Posts Tagged ‘puncte coliniare’

Exerciții rezolvate la Unghiuri opuse la vârf

” Nu e destul să știm, trebuie să și aplicăm. Nu e destul să ne dorim, trebuie să facem.”

Goethe

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas 3 Exerciții  rezolvate la Unghiuri opuse la vârf !  (mai mult…)

Exercițiul1:

Fie unghiurile  \widehat{AOB} și  \widehat{COD} două unghiuri opuse la vârf. Știind că  m(\widehat{AOB})=59^\circ aflați  m(\widehat{AOC})=? și  m(\widehat{BOD})=?

Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Din datele problemei știm că  \widehat{AOB} și  \widehat{COD} opuse la vârf \Rightarrow

 m(\widehat{COD}) \equiv m(\widehat{AOB}) =59^{\circ}

Analizând figura observăm că punctele A,\ \ \ O și D sunt coliniare:  m(\widehat{AOC}) + m(\widehat{AOB})=180^\circ \Rightarrow m(\widehat{AOC})+59^\circ=180^\circ \Rightarrow m(\widehat{AOC})=180^\circ- 59^\circ\Rightarrow m(\widehat{AOC})=121^\circ

m(\widehat{AOC})\equiv m(\widehat{BOD})\Rightarrow m(\widehat{BOD})=121^\circ

Exercițiul 2:

Fie \widehat{AOB} și \widehat{COD} opuse la vârf și dreptele AD \cap BC=\left \{ O \right \}. Știind că m(\widehat{AOC})=21^\circ+x  și m(\widehat{AOB})=97^\circ+x aflați : m(\widehat{AOB}) șim(\widehat{AOC}).

Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Din datele problemei știm că \widehat{AOB} și \widehat{COD} opuse la vârf și  AD \cap BC=\left \{ O \right \} \Rightarrow B\ \ , \ \ O și C coliniare \Rightarrow m(\widehat{BOC})=180^\circ

Dacă privim atent desenul observăm: \Rightarrow m(\widehat{BOC})=m(\widehat{AOB})+m(\widehat{AOC})\Rightarrow m(\widehat{AOB})+m(\widehat{AOC})=180^\circ \Rightarrow 97^\circ+x+21^\circ+x=180^\circ

\Rightarrow 2x+ 118^\circ=180^\circ \Rightarrow 2x=180^\circ-118^\circ \Rightarrow 2x=62^\circ \Rightarrow x=62^\circ\ \ \ :\ \ \ 2 \Rightarrow x=31^\circ

m(\widehat{AOC})=21^\circ+x \Rightarrow m(\widehat{AOC})=21^\circ+31^\circ\Rightarrow m(\widehat{AOC})=52^\circ

m(\widehat{AOB})=97^\circ+x\Rightarrow m(\widehat{AOB})=97^\circ+31^\circ  \Rightarrow m(\widehat{AOB})=128^\circ

 

Exercițiul 3:

Dacă AB\cap CD= \left \{ O \right \} și \frac{ m(\widehat{AOD})}{ m(\widehat{AOC})}=\frac{4}{{5}} află m(\widehat{BOC}) și m(\widehat{BOD}).

Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Problema ne spune că \frac{ m(\widehat{AOD})}{ m(\widehat{AOC})}=\frac{4}{{5}} \Rightarrow 5\cdot m(\widehat{AOD})}= 4\cdot m(\widehat{AOC})

\Rightarrow m(\widehat{AOD})}= \frac{4}{5}\cdot m(\widehat{AOC})

Dar AB\cap CD= \left \{ O \right \} \Rightarrow C\ \ , \ \ O \ \ și D coliniare  \Rightarrow m(\widehat{COD})= 180^\circ

Analizând desenul observăm că m(\widehat{COD})= m(\widehat{AOC})+ m(\widehat{AOD})

\Rightarrow m(\widehat{AOC})+ m(\widehat{AOD})=180^\circ \Rightarrow m(\widehat{AOC})+ \frac{4}{5}\cdot m(\widehat{AOC})=180^\circ | \ \ \ \cdot 5

\Rightarrow 5\cdot m(\widehat{AOC})+ 4\cdot m(\widehat{AOC})=5\cdot 180^\circ  \Rightarrow 9\cdot m(\widehat{AOC})=900 ^\circ | \ \ \ :\ \ \ 9  \Rightarrow m(\widehat{AOC})=100 ^\circ

Știm că  m(\widehat{AOD})}= \frac{4}{5}\cdot m(\widehat{AOC})\Rightarrow m(\widehat{AOD})}= \frac{4}{5}\cdot 100^\circ \Rightarrow m(\widehat{AOD})}= \frac{4\cdot 100^\circ}{5}\Rightarrow m(\widehat{AOD})}= \frac{400^\circ}{5}\Rightarrow m(\widehat{AOD})}= 80^\circ

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Mijlocul unui Segment.

“Perseverența este obiceiul succesului dobândit prin muncă susținută.” -Herbert Harris

Dragul meu părinte bine te-am regăsit! Azi te invit să rezolvăm și să explicăm pas cu pas împreună câteva probleme la o lecție de geometrie foarte importantă: “Mijlocul unui segment dat”. (mai mult…)

Exercițiul 1:

Se dau patru puncte M, N, P,Q coliniare în această ordine, astfel încât \left [ MP \right ]=18 \ cm\left [ NP \right ]=8 \ cm\left [ PQ \right ]=6 \ cm și punctul X mijlocul segmentului \left [ MN \right ], iar punctul Y mijlocul segmentului \left [ NQ\right ]. Calculați lungimea segmentului \left [ XY\right ].

Rezolvare: 

  • Scriem datele problemei:
  • Realizăm desenul respectând datele problemei:
  • Analizând atent desenul realizat observăm că segmentul \left [ XY\right ]=\left [ XN\right ]+\left [ NY\right ]
  • Pentru ca nu cunoaștem demensiunile celor două segmente: \left [ XN\right ] și \left [ NY\right ] vom face cateva calcule ca să le aflăm.
  • Știm că punctul X \ \ \ mijloc \ \ \ de \ \ \ \left [ MN \right ]  \Rightarrow \left [ MX \right ] \equiv \left [ XN \right ]=\frac{\left [ MN \right ]}{2}
  • Nu știu dimensiunea segmentului \left [ MN \right ] dar cunosc dimensiunile segmentelor: \left [ MP \right ]=18 \ cm și \left [ NP \right ]=8 \ cm și îl pot afla pe \left [ MN \right ].
  • \left [ MN \right ]=\left [ MP \right ]-\left [ NP \right ]=18 cm - 8 cm =10 cm
  • Acum îl pot afla pe  \left [ XN \right ]= \frac{ \left [ MN \right ]}{2}=\frac{10 cm}{2}=5 cm
  • Trebuie sa îl aflăm și pe \left [ NY\right ].
  • Știu că Y \ \ \ mijloc \ \ \ de \ \ \ \left [ NQ \right ]\Rightarrow \left [ NY \right ] \equiv \left [ YQ \right ]  =\frac{\left [ NQ \right ]}{2}
  • Nu știu dimensiunea segmentului  \left [ NQ \right ] dar cunosc dimensiunile segmentelor  \left [ NP \right ] și  \left [ PQ \right ] și îl pot afla pe  \left [ NQ \right ].
  •  \left [ NQ \right ]= \left [ NP \right ]+ \left [ PQ \right ]= 8 cm + 6 cm =14 cm
  • Acum îl pot afla pe \left [ NY\right ]=\frac{\left [ NQ\right ]}{2}=\frac{14 cm}{2}=7 cm
  • Înlocuim în: \left [ XY\right ]=\left [ XN\right ]+\left [ NY\right ]=5 cm +7 cm=12 cm

Exercițiul 2:

Pe o dreaptă d se consideră trei puncte A, B, C coliniare în această ordine, astfel încât \left [ AB \right ]=8cm\left [ AC \right ]=20cm . Știind că M este mijlocul lui \left [ AB \right ] și N este mijlocul lui \left [ AC \right ], calculați lungimea segmentului \left [ MN \right ].

  • Rezolvare:
  • Scriem datele problemei:
  • Realizăm desenul:
  • Știm că M este mijlocul lui \left [ AB \right ]\Rightarrow \left [ AM \right ]\equiv \left [ MB \right ]=\frac{ \left [ AB \right ]}{{2}} =\frac{ 8 cm}{{2}}=4 cm.
  • Știm că N este mijlocul lui \left [ AC \right ]\Rightarrow \left [ AN \right ]\equiv \left [ NC \right ] =\frac{\left [ AC \right ]}{2}=\frac{20 cm}{2}= 10 cm
  • Analizând atent desenul observăm că \left [ BN\right ]=\left [ AN\right ]-\left [ AB\right ]=10 cm - 8 cm=2 cm
  • \left [ MN \right ]=\left [ MB \right ]+\left [ BN \right ]
  • \left [ MN \right ]=4 cm+2 cm=6 cm

Exercițiul 3: 

Pe o dreaptă d se consideră punctele: X, Y, Z, T coliniare în această ordine astfel încât \left [ XY\right ]=12 cm\left [ YZ\right ]=5 cm\left [ ZT\right ]=3 cm. Se știe că punctele M, N și P sunt mijloacele segmentelor: \left [ XY\right ]\ \ ,\ \ \ \left [ YZ\right ] și respectiv \left [ ZT\right ]. Aflați lungimea segmentelor: \left [ XZ\right ]\ \ ,\ \ \ \left [ XT\right ]\ \ ,\ \ \ \left [ YT\right ]\ \ ,\ \ \ \left [ XN\right ]\ \ ,\ \ \ \left [ YP\right ]

  • Rezolvare:
  • Scriem datele problemei
  • Realizăm desenul respectând datele problemei:

 

 

 

 

  • Analizând desenul realizat observăm că:\left [ XZ\right ]= \left [ XY\right ]+\left [ YZ\right ]=12 cm +5 cm =17 cm
  • \left [ XT\right ]= \left [ XZ\right ]+\left [ ZT\right ]=17 cm +3 cm =20 cm
  • \left [ YT\right ]= \left [ YZ\right ]+\left [ ZT\right ]=5 cm +3 cm =8 cm
  • \left [ XN\right ]= \left [ XY\right ]+\left [ YN\right ]
  • Nu îl știm pe \left [ YN\right ] dar știm că N este mijlocul segmentului \left [ YZ\right ]\Rightarrow \left [ YN \right ]\equiv \left [ NZ \right ] \Rightarrow \left [ YN \right ]=\frac{\left [ YZ \right ]}{2}\Rightarrow \left [ YN \right ]=\frac{5 cm}{2}= 2,5 cm
  • \left [ XN\right ]= \left [ XY\right ]+\left [ YN\right ]= 12 cm + 2,5 cm=14,5 cm
  • \left [ YP\right ]= \left [ YZ\right ]+\left [ ZP\right ]
  • Nu cunoaștem dimensiunea lui \left [ ZP\right ] dar știm că punctul P este mijlocul lui \left [ ZT\right ] \Rightarrow \left [ ZP\right ]\equiv \left [ PT\right ]\Rightarrow \left [ ZP\right ]=\frac{\left [ ZT\right ]}{2}\Rightarrow \left [ ZP\right ]=\frac{\left [3 cm ]}{2}=1,5 cm
  • \left [ YP\right ]= \left [ YZ\right ]+\left [ ZP\right ]
  • \left [ YP\right ]= 5 cm +1,5 cm= 6,5 cm

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy”.

Punctul și Dreapta

“Efortul își arată roadele după ce o persoană refuză să se oprească.

Napoleon Bonaparte

Dragul meu părinte bine te-am regăsit! Azi te invit sa parcurgem împreună prima lecție de Geometrie în plan: Punctul și Drapta.Punctul și dreapta sunt noțiunile cele mai simple din Geometrie fiind create de mintea umană.

(mai mult…)

Punctul: 
  • Ni-l putem imagina ca fiind urma lăsată pe hârtie de vârful unui creion bine ascuțit.
  • Îl reprezentăm grafic printr-o bulină sau printr-un “x” (două liniuțe care se intersectează).
  • Punctele se notează cu litere mari.

Poziții relative a două puncte: 

  • puncte identice (coincid) dacă cele două puncte sunt situate în același loc
  • puncte distincte (diferite) dacă cele două puncte sunt situate locuri diferite.

