Etichetă: 2 la puterea

Exerciții rezolvate la Ultima Cifră a unui Număr Natural

"Zadarnic vei vrea să-l înveți pe cel ce nu e dornic să fie învățat, dacă nu-l vei fi făcut mai întâi dornic de a învăța."

Comenius

Dragul meu părinte bine te-am regăsit. În articolul anterior am vorbit despre cum putem afla Ultima cifră a unui număr natural. Azi îți propun câteva exemple de exerciții rezolvate și explicate pas cu pas la această lecție dificilă pentru clasa a V-a.

 Exercițiul 1:

Calculați ultima cifră a numerelor:

a)  2^{1299}; \ \ \ 2^{2020};

b)  21^{324}; \ \ \ 19^{257}; \ \ \ 17^{2020};

Rezolvare:

  • a) Pentru a calcula  2^{1299}; mai întâi privim atent puterile numărului 2.
Observăm că ultima cifră se repetă din 4 în 4. Împărțim puterea 1299 la 4 și obținem:  1299 \ \ \ : \ \ \ 4=324 \ \ \ rest \ \ \ 3 \Rightarrow 1299=4\cdot 324 +3 Atunci putem scrie că: U(2^{1299})=U(2^{4\cdot 324 +3})=U[(2^{4})^{ 324} \cdot 2^3)] =U[(2^{4})^{ 324}] \ \ \ \cdot \ \ \ U( 2^3) Consultăm tabelul cu puterile lui 2 și observăm că 2^{4} are ultima cifră 6 astfel obținem:  U[(2^{4})^{ 324}] \ \ \ \cdot \ \ \ U( 2^3)=U(6^{ 324}) \ \ \ \cdot \ \ \ 8 Consultăm tabelul cu puterile lui 6. Observăm că  6 ridicat la orice putere are ultima cifră 6 astfel obținem: U(6^{ 324}) \ \ \ \cdot \ \ \ 8=U(6 \cdot 8)=U(48)=8 Am obținut că U(2^{ 1299})=8 Calculăm acum pentru U(2^{ 2020})=? Avem mai sus tabelul cu puterile lui 2 și am observat că ultima cifră se repetă din 4 în 4. Împărțim puterea 2020 la 4 și obținem: 2020 \ \ \ : \ \ \ 4=505 \ \ \ rest \ \ \ 0 Atunci putem scrie că: U(2^{2020})=U(2^{4\cdot 505 +0})=U[(2^{4})^{ 505} \cdot 2^0)] . Știm că orice număr ridicat la puterea 0 este egal cu 1 \Rightarrow 2^{0}=1. Am văzut mai sus că  2^{4} are ultima cifră 6 astfel obținem: =U[(6^{ 505} \cdot 1)]=U(6 \cdot1)=6 . Am obținut că: U(2^{ 2020}) = 6 b)   21^{324}; \ \ \ 19^{257}; \ \ \ 17^{2020};
  • Calculăm  U(21^{ 324}) = ?
 U(21^{ 324}) = U(1^{ 324}) Știm că 1 ridicat la orice putere este egal cu 1.  \Rightarrow U(1^{ 324}) = 1
  • Calculăm  U(19 ^{ 257}) = ?
 U(19 ^{ 257}) = U(9^{ 257}) = Calculăm puterile lui 9. Observăm că ultima cifră se repetă din 2 în 2. Împărțim 257 la 2 și obținem: 257 \ \ \ : \ \ \ 2 = 128 \ \ \ rest \ \ \ 1 Atunci putem scrie că: U(9^ {257})= U(9^ {2\cdot128+1})= U(9^ {2})^{128} \cdot U(9^1)= Consultând tabelul cu puterile lui 9 observăm că 9^2 are ultima cifră egală cu 1, astfel obținem:  U(9^ {2})^{128} \cdot U(9^1)= U(1^{128})\ \ \ \cdot \ \ \ 9=U(1 \cdot 9 )=9 Am obținut că U(19^{ 257}) = 9
  • Calculăm U(17^{ 2020}) = ?
U(17^{ 2020}) = U(7^{ 2020}) = ? Calculăm puterile lui 7. Observăm că ultima cifră se repetă din 4 în 4. Împărțim 2020 la 4 și obținem: 2020 \ \ \ : \ \ \ 4 = 505 \ \ \ rest \ \ \ 0 Atunci putem scrie că:  U(7^{ 2020}) = U[(7^4)^{ 505}] Consultând tabelul cu puterile lui 7 observăm că 7^4 are ultima cifră egală cu 1, astfel obținem: U[(7^4)^{ 505}] = U(1^{505})=1 Am obținut că U(17^{ 2020})=1
Învăț pentru mine
Dragul meu părinte își propun câteva exerciții pe care să le rezolve copilul tău urmărind exemplele explicate și rezolvate mai sus! Determină ultima cifră a numerelor: a)  2^{99}; \ \ \ 2^{2018}; \ \ \ 2^{2024}; b)  41^{2017}; \ \ \ 125^{2017}; \ \ \ 2017^{2018}; c)  4^{1999}; \ \ \ 129^{2022}; \ \ \ 2016^{2018};

Exerciții rezolvate la Compararea puterilor

"Educația nu e cât de mult ai memorat sau cât știi. E capacitatea de a face diferența între ce știi și ce nu știi".

Anatole France 

Dragul meu părinte bine te-am regăsit! Azi revin cu o lecție nouă la capitolul Numere Naturale: Exerciții rezolvate la Compararea Puterilor.

