Tag: tema la algebra

Formulele de calcul prescurtat

Clasa a VIII-aDragul meu părinte, bine te-am regăsit. În articolul anterior ţi-am explicat  cum facem "Operaţii între numerele reale  reprezentate prin litere". Am explicat pas cu pas cum facem "Adunarea şi scăderea numerelor reale reprezentate prin litere" , dar şi Înmulţirea, Împărţirea, ridicarea la puterea a numerelor reale reprezentate prin litere" . În articolul de azi vreau să îţi prezint formulele de calcul prescurtat pentru numere reale.

Aceste formule sunt foarte importante deoarece le vom folosi în Operaţiile cu rapoarte. Aceste rapoarte compun un exerciţiu care se dă şi la examenul de capacitate. (Cel puţin în anul anterior  Examenul de Evaluare Naţională 2016 a avut un exerciţiu cu rapoarte).

Avem următoarele formule:

 (a+b)^{2}=a^{2}+2\cdot a\cdot b+b^{2}

 (a-b)^{2}=a^{2}-2\cdot a\cdot b+b^{2}

 a^{2}-b^{2}=(a- b)(a+b)

 (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2\cdot a\cdot b+2\cdot a\cdot c+2\cdot b\cdot c

 (a-b+c)^{2}=a^{2}+b^{2}+c^{2}-2\cdot a\cdot b+2\cdot a\cdot c-2\cdot b\cdot c

 (a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2\cdot a\cdot b-2\cdot a\cdot c-2\cdot b\cdot c

 (a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2\cdot a\cdot b-2\cdot a\cdot c+2\cdot b\cdot c

 (a+b)^{3}=a^{3}+3\cdot a^{2}\cdot b+3\cdot a\cdot b^{2}+b^{3}

 (a-b)^{3}=a^{3}-3\cdot a^{2}\cdot b+3\cdot a\cdot b^{2}-b^{3}

a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})

a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})

Acestea  sunt cele mai importante şi uzuale formule de calcul prescurtat pentru numerele reale. În curând voi reveni şi cu un articol cu Aplicaţii la formulele de calcul prescurtat în care voi prezenta câteva exerciţii cu un grad de dificultate diferit.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

Exerciții rezolvate la numere reale!

Clasa a VIII-aBine te-am regăsit dragul meu părinte! În articolul pe care l-am publicat luni pe blog am rezolvat trei exerciţii la lecţia mulţimea numerelor reale. Astăzi revin cu un nou articol în care mai explic pas cu pas doua exemple de exerciţii cu un grad de dificultate mai ridicat pentru a veni în ajutorul tău şi al copilului tău.

 EXERCIŢIUL 1: Determinaţi elementele mulţimilor:

A=\left \{ x\epsilon N|  \frac{15}{2x+1}\epsilon N \} şi B=\left \{ x\epsilon Z| \frac{3x+9}{2x-3}\epsilon Z \}.

Rezolvare: Să aflăm întâi mulţimea A.

A=\left \{ x\epsilon N|  \frac{15}{2x+1}\epsilon N \}

Exerciţiul îmi cere să găsesc toate valorile numere naturale care îndeplinesc condiţia: \frac{15}{2x+1}\epsilon N \Rightarrow2x+1 \epsilon D_{{15}}.

Numitorul 2x+1 trebuie să aparţină mulţimii divizorilor lui 15, deoarece împărţirea 15 la 2x+1 trebuie să fie o împărţire exactă, astfel încât rezultatul să aparţină mulţimii numerelor naturale.

 D_{{15}}=\left \{ 1,3,5,15 \right \}

2x+1=1 | -1 \Rightarrow 2x=1-1 \Rightarrow2x=0| :2 \Rightarrow x=0

2x+1=3 | -1 \Rightarrow 2x=3 -1 \Rightarrow 2x=2 | :2 \Rightarrow x=1

2x+1=5 | -1 \Rightarrow 2x=5 -1 \Rightarrow 2x=4 | :2 \Rightarrow x=2

2x+1=15 | -1 \Rightarrow 2x=15 -1 \Rightarrow 2x=14 | :2 \Rightarrow x=7

Soluţie :x \epsilon \left \{ 0, 1,2,7\right \}.

  • Determinăm şi mulţimea B=\left \{ x\epsilon Z| \frac{3x+9}{2x-3}\epsilon Z \}.

La această mulţime trebuie să prelucrăm numărătorul în funcţie de numitor, astfel încât să găsim  mulţimea divizorilor unui număr întreg.

