Archive of ‘SEMESTRUL II’ category

Model Rezolvat Teza clasa a VI-a Semestrul II

 

„Cel care mută un munte începe întotdeauna prin a îndepărta pietrele mai mici.”

Confucius

Dragul meu părinte bine te-am regăsit!  De o săptămână a început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(mai mult…)

Model Teza clasa a VI-a Semestrul II

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului : (-24) : (-8)+(-2)^3= ………………………………..

  • Rezolvare:

(-24) : (-8)+(-2)^3=3 +(-8)=3 - 8= - 5

Exercițiul 2 (1 punct):

Termenul necunoscut x din proporția: \frac{11}{x}=1,4 este: ……………………………..

  • Rezolvare:

Transformăm fracția zecimală 1,4 în fracție ordinară.

 \frac{11}{x}=1,4 \Rightarrow  \frac{11}{x}=\frac{14}{10} \Rightarrow 14\cdot x=11\cdot 10 \Rightarrow 14\cdot x=110 \Rightarrow

14\cdot x=110 / : 14 \Rightarrow x=\frac{110}{14} \Rightarrow  x=\frac{110}{14}^{(2} \Rightarrow  x=\frac{55}{7}

Exercițiul 3 (1 punct):

18 % din 450 este egal cu: ……………………………………

  • Rezolvare:

18 % =\frac{18}{100}

 \frac{18}{100}\cdot450=  \frac{18\cdot450 }{100} =   \frac{18\cdot45 }{10} =  \frac{810 }{10} =   \frac{81 }{1} =  81

Exercițiul 4 (1 punct):

Dacă \frac{a}{b}=\frac{3}{10} atunci \frac{5a+b}{3b-2a}=?……………………………….

  • Rezolvare:
  • Dăm factor comun și la numărător și la numitor pe “b”.

\frac{5a+b}{3b-2a}= \frac{b(5\frac{a}{b}+1)}{b(3-2\frac{a}{b})}^{ (b} =

Înlocuim fracția  \frac{a}{b}  cu fracția  \frac{3}{10}

\frac{5\frac{3}{10}+1}{3-2\frac{3}{10}}= \frac{\frac{15}{10}+_{{}}^{10)}\textrm{1}}{_{{}}^{10)}\textrm{3}-\frac{6}{10}}=

Aducem la același numitor : \frac{\frac{15}{10}+\frac{10}{10}}{\frac{30}{10}-\frac{6}{10}}=  \frac{\frac{25}{10}}{\frac{24}{10}}=

Fracția de la numărător {\frac{25}{10}}  o împărțim la fracția {\frac{24}{10}}  adică o înmulțim cu răsturnata acestei fracții:  \frac{25}{10 } : {\frac{10}{24}}=   \frac{25}{10}\cdot {\frac{10}{24}}=   \frac{250}{240}^{(10}=   \frac{25}{24}

Exercițiul 5 (1punct):

Soluția ecuației (-2)\cdot (-4+x)=-12  este:…………………………..

  • Rezolvare:

(-2)\cdot (-4+x)=-12

(-2)\cdot (-4+x)=-12 / : (-2) \Rightarrow  -4+x = 6 \Rightarrow  x = 6+4 \Rightarrow  x = 10

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete.

Exercițiul 1 (1,5 puncte):

Rezolvați în Z inecuația:  3(2x-1) \leq x-14

Rezolvare:

Desfacem paranteza după care separăm termenii cu x într-o parte iar cei fara x în cealaltă parte.

 3(2x-1) \leq x-14 \Rightarrow   6x-3 \leq x-14 \Rightarrow   6x-x \leq -14 +3 \Rightarrow   5x \leq -11 / : 5 \Rightarrow x \in \left \{- \infty; ..........; -5; -4; -3 \right \}

Exercițiul 2 (1,5 puncte):

Rezolvați în Z ecuația: \left \| 2x+1 \right \|=5

  • Rezolvare:

2x+1 =- 5 \Rightarrow  2x+1 =- 5 /-1\Rightarrow 2x =- 5 -1\Rightarrow 2x =- 6 / : 2\Rightarrow x =- 3

2x+1 = 5 \Rightarrow 2x+1 = 5 /-1\Rightarrow  2x= 5 -1\Rightarrow 2x= 4 / : 2\Rightarrow x= 2

 x \in \left \{ -3; 2 \right \}

Exercițiul 3 (1,5 puncte):

Fie triunghiul dreptunghic ABC cu (\widehat{BAC})=90^\circ ), având (\widehat{ACB})=30^\circ ).

Se construiesc  AD\perp BC,  DM\perp AB, cu  D \in (BC),  M \in (AB) și  N \in (AC). Să  se arate:

a)  DM \parallel AC

b)  AC = 4\cdot DM

c)  AB = 4\cdot BM

Rezolvare:

Scriem datele problemei:

Realizăm desenul respectând datele problemei.

triunghi dreptunghic

  • a) DM \perp AB\Rightarrow m(\widehat{DMA})=90^\circ
  •    m(\widehat{BAC})=90^\circ \Rightarrow AB \perp AC            \rbrace  \Rightarrow DM \parallel AC

 

  • b)   \bigtriangleup ABC m(\widehat{BAC})=90^\circ  și m(\widehat{BCA})=30^\circ    \Rightarrow m(\widehat{ABC})=60^\circ

\bigtriangleup BDM :  m(\widehat{BMD})=90^\circ   și m(\widehat{MBD})=60^\circ  \Rightarrow

\Rightarrow m(\widehat{BDM})=30^\circ  dar  m(\widehat{BDA})=90^\circ   \Rightarrow m(\widehat{MDA})=60^\circ

În \bigtriangleup AMD avem : m(\widehat{AMD})=90^\circ  și  m(\widehat{MDA})=60^\circ   \Rightarrow m(\widehat{MAD})=30^\circ   \Rightarrow(Conform teoremei unghiului de  30^\circ) \Rightarrow MD=\frac{AD}{2}

Dar în \bigtriangleup ADC  m(\widehat{ADC})=90^\circ  și m(\widehat{ACD})=30^\circ  \Rightarrow(Conform teoremei unghiului de  30^\circ) \Rightarrow AD=\frac{AC}{2}

Dar mai sus am gasit  MD=\frac{AD}{2} \Rightarrow MD=\frac{\frac{AC}{2}}{{2}}  \Rightarrow MD=\frac{AC}{{4}}  AC= 4\cdot MD

c) \bigtriangleup BMD: m(\widehat{BMD})=90^\circ  și m(\widehat{BDM})=30^\circ  \Rightarrow  BM=\frac{BD}{{2}}

\bigtriangleup ADB : m(\widehat{ADB})=90^\circ  și m(\widehat{BAD})=30^\circ  \Rightarrow BD=\frac{AB}{{2}}

\Rightarrow  BM=\frac{\frac{AB}{2}}{{2}}  \Rightarrow BM=\frac{AB}{4}  \Rightarrow AB=4 \cdot BM

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

 

 

 

 

 

 

Model Rezolvat Teza clasa a VIII-a Semestrul II

Şcoala trebuie să te înveţe a fi propriul tău dascăl, cel mai bun şi cel mai aspru.

Nicolae Iorga

Dragul meu părinte bine te-am regăsit!  A început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(mai mult…)

Model Propus Teza clasa a VIII-a Semestrul II

 

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului: \sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  este:……………………………

Rezolvare:

\sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  =\sqrt{2\cdot 3}-3\sqrt{6} =\sqrt{6}-3\sqrt{6} =-2\sqrt{6}

Exercițiul 2 (1 punct):

Simplificând cu x^2+1  raportul : \frac{x^4-1}{{x^2+1}} se obține:……………………………….

Rezolvare:

Aplicăm formulele de calcul prescurtat pentru expresia: x^4-1 și se obține:

\frac{x^4-1}{{x^2+1}}=\frac{(x^2)^2-1^2}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}^{(x^2+1}=\frac{x^2-1}{1}=x^2-1.

Exercițiul 3 (1 punct):

Soluția ecuației: x-\sqrt{3}=0 este: ………………………………….