Exercițiul 1: Comparați numerele:

  • a) 4 ^{17} și 2 ^{34}
  • b) 3 ^{27} și 9 ^{13}
  • c) 8 ^{17} și  2^{52}

Rezolvare: 

  • 4 ^{17} și 2 ^{34}
  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că putem să-l scriem pe 4 ca bază 2 ^2.
  • ({2 ^2})^{17}    și 2 ^{34}
  • Aplicăm Regulile de Calcul cu Puteri pentru primul număr, înmulțim exponenții și obținem:
  • 2 ^{2\cdot 17}  și 2 ^{34} \Rightarrow 2 ^{34}   = 2 ^{34}

b) 3 ^{27}   și 9 ^{13}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că  putem modifica bazele atunci îl vom scrie pe 9=3 ^{2} și obținem:
  • 3 ^{27} și (3 ^{2}) ^{13} \Rightarrow 3 ^{27} și  3 ^{2\cdot 13}  \Rightarrow 3 ^{27}   \gt \ \ \ 3 ^{26}

c)  8 ^{17} și  2 ^{52}

    • Observăm că  putem modifica bazele atunci îl vom scrie pe 8= 2^{3} și obținem:
    • (2^{3})^{17} și 2^{52 \Rightarrow 2^{3\cdot 17} și  2^{52}  \Rightarrow 2^{51} \lt 2^{52}
Exercițiul 2:  Comparați numerele:
  • a)  2 ^{48}  și   3 ^{32}
  • b)  2 ^{60}  și  3 ^{36}
  • c)  3 ^{42}  și  5 ^{28}
  • d) { 2^2}^3  și (2^2)^3

Rezolvare: 

a) 2^{48} și 3^{32}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel  48=3\cdot16 și 32=2\cdot16. Obținem:
  • 2^{3\cdot16} și 3^{2\cdot16}  \Rightarrow (2^3)^{16} și  (3^2)^{16}
  • Ridicăm la putere știind că  2^3=8 și  3^2=9 obținem:
  •  8^{16} \lt 9^{16}
  • Numărul cu baza mai mică este mai mic.

b)  2^{60} și  3^{36}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel: 60=10\cdot 6 și 36=6\cdot 6. Obținem:
  • 2^{10\cdot 6} și 3^{6\cdot 6} \Rightarrow (2^{10})^ 6 și (3^{6})^ 6
  • Ridicăm la putere știind că 2^{10}=1024 și 3^{6}=729. Obținem:
  •  1024^{6} \gt 729^6
  • Numărul cu baza mai mare este mai mare.

c) 3^{42} și 5^{28}

  • Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel: 42=3\cdot 14  și 28=2 \cdot 14. Obținem:
  • 3^{3\cdot14} și 5^{2\cdot14}   \Rightarrow (3^3)^{14} și  (5^2)^{14}
  • Ridicăm la putere știind că  3^3= 27 și  5^2= 25 obținem:
  •  27^{14}\ \ \gt\ \ 25^{14}.

d) { 2^2}^3 și (2^2)^3

  • Observăm că la primul număr avem puterea unei puteri cu alte cuvinte exponentul este tot o putere 2^3. Mai întâi ridicăm la putere exponentul știind că 2^3 = 8 și obținem: { 2^2}^3=2^8.
  • La cel de-al doilea număr aplicăm Regulile de calcul cu puteri,  înmulțim puterile și obținem: (2^3)^2=2^{3\cdot 2}= 2^6
  • { 2^2}^3 și (2^2)^3\Rightarrow 2^8 \ \ \gt \ \ 2^6

Exercițiul 3: Comparați numerele:

a) 8^{18} - 7\cdot 8^{17} și 16^{14} - 15\cdot 16^{13}

c) (9^{15}\cdot 3^{14})^4  și (81^{3}\cdot 27^{7})^3 \cdot 243 ^{15}

Rezolvare:

a) 8^{18} - 7\cdot 8^{17} și 16^{14} - 15\cdot 16^{13}

  • Pentru a putea compara cele două numere trebuie să le aducem la o formă mai simplă. Pentru că avem operația de scădere între termenii celor două numere trebuie să dam factor comun baza care se repetă la puterea cea mai mică
  • 8^{17}\cdot (8^{18-17} - 7\cdot 8^{17-17}) și 16^{13}\cdot (16^{14-13} - 15\cdot 16^{13-13})
  • 8^{17}\cdot (8^{1} - 7\cdot 8^{0})   și 16^{13}\cdot (16^{1} - 15\cdot 16^{0})
  • Știm că orice număr la puterea 0 este egal cu 1  \Rightarrow 8^0=1 și \Rightarrow 16^0=1
  • Obținem:
  • 8^{17}\cdot (8 - 7\cdot 1) și 16^{13}\cdot (16 - 15\cdot 1)
  • 8^{17}\cdot (8 - 7) și 16^{13}\cdot (16 - 15)
  • 8^{17}\cdot 1 și 16^{13}\cdot 1 \Rightarrow 8^{17} și 16^{13}
  • Pentru a putea compara cele două numere trebuie să le aducem la aceeași bază.
  • Știm că putem scrie:8=2^{3} și 16=2^{4} astfel obținem:
  • (2^{3})^{17} și (2^{4})^{13} \Rightarrow 2^{3\cdot 17} și 2^{4\cdot 13} \Rightarrow 2^{51} \lt 2^{52}

b) (9^{15}\cdot 3^{14})^4 și (81^{3}\cdot 27^{7})^3 \cdot 243 ^{15}

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor