Etichetă: radicali

Rationalizarea numitorilor

"Un element important pentru succes este increderea in sine. Un element important pentru increderea in sine este pregatirea." 

Arthur Ashe

Bine te-am regasit!

Cum rezolv fractiile cu radical la numitor radical?
Cum scap de radicalulu de la numitorul fractiei?
Cum rationalizez numitorii?
Azi îți propun să o noua lectie la Rationalizarea radicalilor! #rationalizarea radical, #radical, #numar real, #exercitii rezolvate cu radicali, #meditatii, #Putting Radicals on a Number Line, #Simplifying Radicals, ##YouCanLearnAnythingwww.mathmoreeasy.ro

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

Scoaterea si Introducerea factorilor sub radical

 

"Şcoala are rostul să te ridice undeva de unde să-ţi fie ruşine să mai cobori.

Paul Louis Lampert

Dragul meu părinte, bine te-am regăsit! Te invit alături de mine la o nouă lecție Scoaterea și Introducerea factorilor sub radical.

În articolul de azi vreau să îți explic pas cu pas "Cum scot si introduc factorii sub radical? Cum compar sau ordonez numerele cu radical" .

În articolul precedent ți-am vorbit despre Cum repreze ntăm pe Axă un Număr Real și cum Aproximăm Numerele Reale. Azi trebuie să aflăm  "Cum scoatem si introducem  factorii sub radical? Cum compar sau ordonez numerele cu radical" .

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Model Rezolvat Teza clasa a VIII-a Semestrul II

Şcoala trebuie să te înveţe a fi propriul tău dascăl, cel mai bun şi cel mai aspru.

Nicolae Iorga

Dragul meu părinte bine te-am regăsit!  A început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(mai mult…)

Model Propus Teza clasa a VIII-a Semestrul II

 

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului: \sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  este:……………………………

Rezolvare:

\sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  =\sqrt{2\cdot 3}-3\sqrt{6} =\sqrt{6}-3\sqrt{6} =-2\sqrt{6}

Exercițiul 2 (1 punct):

Simplificând cu x^2+1  raportul : \frac{x^4-1}{{x^2+1}} se obține:.....................................

Rezolvare:

Aplicăm formulele de calcul prescurtat pentru expresia: x^4-1 și se obține:

\frac{x^4-1}{{x^2+1}}=\frac{(x^2)^2-1^2}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}^{(x^2+1}=\frac{x^2-1}{1}=x^2-1.

Exercițiul 3 (1 punct):

Soluția ecuației: x-\sqrt{3}=0 este: ........................................

Rezolvare:

x-\sqrt{3}=0 \Rightarrow x-\sqrt{3}=0 /-\sqrt{3} \Rightarrow x=-\sqrt{3}

Exercițiul 4 (1 punct):

Se considera funcția f : R \to R  ,  f (x)=x-3. Valoarea funcției în punctul x=3 este egală cu: .........................

Rezolvare:

Pentru a afla valoarea functiei în punctul x=3 calculăm  f (3) (îl înlocuim pe x cu 3 în funcție.

 f (3)=3-3=0

Exercițiul 5 (1punct):

Volumul cubului cu lungimea diagonalei de \sqrt{12}cm este: ........................

Rezolvare:

Știm că diagonala cubului este egală cu:

 d=l\sqrt{3}\Rightarrow  l\sqrt{3}=\sqrt{12}\Rightarrow   l\sqrt{3}=\sqrt{4\cdot3}\Rightarrow   l\sqrt{3}=2\sqr{3}\Rightarrow  l\sqrt{3}=2\sqr{3} / :\sqr{3} \Rightarrow   l=2 cm

Știm că volumul cubului are formula:  V= l^3  ; înlocuim latura cu 2 cm și obținem:

 V= l^3 \Rightarrow  V= (2cm)^3 \Rightarrow V= 8cm^3 .

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete.

Exercițiul 1 (1,5 puncte):

Se consideră expresia: E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}.

a) Determina'i valorile reale ale lui x pentru care expresia E(x) este bine definită.

b) Demonstrați că E(x)=1,  (\forall ) x \in R \setminus \left \{ -2; 1\right \}.

Rezolvare:

E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

  • a)Punem condițiile de existență ale fracțiilor (numitorul fracției trebuie să fie diferit de 0):

 x-2 \neq 0 \Rightarrow x \neq 2

 3x-1 \neq 0 \Rightarrow 3x \neq 1 \Rightarrow 3x \neq \frac{1}{{3}}

 \Rightarrow x \in R\setminus \left \{ \frac{1}{{3}} , 2 \right \}

  • E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2

Înmulțim cu a doua fracție răsturnată.