Rezolvare:

x-\sqrt{3}=0 \Rightarrow x-\sqrt{3}=0 /-\sqrt{3} \Rightarrow x=-\sqrt{3}

Exercițiul 4 (1 punct):

Se considera funcția f : R \to R  ,  f (x)=x-3. Valoarea funcției în punctul x=3 este egală cu: …………………….

Rezolvare:

Pentru a afla valoarea functiei în punctul x=3 calculăm  f (3) (îl înlocuim pe x cu 3 în funcție.

 f (3)=3-3=0

Exercițiul 5 (1punct):

Volumul cubului cu lungimea diagonalei de \sqrt{12}cm este: ……………………

Rezolvare:

Știm că diagonala cubului este egală cu:

 d=l\sqrt{3}\Rightarrow  l\sqrt{3}=\sqrt{12}\Rightarrow   l\sqrt{3}=\sqrt{4\cdot3}\Rightarrow   l\sqrt{3}=2\sqr{3}\Rightarrow  l\sqrt{3}=2\sqr{3} / :\sqr{3} \Rightarrow   l=2 cm

Știm că volumul cubului are formula:  V= l^3  ; înlocuim latura cu 2 cm și obținem:

 V= l^3 \Rightarrow  V= (2cm)^3 \Rightarrow V= 8cm^3 .

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete.

Exercițiul 1 (1,5 puncte):

Se consideră expresia: E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}.

a) Determina’i valorile reale ale lui x pentru care expresia E(x) este bine definită.

b) Demonstrați că E(x)=1,  (\forall ) x \in R \setminus \left \{ -2; 1\right \}.

Rezolvare:

E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

  • a)Punem condițiile de existență ale fracțiilor (numitorul fracției trebuie să fie diferit de 0):

 x-2 \neq 0 \Rightarrow x \neq 2

 3x-1 \neq 0 \Rightarrow 3x \neq 1 \Rightarrow 3x \neq \frac{1}{{3}}

 \Rightarrow x \in R\setminus \left \{ \frac{1}{{3}} , 2 \right \}

  • E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2

Înmulțim cu a doua fracție răsturnată.

  •  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

Aducem la același numitor în paranteză.

  •  \Rightarrow E(x)=(_{{}}^{x-2)}\textrm{1}- _{{}}^{x-2)}\textrm{x}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}    \Rightarrow E(x)=(\frac{x-2}{x-2}- \frac{x(x-2)}{x-2}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=(\frac{x-2-x^2+2x+x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=\frac{3x-1}{x-2}\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=1

Exercițiul 2 (1,5 puncte):

Se consideră funcția  f : R \to R , f(x)= -x+2 .

a) Calculați media aritmetică a numerelor a=f(0)  și b=f(2) .

b) Reprezentați grafic funcția f(x).

c) Calculați aria triunghiului determinat de graficul funcției f(x) și axele de coordonate OX și OY.

Rezolvare:

  • a) f(0)=0+2=2

f(2)=-2+2=0

 M_{a}=\frac{f(0)+f(2)}{{2}} \Rightarrow  M_{a}=\frac{2+0}{{2}} \Rightarrow  M_{a}=\frac{2}{{2}} \Rightarrow M_{a}= 1

  • b) Pentru a reprezenta grafic funcția f(x) facem intersecția cu cele două axe OX și OY
  • \cap OX : y=0 \Rightarrow f(x)=0   \Rightarrow -x+2=0   \Rightarrow -x=-2  \Rightarrow x=2  \Rightarrow A(2;0)
  • \cap OY:   x=0 \Rightarrow f(0)=0+2=2\Rightarrow B(0;2)

Exercițiul 3 (1,5 puncte):

O piramidă triunghiulară regulată VABC are latura AB=4\sqrt{6} cm și VO=2\sqrt{6} cm, unde O este centrul bazei ABC. Calculați:

a) aria laterală a piramidei;

b) distanța de la O la planul (VBC)

c) distanța de la punctul A la planul (VBC)

d) măsura unghiului format de planele (VBC) și (ABC).

Rezolvare:

Scriem datele problemei și apoi le analizăm:

Realizăm și desenul:

  • a)  Știm formula arie laterale:  A_{l}= \frac{P_{b}\cdot a_{p}}{2}.

