Archive of ‘Numere Raționale Pozitive’ category

Exerciții rezolvate la Suma Gauss a Fracțiilor Zecimale

“Îi poți da unui elev câte o lecție în fiecare zi, dar dacă îl poți îndruma să învețe stârnindu-i curiozitatea, el își va dedica întreaga viață învățăturii.”
Clay P. Bedford

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva exerciții la adunarea fracțiilor zecimale, exerciții cu un grad de dificultate ridicat în care apare Suma Gauss.

(mai mult…)

Exercițiul 1:

Efectuați următoarele calcule:

1,1 + 2,2 + 3,3 + ………………..+ 9,9 =

Rezolvare:

Transformăm fracțiile zecimale în fracții ordinare:

  •  \frac{11}{10}+\frac{22}{10}+\frac{33}{10}+.....................+\frac{99}{10}=
  • \frac{11+22+33+...................+99}{10}=
  •  \frac{1\cdot 11+2\cdot 11+3\cdot 11+...................+9\cdot 11}{10}=
  •  \frac{11\cdot (1 + 2 +3 +...................+9)}{10}=

Observăm că am obținut Suma Gauss a primelor 9 numere naturale consecutive, aplicăm formula lui Gauss și obținem:

  •  \frac{11\cdot [9\cdot (9+1): 2]}{10}=
  •  \frac{11\cdot [9\cdot 10 : 2]}{10}=
  •  \frac{11\cdot (90 : 2)}{10}=
  •  \frac{11\cdot 45}{10}=
  •  \frac{495}{10}=49,5

PS: Dragul meu părinte dacă copilul tău nu a înțeles Suma Gauss sau nu-și mai amintește cum se calculează te invit sa descarci PDF-ul gratuit (special conceput cu foarte multe exemple pentru fiecare clasa de la a V-a la a-VIII-a) de aici:

http://mathmoreeasy.ro/pdf-gratuit-suma-gauss-explicatie-definitie-si-exercitii-rezolvate/

Exercițiul 2:

Efectuați următoarele calcule:

1,11+2,22+3,33+.............+9,99

Transformăm fracțiile zecimale în fracții ordinare:

  • \frac{111}{100}+\frac{222}{100}+\frac{333}{100}+.....................+\frac{999}{100}=
  • \frac{111+222+333+.........+999}{100}=
  •  \frac{111\cdot 1+111\cdot 2+111\cdot 3+.........+111\cdot 9}{100}=
  •  \frac{111\cdot (1+ 2+ 3+.........+ 9)}{100}=

Observăm că am obținut Suma Gauss a primelor 9 numere naturale consecutive, aplicăm formula lui Gauss și obținem:

  •  \frac{111\cdot [9 \cdot (9+1)]:2}{100}=
  •  \frac{111\cdot (9 \cdot 10:2)}{100}=
  •  \frac{111\cdot (90 : 2)}{100}=
  •  \frac{111\cdot 45}{100}=
  •  \frac{4995}{100}=49,95

PDF Gratuit: Suma Gauss – Explicatie, Definitie si Exercitii rezolvate

Exercițiul 3:

Calculați suma:

Rezolvare:

Dacă efectuăm înmulțirile obținem:

  • 5 \cdot 200 = 1000

Exercițiul 4:

Calculați suma:

Rezolvare:

Dacă adunăm primele două fracții zecimale obținem:

Adunăm următoarele 2 fracții zecimale și obținem:

Suma Gauss a fracțiilor zecimale

Adunăm următoarele 2 fracții zecimale și obținem:

Observăm că am adunat până în acest moment 4 fracții zecimale iar cifra 8 se repetă de 3 ori. Dacă continuăm adunarea și adunăm toate fracțiile zecimale obținem:

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

Exerciții rezolvate la Înmulțirea fracțiilor zecimale

“Fă azi ce alţii nu fac ca să trăieşti mâine cum alţii nu pot.”

Zig Ziglar

Dragul meu părinte bine te-am regăsit! În articolul precedent am efectuat câteva exerciții ușoare la înmulțirea fracțiilor zecimale. Azi îți propun să rezolvăm împreună câteva exerciții cu un grad de dificultate mai ridicat!

(mai mult…)

Exercițiul 1:

Dacă x \cdot (y-z)=2,4  și  x \cdot (z+t)=3,1 \Rightarrow  , atunci calculați:

 x \cdot 2,4 \cdot( y+ t )

Rezolvare:

 x \cdot (y-z)=2,4 \Rightarrow   x \cdot y- x \cdot z=2,4

 x \cdot (z+t)=3,1 \Rightarrow   x \cdot z+ x \cdot t=3,1

Adunăm cele două relații și obținem:

 x \cdot y- x \cdot z+x \cdot z+ x \cdot t=2,4 + 3,1

Observăm că  x \cdot z  se reduce și obținem:

  •  x \cdot y+ x \cdot t=5,5
  •  x \cdot( y+ t )=5,5
  • Înmulțim relația cu 2,4 și obținem:
  •  x \cdot( y+ t )=5,5 | \cdot 2,4
  •  x \cdot 2,4 \cdot( y+ t )=5,5 \cdot 2,4
  •  x \cdot 2,4 \cdot( y+ t )=13,20

Exercițiul 2 :

Dacă x+y=7,05 și y+z=14,1 atunci calculați:  (x+3y+2z) \cdot (z-x)

Rezolvare:

  • x+y=7,05         \Rightarrow   x+y =7,05
  • y+z=14,1   | \cdot 2    \Rightarrow  2y+2z=28,2

Adunam cele două relații si obținem:

  • x+y+2y+2z=7,05+28,2
  • x+3y+2z=35,25

Observăm ca am obținut prima paranteză.

Revenim la cele două relații inițiale:

  • x+y=7,05
  • y+z=14,1

Scădem din a doua relație prima relație  și obținem:

  • y+z-x-y=14,1-7,05
  • z-x=7,05

Înmulțim cele două relații obținute:

  •  (x+3y+2z)\cdot (z-x)=35,25 \cdot 7,05
  •  (x+3y+2z)\cdot (z-x)=248,5125

Exercițiul 3:

Determinați cifrele a și b care verifică relația:

Rezolvare:

Transformăm fracțiile zecimale în fracții ordinare și obținem:

Pentru ca avem peste tot același numitor putem scrie relația fară numitor:

Desfacem în baza 10 numerele:

   și obținem:

  •  (10 \cdot a + a+ 10 \cdot b +b)\cdot b=1287
  •  (11 \cdot a + 11 \cdot b )\cdot b=1287
  •  11 \cdot (a +b)\cdot b=1287 | : 11
  •  (a +b)\cdot b=117
  •  (a +b)\cdot b= 3^{{2}}\cdot 13
  • Verificăm varianta b=3
  •  (a+3)\cdot 3=117
  •  3a+9=117
  •  3a=117 -9
  •  3a=108
  •  a=108 : 3
  •  a=36

Această variantă nu ne convine deoarece a trebuie să fie cifră.

Verificăm cea de-a doua variantă  b=3 ^{2} =9 și obținem:

  •  (a+9)\cdot 9=117
  •  9a+81=117
  •  9a=117-81
  •  9a=36
  •  a=36:9
  •  a=4

Această variantă este ok deci obținem soluția  a=4 și b=9.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Înmulțirea fracțiilor zecimale

„Este uimitor ce pot face oamenii obişnuiţi dacă se apucă de treabă fără idei preconcepute.” — Charles F. Kettering
Dragul meu părinte bine te-am regăsit. Data trecută am efectuat exerciții la “Adunarea și Scăderea Fracțiilor Zecimale”.  Astăzi te invit să efectuam împreună câteva exerciții la Înmulțirea fracțiilor zecimale.

(mai mult…)

Exercițiul 1:
Efectuați următoarele înmulțiri:
  1.  2,75 \cdot 3=
  2.  125,75 \cdot 33=
  3.  0,7 \cdot 3,8=
  4.  2,57 \cdot 1,77=
  5.  12,4 \cdot 3,5 \cdot 5,2=
  • Rezolvare:
  1.    2,75 \cdot 3=

 

 

 

 

  • Înmulțim numerele ca la numerele naturale (facem excepție de virgulă).

  • Pentru că fracția zecimală 2,5  are o zecimală punem la produs virgula după o cifră numărând de la dreapta la stânga.

2.   125,75 \cdot 33=

  • Înmulțim numerele ca la numerele naturale (facem excepție de virgulă)

  • Pentru că fracția zecimală  125,75   are două zecimale punem la produs virgula după două cifre numărând de la dreapta la stânga.

  •  0,7 \cdot 3,8=

  • Pentru că fracția zecimală 0,7   are o zecimală după virgulă iar fracția zecimală 3,8  are tot o zecimală după virgulă, am pus la produs virgula după două cifre numărând de la dreapta la stânga.
  •   2,57 \cdot 1,77 =

  • Pentru că fracția zecimală 2,57   are două zecimale după virgulă iar fracția zecimală 1,77   are tot două zecimale după virgulă, am pus la produs virgula după patru cifre numărând de la dreapta la stânga.
  •  12,4 \cdot 3,5 \cdot 5,2=

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

Exerciții rezolvate la Adunarea și Scăderea la Fracții Zecimale.

“Ambiția este o pasiune atât de puternică a omului, încât oricât de sus am ajunge niciodată nu vom fi multumiți”.

Nicollo Machiavelli

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva exerciții la adunarea și scăderea fracțiilor zecimale.

(mai mult…)

Exercițiul 1:

Calculați:

  • 0,235 + 10,81
  • 0,05+0,5+0,005
  • 2+3,12+14,203
  • 23,34-14,8
  • 4,3-2,93

Rezolvare:

Petru a aduna două fracții zecimale procedăm astfel: așezăm fracțiile zecimale una sub alta, astfel încât partea întreagă să fie sub partea întreagă, virgula sub virgulă, zecimile sub zecimi, sutimile sub sutimi ș.a.m.d, iar apoi efectuăm adunarea ca la numere naturale.

  • 0,235 + 10,81=11,045

  • 0,05+0,5+0,005=0,555
adunarea fractiilor zecimale

fractii zecimale

 

  • 2+3,12+14,203=19,323

 

Pentru a scădea două fracții zecimale procedăm astfel: așezăm scăzătorul sub descăzut, astfel încât virgula să fie sub virgulă, scădem numerele ca și când ar fi numere naturale.

Dacă descăzutul are mai puține zecimale decât scăzătorul, atunci se adaugă la partea zecimală zerouri pentru a avea același număr de zecimale.

  • 23,34-14,8=8,54

  • 4,3-2,93=1,37

Exercițiul 2:

Rezolvare:

Asezăm termenii adunării unii sub alții astfel:

Exercițiul 3:

0,9+1,9+2,9+3,9+………………………………….+99,9=

Observăm că sunt foarte multe numere și ca să le adunăm ne-ar lua timp foarte mult. Mai observăm ca este o Suma Gauss de fracții zecimale.

Așa că vom face un mic artificiu matematic și vom scrie fiecare fracție zecimală asa: spre exemplu  0,9=1 - 0,1   iar pe 1,9=2 - 0,1 , s.a.m.d.

Rezolvare:

0,9+1,9+2,9+3,9+........................................+99,9=

(1-0,1)+(2-0,1)+(3-0,1)+.............................+(100-0,1)=

1-0,1+2-0,1+3-0,1+.............................+100-0,1=(1+2+2+.............+100) - (0,1+0,1+0,1+......................+0,1)=

Observăm că prima paranteză este Suma Gauss a primelor 100 numere naturale consecutive, iar în a doua paranteză 0,1 se repetă de 100 de ori.

Aplicăm formula lui Gauss

100\cdot (100+1) : 2 - 100\cdot 0,1=

100\cdot 101 : 2 - 10=

5050 - 10= 5040

PS: Dragul meu părinte dacă copilul tău nu a înțeles Suma Gauss sau nu-și mai amintește cum se calculează te invit sa descarci PDF-ul gratuit (special conceput cu foarte multe exemple pentru fiecare clasa de la a V-a la a-VIII-a) de aici:

http://mathmoreeasy.ro/pdf-gratuit-suma-gauss-explicatie-definitie-si-exercitii-rezolvate/

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la Amplificarea și Simplificarea Fracțiilor.

„Fii încăpățânat! Uneori, perseverența face minuni.” — Donald Trump.

Dragul meu părinte, bine te-am regăsit. Azi îți propun o nouă lecție la capitolul Fracții care ridică ceva dificultăți elevilor de clasa a V-a: Exerciții Rezolvate la Amplificarea și Simplificarea Fracțiilor.

Am să explic pas cu pas rezolvarea unor exerciții cu un grad de dificultate mai ridicat la care elevii întâmpină dificultăți.

