Archive of ‘Numere Raţionale’ category

Mulțimea Numerelor Raționale.

Nu îți coborî așteptările pentru a se potrivi cu performanța ta. Ridică-ți nivelul de performananță pentru a se potrivi cu așteptările tale.” 

Ralph Marston

 

Dragul meu părinte bine te-am regăsit. Azi revin cu o lecție pentru clasa a VII-a. (mai mult…)

Copilul tău a învățat în clasa a VI-a Numerele Raționale pe care le vom repeta și  acum în clasa a VII-a.

Începem clasa a VII-a cu recapitularea lecției  “Mulțimea numerelor Raționale. Forme de scriere a Numerelor Raționale.”

Definiție Număr Rațional: 

Un număr x se numește număr rațional dacă există o pereche de numere întregi (a,b) cu b\neq 0, astfel încât \frac{a}{b}=x.

  • Mulțimea numerelor raționale se notează cu Q și se poate defini astfel:
  • Q=\left \{ x| (\exists)\ \ \ a,\ b \in Z;\ \ b\neq 0 \ \ \ \ x=\frac{a}{b} \right \}

Observații: 

  • N \subset Z \subset Q
  •  Q^{{\star}}=Q \setminus \left \{ 0 \right \};
  •  Q^{{\star}} se numește mulțimea numerelor raționale nenule.
  • Q=Q_{{-}} \cup \left \{ 0\right \} \cup Q_{{+}}
  •  Q_{{-}} reprezintă mulțimea numerelor raționale negative
  •  Q_{{+}} reprezintă mulțimea numerelor raționale pozitive.
  • orice număr natural x se poate scrie ca un număr rațional cu numitor 1: x=\frac{x}{1}.

Scoaterea Întregilor din Fracție: 

  • Dacă avem un număr rațional x=\frac{a}{b} cu b\neq 0, pentru a scoate întregii din fracție efectuăm operația de împărțire a : b și obținem câtul c si restul r .
  • Putem scrie că  \frac{a}{b}=c\frac{r}{b}, unde c este partea întreagă , iar \frac{r}{b} este partea fracționară a numărului rațional \frac{a}{b} .

Exemplu:

  • Efectuăm operația de scoatere a întregilor din fracția  \frac{19}{4}
  • Efectuăm împărțirea 19\ \ \ :\ \ 4 = 4 \ \ \ rest \ \ 3
  • Putem scrie astfel: \frac{19}{4}=4\frac{3}{4}.

Introducerea Întregilor în fracție: 

Definiție : Numărul rațional scris sub forma a\frac{b}{c}  se poate scrie sub forma unei fracții ordinare astfel: a\frac{b}{c}= \frac{a\cdot c +b}{c}.

Exemplu:

  • Efectuăm operația de introducere a întregilor din fracție  pentru numărul rațional: 9\frac{3}{5}.
  • Conform definiției enunțate mai sus 9\frac{3}{5}= \frac{9 \cdot 5+3}{5}= \frac{45+3}{5}= \frac{48}{5} .

Forme de scriere:

Un număr rațional poate fi reprezentat prin fracții ordinare echivalente sau printr-o fracție zecimală finită sau periodică.

Teoremă:  Pentru orice număr rațional nenul “q”  există o unică fracție ireductibilă \frac{a}{b}, \ \ \ cu \ \ \ a\in Z \ \ \ si \ \ \ b\in Z^*, astfel încât q= \frac{a}{b}.

Transformarea Fracțiilor Ordinare în Fracții Zecimale:

Un număr rațional pozitiv reprezentat printr-o fracție ireductibilă \frac{a}{b} , cu  a,b \in N^{*}, b\geq 2, se poate transforma, folosind algoritmul de împărțire a numerelor naturale în:

  • fracție zecimală finită;
  • fracție periodică simplă;
  • fracție periodică mixtă.

Exemple: 

  • fracție zecimală finită;

\frac{39}{4}=9,75;

impartire

  • fracție periodică simplă;

\frac{122}{6}=20,(3)

  • fracție periodică mixtă.

\frac{125}{6}=20,8(3)

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!