Pentru a calcula A_{{l}} trebuie să aflăm mai întâi apotema piramidei a_{{p}}=VM.

VABC este piramidă triunghiulară regulată  \Rightarrow \bigtriangleup ABC  echilateral   \Rightarrow  AM înălțimea \bigtriangleup ABC  \Rightarrow AM=\frac{l\sqrt{3}}{{2}}  \Rightarrow AM=\frac{AB\sqrt{3}}{{2}}   \Rightarrow AM=\frac{4\sqrt{6}\cdot \sqrt{3}}{{2}}  \Rightarrow AM=\frac{4\sqrt{6\cdot 3}}{{2}}    \Rightarrow AM=\frac{4\cdot 3\sqrt{2}}{{2}}   \Rightarrow AM=\frac{12\sqrt{2}}{{2}}   \Rightarrow AM=6\sqrt{2} cm

Știm că OM= \frac{1}{{3}}\cdot AM \Rightarrow OM= \frac{1}{{3}}\cdot 6\sqrt{2} cm \Rightarrow OM= \frac{6\sqrt{2}}{{3}} cm \Rightarrow OM= 2\sqrt{2}} cm.

Aplicăm Teorema lui Pitagora în \bigtriangleup VOM pentru a afla apotema VM.

\bigtriangleup VOM((\widehat{VOM})=90^\circ )\RightarrowT.P \Rightarrow VM^2=VO^2+OM^2  \Rightarrow VM^2= (2\sqrt{6} cm)^2 + (2\sqrt{2} cm)^2

\Rightarrow VM^2= 2^2\cdot (\sqrt{6})^2 cm^2 + 2^2\cdot (\sqrt{2})^2 cm^2

\Rightarrow VM^2= 4\cdot 6 cm^2 + 4\cdot 2 cm^2

\Rightarrow VM^2= 24 cm^2 + 8 cm^2

\Rightarrow VM^2= 32 cm^2   \Rightarrow VM= \sqrt{32 cm^2}  \Rightarrow VM= \sqrt{16 \cdot2} cm

 \Rightarrow VM= 4\sqrt{2} cm

Aflăm și perimetrul bazei. Pentru ca \bigtriangleup ABC  este echilateral  \Rightarrow P_{b}= 3 \cdot l  \Rightarrow P_{b}= 3 \cdot AB

 \Rightarrow P_{b}= 3 \cdot 4\sqrt{6} cm  \Rightarrow P_{b}= 12\sqrt{6} cm.

Înlocuim în aria laterală și obținem:

 A_{l}= \frac{P_{b}\cdot a_{p}}{2}  \Rightarrow A_{l}= \frac{12\sqrt{6} cm\cdot 4\sqrt{2} cm}{2}   \Rightarrow A_{l}= \frac{12 \cdot 4 \sqrt{6\cdot 2} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{12} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{4 \cdot 3} cm^2}{2}  \Rightarrow A_{l}= \frac{48\cdot 2 \sqrt{ 3} cm^2}{2}  \Rightarrow A_{l}= 48\sqrt{ 3} cm^2

  • b) d(O; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]  și  \left \{ O \right \} \in AM\Rightarrow \left [ OM \right ]\perp \left [ BC \right ]

  • OM=2\sqrt{2}cm

 

  • c) d(A; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]

  • d) m(\widehat{ (VOM),(ABC)} )=?

\bigtriangleup VOM((\widehat{VOM})=90^\circ ) : sin (\widehat{VMO})= \frac{VO}{{VM}} =\frac{2\sqrt{6}cm}{4\sqrt{2}cm} =\frac{\sqrt{3}}{2}   \Rightarrow m((\widehat{VMO})= 60^\circ)  \Rightarrow m((\widehat{VMA})= 60^\circ).