  •  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

Aducem la același numitor în paranteză.

  •  \Rightarrow E(x)=(_{{}}^{x-2)}\textrm{1}- _{{}}^{x-2)}\textrm{x}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}    \Rightarrow E(x)=(\frac{x-2}{x-2}- \frac{x(x-2)}{x-2}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=(\frac{x-2-x^2+2x+x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=\frac{3x-1}{x-2}\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=1

Exercițiul 2 (1,5 puncte):

Se consideră funcția  f : R \to R , f(x)= -x+2 .

a) Calculați media aritmetică a numerelor a=f(0)  și b=f(2) .

b) Reprezentați grafic funcția f(x).

c) Calculați aria triunghiului determinat de graficul funcției f(x) și axele de coordonate OX și OY.

Rezolvare:

  • a) f(0)=0+2=2

f(2)=-2+2=0

 M_{a}=\frac{f(0)+f(2)}{{2}} \Rightarrow  M_{a}=\frac{2+0}{{2}} \Rightarrow  M_{a}=\frac{2}{{2}} \Rightarrow M_{a}= 1

  • b) Pentru a reprezenta grafic funcția f(x) facem intersecția cu cele două axe OX și OY
  • \cap OX : y=0 \Rightarrow f(x)=0   \Rightarrow -x+2=0   \Rightarrow -x=-2  \Rightarrow x=2  \Rightarrow A(2;0)
  • \cap OY:   x=0 \Rightarrow f(0)=0+2=2\Rightarrow B(0;2)

Exercițiul 3 (1,5 puncte):

O piramidă triunghiulară regulată VABC are latura AB=4\sqrt{6} cm și VO=2\sqrt{6} cm, unde O este centrul bazei ABC. Calculați:

a) aria laterală a piramidei;

b) distanța de la O la planul (VBC)

c) distanța de la punctul A la planul (VBC)

d) măsura unghiului format de planele (VBC) și (ABC).

Rezolvare:

Scriem datele problemei și apoi le analizăm:

Realizăm și desenul:

  • a)  Știm formula arie laterale:  A_{l}= \frac{P_{b}\cdot a_{p}}{2}.

Pentru a calcula A_{{l}} trebuie să aflăm mai întâi apotema piramidei a_{{p}}=VM.

VABC este piramidă triunghiulară regulată  \Rightarrow \bigtriangleup ABC  echilateral   \Rightarrow  AM înălțimea \bigtriangleup ABC  \Rightarrow AM=\frac{l\sqrt{3}}{{2}}  \Rightarrow AM=\frac{AB\sqrt{3}}{{2}}   \Rightarrow AM=\frac{4\sqrt{6}\cdot \sqrt{3}}{{2}}  \Rightarrow AM=\frac{4\sqrt{6\cdot 3}}{{2}}    \Rightarrow AM=\frac{4\cdot 3\sqrt{2}}{{2}}   \Rightarrow AM=\frac{12\sqrt{2}}{{2}}   \Rightarrow AM=6\sqrt{2} cm

Știm că OM= \frac{1}{{3}}\cdot AM \Rightarrow OM= \frac{1}{{3}}\cdot 6\sqrt{2} cm \Rightarrow OM= \frac{6\sqrt{2}}{{3}} cm \Rightarrow OM= 2\sqrt{2}} cm.

Aplicăm Teorema lui Pitagora în \bigtriangleup VOM pentru a afla apotema VM.

\bigtriangleup VOM((\widehat{VOM})=90^\circ )\RightarrowT.P \Rightarrow VM^2=VO^2+OM^2  \Rightarrow VM^2= (2\sqrt{6} cm)^2 + (2\sqrt{2} cm)^2

\Rightarrow VM^2= 2^2\cdot (\sqrt{6})^2 cm^2 + 2^2\cdot (\sqrt{2})^2 cm^2

\Rightarrow VM^2= 4\cdot 6 cm^2 + 4\cdot 2 cm^2

\Rightarrow VM^2= 24 cm^2 + 8 cm^2

\Rightarrow VM^2= 32 cm^2   \Rightarrow VM= \sqrt{32 cm^2}  \Rightarrow VM= \sqrt{16 \cdot2} cm

 \Rightarrow VM= 4\sqrt{2} cm

Aflăm și perimetrul bazei. Pentru ca \bigtriangleup ABC  este echilateral  \Rightarrow P_{b}= 3 \cdot l  \Rightarrow P_{b}= 3 \cdot AB

 \Rightarrow P_{b}= 3 \cdot 4\sqrt{6} cm  \Rightarrow P_{b}= 12\sqrt{6} cm.