(mai mult…)

EXERCIŢIUL 1:  Amplificați cu 3 următoarele fracții:

\frac{2x}{3y} , \frac{x+2}{y+1} , \frac{a+b}{x+y}

Rezolvare:

EXERCIŢIUL 2:  Simplificați  următoarele fracții, obținând fracții ireductibile:

\frac{20}{30} , \frac{5a}{10b}, \frac{10a+10b}{25x+25y}, \frac{2^7\cdot3^2\cdot5^4 }{2^7\cdot3^3\cdot5^2\cdot11} , \frac{6^3 }{10^4}

Rezolvare:

 \frac{20 }{30}^{(10}=\frac{2 }{3}

 \frac{5a }{10b}^{(5}=\frac{a }{2b}

 \frac{10a+10b }{25x+25y}

Observație: Nu avem voie să simplificăm decât dacă dăm factor comun și la numărător și la numitor. Observăm că la  numărător putem da factor comun pe 10, iar la numitor îl putem da factor comun pe 25.

 \frac{10a+10b }{25x+25y}=    \frac{10\cdot (a+b) }{25\cdot (x+y)}^{{(5}}=  \frac{2\cdot (a+b) }{5\cdot (x+y)}

\frac{2^7\cdot3^2\cdot5^4 }{2^7\cdot3^3\cdot5^2\cdot11}

Această fracție o simplificăm prin bazele care se repetă și la numărător și la numitor la puterea cea mai mică. Pentru că prin simplificare trebuie să fac operația de împărțire, scriu baza și scad exponentii.

\frac{2^7\cdot3^2\cdot5^4 }{2^7\cdot3^3\cdot5^2\cdot11} ^{(2^7\cdot3^2\cdot5^2}=     \frac{2^0\cdot3^0\cdot5^2 }{2^0\cdot3^1\cdot5^0\cdot11} =    \frac{1 \cdot1\cdot25 }{1\cdot3\cdot1\cdot11} = \frac{25 }{33}

\frac{6^3 }{10^4}

Pentru a simplifica această fracție mai întâi trebuie să aplicăm regulile de calcul cu puteri.

Dacă nu-ți mai aduci aminte regulile de calcul cu puteri le găsești aici: http://mathmoreeasy.ro/reguli-de-calcul-cu-puteri/

\frac{6^3 }{10^4} =  \frac{(2\cdot 3)^3 }{(2\cdot 5)^4} =  \frac{2^3\cdot 3^3 }{2^4\cdot 5^4} =  \frac{2^3\cdot 3^3 }{2^1\cdot 2^3\cdot5^4}^{{( 2^3}}=  \frac{2^0\cdot 3^3 }{2^1\cdot 2^0\cdot5^4}=  \frac{1\cdot 3^3 }{2\cdot 1\cdot5^4}=  \frac{ 3^3 }{2\cdot5^4}

 

EXERCIŢIUL 3:  Simplificați  următoarea fracție,  obținând fracție ireductibilă:

 \frac{4^{{25}}+8^{{17}}}{2^{{52}}-16^{{12}}}}

Rezolvare:

Pentru a simplifica această fracție mai întâi trebuie să aplicăm regulile de calcul cu puteri.

Dacă nu-ți mai aduci aminte regulile de calcul cu puteri le găsești aici: http://mathmoreeasy.ro/reguli-de-calcul-cu-puteri/

 

 \frac{4^{{25}}+8^{{17}}}{2^{{52}}-16^{{12}}}}=   \frac{(2^2)^{{25}}+{(2^3)^{{17}}}}{2^{{52}}-(2^4)^{{12}}}}=  \frac{2^{{2\cdot 25}}+{2^{{3\cdot 17}}}}{2^{{52}}-2^{{4\cdot12}}}}= \frac{2^{{50}}+{2^{{51}}}}{2^{{52}}-2^{{48}}}}= \frac{2^{{50}}(1+{2^{{51-50}})}}{2^{{52}}(2^{{52-48}}-1) }}=\frac{2^{{50}}\cdot(1+{2)}}{2^{{48}}\cdot(2^{{4}} -1)}}=  \frac{2^{{50}}\cdot3}{2^{{48}}\cdot 15}}^{{(2^{{48}}}}=  \frac{2^{{50-48}}\cdot3}{2^{{48-48}}\cdot 15}}= \frac{2^{{2}}\cdot3}{2^{{0}}\cdot 15}}^{{(3}}=   \frac{2^{{2}}}{1 \cdot 5}}=  \frac{4}{5}}

 

EXERCIŢIUL 4:  Simplificați  următoarea fracție,  obținând fracție ireductibilă:

\frac{2+4+6+.............+400}{3+6+9+.............+600}}

Rezolvare:

Observăm că la numărător și la numitor avem câte o sumă Gauss. La numărător putem da factor comun pe 2, iar la numitor putem da factor comun pe 3.