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

Model Rezolvat Teza clasa a VII-a Semestrul II

Încearcă să fii un om de valoare și nu neapărat un om de succes. – Albert Einstein

Dragul meu părinte bine te-am regăsit!  De azi a început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(mai mult…)

Model-Teza-clasa-a-VII-a-Semestrul-II

 

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului: \sqrt{20}+\sqrt{45}-3\sqrt{5}  este:……………………………

Rezolvare:

\sqrt{20}+\sqrt{45}-3\sqrt{5}= \sqrt{4\cdot 5}+\sqrt{9\cdot 5}-3\sqrt{5}= 2\sqrt{5}+3\sqrt{5}-3\sqrt{5}=2\sqrt{5}

Exercițiul 2 (0,5 puncte):

Raționalizând fracția: \frac{4}{\sqrt{5}-1}  obținem:…………………

Rezolvare:

_{{}}^{\sqrt{5}+1)}\textrm{\frac{4}{\sqrt{5}-1}}={\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}}={\frac{4(\sqrt{5}+1)}{(\sqrt{5})^2-1^2}}= {\frac{4(\sqrt{5}+1)}{5-1}}={\frac{4(\sqrt{5}+1)}{4}}=\sqrt{5}+1

Exercițiul 3 (1 punct):

Rezultatul calculului: (2a+1)^2 - (2a)^2= este………………………

Rezolvare:

(2a+1)^2 - (2a)^2= (2a)^2+2\cdot2a\cdot1+(1)^2 - (2a)^2= 4a^2+4a+1 -4a^2= 4a+1

Exercițiul 4 (1 punct):

Dacă x+\frac{1}{{x}}=4 atunci x^2+\frac{1}{{x^2}}  este egal cu………………….

Rezolvare:

Pornim de la relația x+\frac{1}{{x}}=4 și o ridicăm la pătrat iar relația x+\frac{1}{{x}} o ridicăm la pătrat cu formula de calcul prescurtat :(a+b)^2=a^2+2\cdot a\cdot b+b^2. Astfel obținem:

x+\frac{1}{{x}}=4 /^2 \Rightarrow(x+\frac{1}{{x}})^2=4^2 \Rightarrow  x^2+2\cdot x \cdot \frac{1}{{x}} +(\frac{1}{{x}})^2=16 \Rightarrow   x^2+(\frac{1}{{x}})^2 +2=16 /-2 \Rightarrow  x^2+(\frac{1}{{x}})^2 =16-2 \Rightarrow  x^2+(\frac{1}{{x}})^2 =14

Exercițiul 5 (0,5puncte):

Soluția ecuației x+\sqrt{2}=0 este: …………………….

Rezolvare:

 x+\sqrt{2}=0 /-\sqrt{2} \Rightarrow  x=-\sqrt{2}

Exercițiul 6 (0,5puncte):

 sin 45^\circ  este egal cu …………..

Rezolvare:

 sin 45^\circ =\frac{\sqrt{2}}{2}

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete:

Exercițiul 1:(1,5 puncte):

Media geometrică a numerelor:  a=\left \| 2\cdot\sqrt{6} - 6\cdot\sqrt{2} \right \| și  b= \sqrt{72} + \sqrt{24} .

Rezolvare:

Știm că M_{{g}} =\sqrt{a\cdot b} .

Pentru a calcula \sqrt{a\cdot b} trebuie să aducem a și b la o formă mai simplă.

Pentru a aduce numărul “a” la o formă mai simplă trebuie să comparăm  2\cdot\sqrt{6}  cu  6\cdot\sqrt{2}  să aflăm dacă numărul a este un număr pozitiv sau negativ.

Pentru a compara  2\cdot\sqrt{6}  cu 6\cdot\sqrt{2}  trebuie să ridicăm la pătrat pentru a scăpa de redicali.