Înlocuim în aria laterală și obținem:

 A_{l}= \frac{P_{b}\cdot a_{p}}{2}  \Rightarrow A_{l}= \frac{12\sqrt{6} cm\cdot 4\sqrt{2} cm}{2}   \Rightarrow A_{l}= \frac{12 \cdot 4 \sqrt{6\cdot 2} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{12} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{4 \cdot 3} cm^2}{2}  \Rightarrow A_{l}= \frac{48\cdot 2 \sqrt{ 3} cm^2}{2}  \Rightarrow A_{l}= 48\sqrt{ 3} cm^2

  • b) d(O; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]  și  \left \{ O \right \} \in AM\Rightarrow \left [ OM \right ]\perp \left [ BC \right ]

  • OM=2\sqrt{2}cm

 

  • c) d(A; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]

  • d) m(\widehat{ (VOM),(ABC)} )=?

\bigtriangleup VOM((\widehat{VOM})=90^\circ ) : sin (\widehat{VMO})= \frac{VO}{{VM}} =\frac{2\sqrt{6}cm}{4\sqrt{2}cm} =\frac{\sqrt{3}}{2}   \Rightarrow m((\widehat{VMO})= 60^\circ)  \Rightarrow m((\widehat{VMA})= 60^\circ).

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

Algoritmul de extragere a rădăcinii pătrate.

Dragul meu părinte, bine te-am regăsit! În articolul de azi vreau să îți explic pas cu pas "Algoritmul de extragere a rădăcinii pătrate" . În articolul precedent ți-am vorbit despre Rădăcina pătrată a unui număr natural pătrat perfect  azi trebuie să aflăm care este  algoritmul de extragere al radicalului unui număr real.

(mai mult…)

Pentru a înțelege cât mai bine algoritmul de extragere a rădăcinii pătrate voi lua un exemplu pe care îl voi explica pas cu pas.

Exemplu :   Reguli de calcul cu Radical

 

 

 

 

 

 

 

 

 

 

 

 

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la numere reale!

Clasa a VIII-aBine te-am regăsit dragul meu părinte! În articolul pe care l-am publicat luni pe blog am rezolvat trei exerciţii la lecţia mulţimea numerelor reale. Astăzi revin cu un nou articol în care mai explic pas cu pas doua exemple de exerciţii cu un grad de dificultate mai ridicat pentru a veni în ajutorul tău şi al copilului tău.

 EXERCIŢIUL 1: Determinaţi elementele mulţimilor:

A=\left \{ x\epsilon N|  \frac{15}{2x+1}\epsilon N \} şi B=\left \{ x\epsilon Z| \frac{3x+9}{2x-3}\epsilon Z \}.

Rezolvare: Să aflăm întâi mulţimea A.

A=\left \{ x\epsilon N|  \frac{15}{2x+1}\epsilon N \}

Exerciţiul îmi cere să găsesc toate valorile numere naturale care îndeplinesc condiţia: \frac{15}{2x+1}\epsilon N \Rightarrow2x+1 \epsilon D_{{15}}.

Numitorul 2x+1 trebuie să aparţină mulţimii divizorilor lui 15, deoarece împărţirea 15 la 2x+1 trebuie să fie o împărţire exactă, astfel încât rezultatul să aparţină mulţimii numerelor naturale.

 D_{{15}}=\left \{ 1,3,5,15 \right \}

2x+1=1 | -1 \Rightarrow 2x=1-1 \Rightarrow2x=0| :2 \Rightarrow x=0

2x+1=3 | -1 \Rightarrow 2x=3 -1 \Rightarrow 2x=2 | :2 \Rightarrow x=1

2x+1=5 | -1 \Rightarrow 2x=5 -1 \Rightarrow 2x=4 | :2 \Rightarrow x=2

2x+1=15 | -1 \Rightarrow 2x=15 -1 \Rightarrow 2x=14 | :2 \Rightarrow x=7

Soluţie :x \epsilon \left \{ 0, 1,2,7\right \}.

  • Determinăm şi mulţimea B=\left \{ x\epsilon Z| \frac{3x+9}{2x-3}\epsilon Z \}.

La această mulţime trebuie să prelucrăm numărătorul în funcţie de numitor, astfel încât să găsim  mulţimea divizorilor unui număr întreg.