\frac{2+4+6+.............+400}{3+6+9+.............+600}} =  \frac{2\cdot(1+2+3+.............+200)}{3\cdot(1+2+3+.............+200)}}

Calculăm Suma Gauss cu formula  S= n\cdot(n+1) : 2

S=1+2+3+..........+200

S=200\cdot(200+1) : 2

S=200\cdot201 : 2

S=100\cdot201

\frac{2\cdot(1+2+3+.............+200)}{3\cdot(1+2+3+.............+200)}}=   \frac{2\cdot 100\cdot 201 }{3\cdot 100 \cdot 201}} ^{{(100\cdot 201}}=  \frac{2}{3}

PS: Dragul meu părinte dacă copilul tău nu a înțeles Suma Gauss sau nu-și mai amintește cum se calculează te invit sa descarci PDF-ul gratuit (special conceput cu foarte multe exemple pentru fiecare clasa de la a V-a la a-VIII-a) de aici:

http://mathmoreeasy.ro/pdf-gratuit-suma-gauss-explicatie-definitie-si-exercitii-rezolvate/

EXERCIŢIUL 4:  Simplificați  următoarea fracție,  obținând fracție ireductibilă:

 \frac{2^{n}\cdot3^{n}+2^{n}\cdot3^{n}\cdot5+6^{n+1}}{6^{n}\cdot3+6^{n}\cdot7-6^{n}}

Rezolvare:

Pentru a simplifica această fracție mai întâi trebuie să aplicăm regulile de calcul cu puteri.

 \frac{2^{n}\cdot3^{n}+2^{n}\cdot3^{n}\cdot5+6^{n+1}}{6^{n}\cdot3+6^{n}\cdot7-6^{n}} =   \frac{(2\cdot3)^{n}+(2\cdot3)^{n}\cdot5+6^{n}\cdot 6}{6^{n}\cdot (3+7-1)} =   \frac{6^{n}+6^{n}\cdot5+6^{n}\cdot 6}{6^{n}\cdot (10-1)} =   \frac{6^{n}(1+5+ 6)}{6^{n}\cdot 9} =   \frac{6^{n}\cdot12}{6^{n}\cdot 9}^{(6^{n}} = \frac{12}{ 9}^{(3}} =  \frac{4}{ 3}

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăti în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Fracții ordinare.

Dragul meu părinte bine te-am regăsit! Astăzi deschid un nou capitol din programa la matematica pentru clasa a V-a: Numere Raționale Pozitive, iar prima lecție din acest capitol este lecția Fracții Ordinare.  În acestă lecție vom afla ce este o Fracție și cum se clasifică  Fracțiilor.

(mai mult…)

  • Definiție:

O parte dintr-un întreg, împărțit în părți egale, se numește unitate fracționară.

  • Exemple:

Definiție: O fracție ordinară este o pereche de două numere naturale m și n, cu n \neq 0 , scrisă sub forma: \frac{m}{n}.

  • “m” se numește numărătorul fracției
  • “n” se numește numitorul fracției.

Numitorul unei fracții arată în câte părți egale a fost împărțit întregul.

Numărătorul arată câte părți egale sunt luate.

 

Clasificarea fracțiilor:

 

Fracții echiunitare:

Fracția \frac{a}{b}, a \in N, b \in N^{{*}}, se numește echiunitară dacă a=b numărătorul este egal cu numitorul.

  • Exemple:

Fracții subunitare:

Fracția \frac{a}{b}, a \in N, b \in N^{{*}} se numește subunitară, dacă a \lt b (numărătorul mai mic decât numitorul.

  • Exemple:

Fracții supraunitare:

Fracția \frac{a}{b}, a \in N, b \in N^{{*}} se numețte supraunitară , dacă a \gt b  (numărătorul este mai mare decât numitorul).

  • Exemple:

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului pentru a afla la timp tot ce postez pe blog:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!