 2\cdot\sqrt{6} \sqcup 6\cdot\sqrt{2} /^2 \Rightarrow   2^2 \cdot6 \sqcup 6^2 \cdot2 \Rightarrow 4 \cdot6 \sqcup 36 \cdot2  \Rightarrow  24 \lt 72 \Rightarrow 2\cdot\sqrt{6} \lt 6\cdot\sqrt{2} \Rightarrow  numărul “a” este un număr negativ \Rightarrow  a=\left \| 2\cdot\sqrt{6} - 6\cdot\sqrt{2} \right \|=-2\cdot\sqrt{6}+6\cdot\sqrt{2}=6\cdot\sqrt{2}- 2\cdot\sqrt{6}

Pentru a aduce numărul “b” la o formă mai simplă trebuie să scoatem de sub radical:

 b= \sqrt{72} + \sqrt{24}   = \sqrt{2\cdot 36} + \sqrt{4\cdot 6}   =6 \sqrt{2} + 2\sqrt{ 6}

În concluzie  M_{{g}} =\sqrt{a\cdot b}  =\sqrt{(6 \sqrt{2} - 2\sqrt{ 6})\cdot(6 \sqrt{2} + 2\sqrt{ 6} )}  =\sqrt{(6 \sqrt{2})^2- (2\sqrt{ 6} )^2}  =\sqrt{36\cdot 2- 4\cdot 6}}  =\sqrt{72- 24}}  =\sqrt{48}} =\sqrt{16\cdot3 }}  =4\sqrt{3 }}.

Exercițiul 2:(1,5 puncte):

Rezolvați ecuația:  (x-2)^2-(x-1)(3-2x)=3(x+3)(x-3)+25

Rezolvare: Aplicăm formulele de calcul prescurtat și obținem:

 (x-2)^2-(x-1)(3-2x)=3(x+3)(x-3)+25

 (x)^2-2\cdot x \cdot 2+(2)^2-(x\cdot 3-x \cdot2x-1\cdot3+1\cdot2x)=3(x^2-3^2)+25

x^2-4x+4-3x +2x^2+3-2x=3(x^2-9)+25

3x^2-9x+7=3x^2-27+25

3x^2-9x+7=3x^2-2

3x^2-9x-3x^2 = -2-7

-9x= -9

-9x= -9 /:(-9)  \Rightarrow x= 1

Exercițiul 3:(1,5 puncte):

În trapezul ABCD cu  AB \parallel CD, m(\widehat{A})= m(\widehat{D})= 90^{\circ}, se consideră BE\perp CD, unde  E\in(CD). Știind că AB=6cm,CD=10cm și  BD \perp BC , determinați:

a) lungimea înălțimii BE.

b) perimetrul trapezului ABCD.

c) aria trapezului ABCD, rotunjită la cel mai apropiat număr întreg.

Rezolvare:

 

Scriem datele problemei după care le analizăm.

Trasăm desenul respectând datele problemei.

Trapez dreptunghic

  • a) Observăm că triunghiul este dreptunghic în unghiul B și putem aplica teorema înălțimii [ BE ] .

Mai știm Că  \left [ AB \right ] \equiv \left [ DE \right ] \Rightarrow \left [ EC \right ]=4 cm

\bigtriangleup DBC  (\widehat{DBC})= 90^{\circ}  \Rightarrow T.Î  \Rightarrow  BE^2=DE \cdot EC  \Rightarrow BE^2=6 cm \cdot 4 cm \Rightarrow BE^2= 24 cm^2  \Rightarrow BE= \sqrt{24 cm^2} \Rightarrow BE= \sqrt{4\cdot 6 } cm  \Rightarrow BE= 2\sqrt{6 } cm

Știm că  \left [ BE \right ] \equiv \left [ AD \right ] \Rightarrow  AD= 2\sqrt{6 } cm

  • b) Pentru a calcula perimetrul trapezului trebuie să aflam și latura \left [ BC \right ].

Știm că triunghiul \bigtriangleup BEC este dreptunghic în unghiul (\widehat{BEC})= 90^{\circ} astfel putem aplica Teorema lui Pitagora pentru a afla lungimea laturii \left [ BC \right ].

\bigtriangleup BEC (\widehat{BEC})= 90^{\circ} \Rightarrow T.P. \Rightarrow BC^2=BE^2+EC^2  \Rightarrow BC^2=(2\sqrt{6}cm)^2+(4cm)^2   \Rightarrow BC^2=2^2\cdot6} cm^2+16cm^2

 \Rightarrow BC^2=4\cdot6} cm^2+16cm^2   \Rightarrow BC^2=24 cm^2+16cm^2   \Rightarrow BC^2=40 cm^2

 \ \Rightarrow BC=\sqrt{40cm ^2}  \Rightarrow BC=\sqrt{4 \cdot 10cm ^2}  \Rightarrow BC=2\sqrt{ 10} cm

P_{{ABCD}}= AB+BC+CD+AD \Rightarrow P_{{ABCD}}= 6 cm+2\sqrt{ 10} cm+10 cm+2\sqrt{ 6} cm

\Rightarrow P_{{ABCD}}= 16 cm+2(\sqrt{ 10} +\sqrt{ 6}) cm.