\frac{3x+9}{2x-3}\epsilon Z \Rightarrow\frac{6x+18}{2x-3}\epsilon Z \Rightarrow\frac{6x-9+27}{2x-3}\epsilon Z \Rightarrow\frac{3(2x-3)}{2x-3}+\frac{27}{2x-3}\epsilon Z \Rightarrow3+\frac{27}{2x-3}\epsilon Z

Deoarece 3\epsilon Z ,  este suficient să demonstrez că \frac{27}{2x-3}\epsilon Z \Rightarrow{2x-3}\epsilon D_{27}

Deoarece sunt pe multimea Z, \Rightarrow D_{27}=\left \{ \pm1, \pm3,\pm9, \pm27 \right \}

2x-3=1| +3 \Rightarrow 2x=1+3 \Rightarrow 2x=4| :2 \Rightarrow x=2

2x-3=-1| +3 \Rightarrow 2x=-1+3 \Rightarrow 2x=2| :2 \Rightarrow x=1

2x-3=3| +3 \Rightarrow 2x=3+3 \Rightarrow 2x=6| :2 \Rightarrow x=3

 2x-3=-3| +3 \Rightarrow 2x=-3+3 \Rightarrow 2x=0 \Rightarrow x=0

 2x-3=9|+3 \Rightarrow 2x=9+3 \Rightarrow 2x=12| :2 \Rightarrow x=6 2x-3=-9|+3 \Rightarrow 2x=-9+3 \Rightarrow 2x=-6| :2 \Rightarrow x=-3

2x-3=27|+3 \Rightarrow 2x=27+3 \Rightarrow 2x=30| :2 \Rightarrow x=15

2x-3=-27|+3 \Rightarrow 2x=-27+3 \Rightarrow 2x=-24| :2 \Rightarrow x=-12

Soluţie : x\in \left \{ -12;-3;0;1;2;6;15 \right \}

EXERCIŢIUL 2: Determinaţi x\in Z pentru care \frac{\sqrt{7+4\sqrt{3}}+\sqrt{52-14\sqrt{3}}}{2x-1}\in Z

Rezolvare: Pentru a determina valorile pe care le poate lua x trebuie sa determinam numarătorul. Vom scrie cei doi radicali de la numărător cu ajutorul formulelor de calcul prescurtat ca un număr la puterea a doua.

Astfel vom scrie \sqrt{7+4\sqrt{3}}=\sqrt{(2+\sqrt{3})^2} , iar \sqrt{52-14\sqrt{3}}=\sqrt{(7-\sqrt{3})^2}.

Obţinem astfel: \frac{\sqrt{(2+\sqrt{3})^2}+\sqrt{(7-\sqrt{3})^2}}{2x-1}\in Z \Rightarrow\frac{\left \| 2+\sqrt{3} \right \|+\left \| 7-\sqrt{3} \right \|}{2x-1}\in Z

Considerăm \sqrt{3}\simeq 1,73 obţinem: 2+ 1,73 =3,73 şi 7-1,73 =5,27

Deoarece \left \| 2+\sqrt{3} \right \| şi \left \| 7-\sqrt{3} \right \| sunt numere pozitive, sunt mai mari decît 0,ambele numere  ies de sub modul cu sumnul +, adica 2+\sqrt{3} şi 7-\sqrt{3}.

Obţinem astfel: \frac{ 2+\sqrt{3} +7-\sqrt{3} }{2x-1}\in Z \Rightarrow\frac{ 2 +7 }{2x-1}\in Z \Rightarrow\frac{ 9 }{2x-1}\in Z \Rightarrow2x-1\in D_{9} .

D_{9} =\left \{ \pm1;\pm3;\pm9 \right \}.

 

2x-1=1| +1 \Rightarrow 2x=1 +1 \Rightarrow 2x=2| :2 \Rightarrow x=1
2x-1=-1| +1 \Rightarrow 2x=-1 +1 \Rightarrow 2x=0| :2 \Rightarrow x=0

2x-1=3| +1 \Rightarrow 2x=3 +1 \Rightarrow 2x=4| :2 \Rightarrow x=2

2x-1=-3| +1 \Rightarrow 2x=-3 +1 \Rightarrow 2x=-2| :2 \Rightarrow x=-1

2x-1=9| +1 \Rightarrow 2x=9 +1 \Rightarrow 2x=10| :2 \Rightarrow x=5 2x-1=-9| +1 \Rightarrow 2x=-9 +1 \Rightarrow 2x=-8| :2 \Rightarrow x=-4

Soluţie: x\in \left \{ -4;-1; 0; 1; 2; 5 \right \}

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăti în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!