Dreapta: 
  • Ne-o putem imagina ca fiind un fir de ață întins prelungit la infinit.
  • Dreptele se notează cu literele mici ale alfabetului sau cu două litere mari prin care am notat două puncte distincte ce aparțin dreptei.
  • Dreapta este o figură geometrică (o mulțime de puncte) și este nelimitată.
  • Pentru a reprezenta grafic o dreaptă folosim rigla.

Axioma dreptei: 

Două puncte distincte determină o dreaptă și numai una.

Orice dreaptă conține cel puțin două puncte distincte.

Pozițiile relative ale uni punct față de o dreaptă: 

  • Punct exterior unei drepte: atunci când punctul nu este situat pe dreapta d

Punct interior unei drepte: atunci când punctul  este situat pe dreapta d sau mai spunem că punctul aparține dreptei d.

Puncte coliniare: Trei (sau mai multe puncte) sunt coliniare dacă există o dreaptă care să  conțină cele trei puncte.

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

Propunere Model Teza Semestriala (I) clasa a VI-a

clasa a VI-a“Succesul înseamnă a fi în stare să mergi din eșec în eșec, fără să-ți pierzi entuziasmul” spunea Winston Churchill.

Dragul meu părinte, bine te-am regăsit!Pentru că a început perioada tezelor semestriale, iar copilul tău trebuie să repete toate noţiunile învăţate în acest semestru m-am gândit să vă ajut cu un model de teză care îl va ajuta să parcurgă materia studiată pâna în acest moment.

(mai mult…)

  • Toate subiectele sunt obligatorii.
  • Se acordă 10 puncte din oficiu.
  • Timp de lucru 50 minute.

Subiectul I. Pe foaia de test se trec numai rezultatele (30p):

5p     1 . Mulțimea divizorilor lui 30 este……………………………………………………

5p     2.Rezultatul calculului \left [ 2\frac{1}{5}-0,(4)+\frac{1}{45} \right ]:(1\frac{1}{3}) ^{2} este: …………………………

5p   3. Număr mai mare decât 30 care are exact 2 divizori este:…………………..

5p   4. Suplementul unghiului de masura  115^{{\circ}}  este ………………………………

5p    5. Complementul unui unghi cu măsura de  31^{{\circ}} are măsura de         ……………………………………………………

  • Subiectul II. Pe foaia de teză se alege răspunsul corect prin încercuire (20p):

 5p      1.   Aflați c.m.m.m.c al numerelor 12, 20.

10p     2. Dacă punctele A , B , C sunt coliniare (în această ordine); AB=12cm; AC=22cm atunci

a) BC=………………………………………………………………………….

b)Distanța dintre mijloacele segmentelor AB și BC este……………………

5P     3. Determinți x dacă

59x2

  • Subiectul III. Pe foaia de test se trec rezolvările complete(30p):

10p       1.  Arătaţi că numărul : A=1+3+5+7+……………..+2015 se divide cu 7.

8 p       2.   Determinați măsurile unghiurilor formate de două drepte concurente știind că unul din unghiurile formate este cu  30^{{\circ}} mai mare decât alt unghi format.

10p         3.   Determinaţi valorile naturale ale lui x pentru care \frac{9}{2x-1}} este număr natural.

12p.        4.  Fie unghiurile AOB şi BOC adiacente suplementare  cu m(\widehat{AOB})=70 ^{\circ}   iar [OE   bisectoarea  \widehat{AOB} si [OF bisectoarea  \widehat{BOC} . Calculati:

a) m(\widehat{BOC})=?

b) m(\widehat{EOF})=?

c) m(\widehat{AOF})=?

Ps: Dragul meu părinte, dacă copilultău nu a înteles foarte bine Suma lui Gauss poţi descărca acest PDF gratuit  pe care l-am conceput special pentru copii care au dificultăţi la aceste noţiuni  şi care  vă va ajuta să stăpâniţi la perfecţie aceste noţiuni matematice dificile .

Mult succes la rezolvarea acestei teze  dar mai ales mult succes la teza de la şcoală! 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Poţi descărca teza în format pdf de aici: teza-de-evaluare-vi-semestriala-la-matematica