  • c)  A_{ABCD}= \frac{(B+b)\cdot h}{{2}}\Rightarrow  A_{ABCD}= \frac{(AB+DC)\cdot AD}{{2}}\Rightarrow  A_{ABCD}= \frac{(6 cm+10 cm)\cdot 2\sqrt{6}cm }{{2}}\Rightarrow   A_{ABCD}= \frac{16cm\cdot 2\sqrt{6}cm }{{2}}\Rightarrow  A_{ABCD}= \frac{32\sqrt{6}cm^2 }{{2}}\Rightarrow   A_{ABCD}= 16\sqrt{6}cm^2

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

Model Rezolvat Teza clasa a V-a Semestrul II

Dacă A reprezintă succesul în viață, Atunci A= x+y+z, în care x reprezintă munca, y reprezintă joaca, iar z să știi să-ți ții gura. – Albert Einstein.

Dragul meu părinte bine te-am regăsit! Azi este ultima zi de vacantă! De mâine începe școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(mai mult…)

Model Propus Teza clasa a V-a Semestrul II

Exercițiul 1 (1punct):

Scrieți sub formă de fracție ordinară numerele: 0,3;     2,07;     2,1(3).

Rezolvare:

 0,3=\frac{3}{10} ;

   2,07=\frac{207}{100} ; 

2,1(3)=\frac{213-21}{90}=  \frac{192}{90}^{{(2}}=  \frac{96}{45}^{{(3}}=  \frac{32}{15}

Exercițiul 2 (1punct):

Calculați: 9,35 : 5 - 0,87=

  • Rezolvare:

9,35 : 5 - 0,87=1,87 - 0,87=1

Exercițiul 3 (1punct):

Aflați numărul x care este soluție a ecuației:

7,18-x=3,21

Rezolvare:

 7,18-x=3,21 \Rightarrow x=7,18 - 3,21 \Rightarrow x=3,97

Exercițiul 4 (1,5puncte):

Calculați:  1,5\cdot \left [ 6,4+2,2\cdot (3,1^2-4,61) \right ] : 2=

Rezolvare:

Conform ordinii efectuarii operațiilor,mai întâi trebuie să ridicăm la putere.

 1,5\cdot \left [ 6,4+2,2\cdot (3,1^2-4,61) \right ] : 2=

 1,5\cdot \left [ 6,4+2,2\cdot (9,61-4,61) \right ] : 2=

Următoarea operație pe care trebuie să o facem este scăderea din paranteza rotundă. Pentru că am efectuat toate operațiile din paranteza rotundă, transformăm paranteza pătrată în paranteză rotundă.

 1,5\cdot (6,4+2,2\cdot 5 ) : 2=

Următoarea  operație este înmulțirea din paranteza rotundă.

 1,5\cdot (6,4+11 ) : 2=

Apoi adunarea din paranteza rotundă.

 1,5\cdot 17,4 : 2=

Pentru că înmulțirea și împărțirea sunt operații de același ordin și nu mai avem nici o paranteză efectuăm operațiile în ordinea în care sunt scrise. Astfel obținem:

26,10 : 2=13,05

Exercițiul 5 (1,5 puncte):

Rezolvați ecuația:  \left [ 3\cdot(x+2,7)-4,2 \right ] : 1,5 = 7,2

Rezolvare:

Această ecuație se rezolvă pe metoda pasului invers.

 \left [ 3\cdot(x+2,7)-4,2 \right ] : 1,5 = 7,2

Prima oară îl eliminăm pe 1,5 prin operația inversă împărțirii, adică înmulțim întreaga relație cu 1,5.

