofi costă 2 lei , 1 kg de roşii costă 6 lei , iar 1 kg de castraveţi costă 4 lei, determinaţi ce rest a primit persoana la o bacnotă de 200 lei.

10p   10. Efectuaţi:  102\cdot [ 4 + 5\cdot 3^{2} - 2^{7} + 4^{2}\cdot (49-3^{2}) : 2^{3} ] ^{}

5p    11. Trei elevi au împreună 200 de timbre. Primul are 35 de timbre mai mult decât al doilea , iar al treilea are cu 45 de timbre mai mult decât al doilea . Calculaţi câte timbre are fiecare.

10p  Arătaţi că numărul : b=1+3+5+7+.................+2011 este pătrat perfect.

Ps: Dragul meu părinte,dacă copilultău nu a înteles foarte bine Suma lui Gauss poţi descărca acest PDF gratuit  pe care l-am conceput special pentru copii care au dificultăţi la aceste noţiuni  şi care  vă va ajuta să stăpâniţi la perfecţie aceste noţiuni matematice dificile .

Mult succes la rezolvarea acestei teze  dar mai ales mult succes la teza de la şcoală! 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Poţi descărca teza în format pdf de aici: teza-de-evaluare-semestriala-la-matematica