 \left [ 3\cdot(x+2,7)-4,2 \right ] : 1,5 = 7,2 / \cdot1.5

 \left [ 3\cdot(x+2,7)-4,2 \right ] = 7,2\cdot1.5

Putem elimina și paranteza pătrată.

 3\cdot(x+2,7)-4,2 = 10,8

La pasul II scăpăm de 4,2 prin operația inversă scăderii și anume adunare.

 3\cdot(x+2,7)-4,2 = 10,8 / +4,2

 3\cdot(x+2,7) = 10,8 +4,2

 3\cdot(x+2,7) = 15

Următorul pas (III) împărțim cu trei întreaga relație.

 3\cdot(x+2,7) = 15 / :3

 (x+2,7) = 15 :3

 x+2,7 = 5

Ultima operație scădem 2,7.

 x+2,7 = 5 / -2,7

 x= 5-2,7

 x= 2,3

Exercițiul 6 (1,5 puncte):

Media aritmetică a două numere este 8,6. Aflați cele două numere dacă se știe că diferența lor este 1,5.

  • Rezolvare:
  • Notăm cu a și b cele două numere.
  • Scriem formula mediei aritmetice pentru cele două numere

M_{{a}}= \frac{a+b}{2}

M_{{a}}=8,6 \Rightarrow  \frac{a+b}{2}=8,6 \Rightarrow  \frac{a+b}{2}=8,6 / \cdot2 \Rightarrow    a+b=8,6 \cdot 2

\Rightarrow  a+b=17,2

Dar mai știm din enunțul problemei că diferența celor două numere este 1,5.

Astfel obținem următoarea relație:  a-b=1,5.

Dar mai sus am obținut și relația:    a+b=17,2

Adunăm cele două relații și obținem:  a+b+a-b=17,2+1,5 \Rightarrow

 2a=18,7 \Rightarrow  a=18,7:2 \Rightarrow   a=9,35

Înlocuim a în prima relație și îl aflăm pe b.

 9,35 +b =17,2 \Rightarrow b= 17,2 - 9,35 \Rightarrow  b=7,85

Exercițiul 7 (1 punct):

Calculați și exprimați rezultatul în  m^{2}: 0,07 dam^2 -2,3 m^2+140 dm^2=?m^2

Rezolvare:

Transformăm  0,07 dam^2  și 140 dm^2  în m^2 .

Știm că 1 dam =10 m atunci 1 dam^2 =100 m^2

și 1 dm =0,1 m atunci 1 dm^2 =0,01 m^2

Astfel 0,07 dam^2 =7 m^2 și 140 dm^2 =1,4 m^2

Înlocuim și obținem: 0,07 dam^2 -2,3 m^2+140 dm^2=7m^2 -2,3 m^2 +1,4 m^2

4,7m^2 +1,4 m^2=6,1 m^2

Exercițiul 7 (1,5 puncte):

Un dreptunghi are perimetrul egal cu 16 dm. Știind că lățimea este egală cu o treime din lungime, aflați aria dreptunghiului.

Rezolvare:

dreptunghi

Știm că perimetrul este suma laturilor și că P_{{ABCD}}=2\cdot L+2\cdot l

Din datele problemei mai știm l = \frac{1}{3}\cdot L   \Rightarrow L =3\cdot l

Înlocuim în formula perimetrului și aflăm lățimea.

P_{{ABCD}}=2\cdot L+2\cdot l \Rightarrow  P_{{ABCD}}=2\cdot 3\cdot l+2\cdot l \Rightarrow  P_{{ABCD}}=6\cdot l+2\cdot l \Rightarrow  P_{{ABCD}}=8\cdot l \Rightarrow  8\cdot l = 16 dm \Rightarrow l= 16 dm :8  l= 2 dm

Înlocuim și aflăm lungimea :  L =3\cdot l \Rightarrow L=3\cdot 2 dm \Rightarrow L=6 dm

Știm Aria dreptunghiului : A_{{ABCD}}=L \cdot l \Rightarrow  A_{{ABCD}}=6dm \cdot 2dm \Rightarrow  A_{{ABCD}}=12dm^2

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!