\frac{3x+9}{2x-3}\epsilon Z \Rightarrow\frac{6x+18}{2x-3}\epsilon Z \Rightarrow\frac{6x-9+27}{2x-3}\epsilon Z \Rightarrow\frac{3(2x-3)}{2x-3}+\frac{27}{2x-3}\epsilon Z \Rightarrow3+\frac{27}{2x-3}\epsilon Z

Deoarece 3\epsilon Z ,  este suficient să demonstrez că \frac{27}{2x-3}\epsilon Z \Rightarrow{2x-3}\epsilon D_{27}

Deoarece sunt pe multimea Z, \Rightarrow D_{27}=\left \{ \pm1, \pm3,\pm9, \pm27 \right \}

2x-3=1| +3 \Rightarrow 2x=1+3 \Rightarrow 2x=4| :2 \Rightarrow x=2

2x-3=-1| +3 \Rightarrow 2x=-1+3 \Rightarrow 2x=2| :2 \Rightarrow x=1

2x-3=3| +3 \Rightarrow 2x=3+3 \Rightarrow 2x=6| :2 \Rightarrow x=3

 2x-3=-3| +3 \Rightarrow 2x=-3+3 \Rightarrow 2x=0 \Rightarrow x=0

 2x-3=9|+3 \Rightarrow 2x=9+3 \Rightarrow 2x=12| :2 \Rightarrow x=6 2x-3=-9|+3 \Rightarrow 2x=-9+3 \Rightarrow 2x=-6| :2 \Rightarrow x=-3

2x-3=27|+3 \Rightarrow 2x=27+3 \Rightarrow 2x=30| :2 \Rightarrow x=15

2x-3=-27|+3 \Rightarrow 2x=-27+3 \Rightarrow 2x=-24| :2 \Rightarrow x=-12

Soluţie : x\in \left \{ -12;-3;0;1;2;6;15 \right \}

EXERCIŢIUL 2: Determinaţi x\in Z pentru care \frac{\sqrt{7+4\sqrt{3}}+\sqrt{52-14\sqrt{3}}}{2x-1}\in Z

Rezolvare: Pentru a determina valorile pe care le poate lua x trebuie sa determinam numarătorul. Vom scrie cei doi radicali de la numărător cu ajutorul formulelor de calcul prescurtat ca un număr la puterea a doua.

Astfel vom scrie \sqrt{7+4\sqrt{3}}=\sqrt{(2+\sqrt{3})^2} , iar \sqrt{52-14\sqrt{3}}=\sqrt{(7-\sqrt{3})^2}.

Obţinem astfel: \frac{\sqrt{(2+\sqrt{3})^2}+\sqrt{(7-\sqrt{3})^2}}{2x-1}\in Z \Rightarrow\frac{\left \| 2+\sqrt{3} \right \|+\left \| 7-\sqrt{3} \right \|}{2x-1}\in Z

Considerăm \sqrt{3}\simeq 1,73 obţinem: 2+ 1,73 =3,73 şi 7-1,73 =5,27

Deoarece \left \| 2+\sqrt{3} \right \| şi \left \| 7-\sqrt{3} \right \| sunt numere pozitive, sunt mai mari decît 0,ambele numere  ies de sub modul cu sumnul +, adica 2+\sqrt{3} şi 7-\sqrt{3}.

Obţinem astfel: \frac{ 2+\sqrt{3} +7-\sqrt{3} }{2x-1}\in Z \Rightarrow\frac{ 2 +7 }{2x-1}\in Z \Rightarrow\frac{ 9 }{2x-1}\in Z \Rightarrow2x-1\in D_{9} .

D_{9} =\left \{ \pm1;\pm3;\pm9 \right \}.

 

2x-1=1| +1 \Rightarrow 2x=1 +1 \Rightarrow 2x=2| :2 \Rightarrow x=1
2x-1=-1| +1 \Rightarrow 2x=-1 +1 \Rightarrow 2x=0| :2 \Rightarrow x=0

2x-1=3| +1 \Rightarrow 2x=3 +1 \Rightarrow 2x=4| :2 \Rightarrow x=2

2x-1=-3| +1 \Rightarrow 2x=-3 +1 \Rightarrow 2x=-2| :2 \Rightarrow x=-1

2x-1=9| +1 \Rightarrow 2x=9 +1 \Rightarrow 2x=10| :2 \Rightarrow x=5 2x-1=-9| +1 \Rightarrow 2x=-9 +1 \Rightarrow 2x=-8| :2 \Rightarrow x=-4

Soluţie: x\in \left \{ -4;-1; 0; 1; 2; 5 \right \}

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăti în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor! 

Exerciții Rezolvate la Numere Reale

Clasa a VIII-a

Dragul meu părinte bine te-am regăsit!

În ultimul articol pe care l-am  postat am vorbit despre multimea numerelor reale. Astăzi te invit să rezolvăm împreună câteva aplicaţii la această lecţie. Unele exerciţii au un grad de dificultate mai scăzut, iar unele au grad de dificultate ridicat. De aceea o să le explic pas cu pas, pentru a veni în ajutorul tuturor celor care nu înţeleg foarte bine matematica.

 

(more…)

EXERCIŢIUL 1:Se dau următoarele fracţii: \frac{1}{2} , \frac{61}{37}\frac{2}{6}\frac{55}{1133}\frac{4}{21}\frac{3}{9}\frac{8}{15}\frac{14}{2\cdot7}\frac{85}{15}\frac{35}{56}\frac{19}{72}\frac{4\cdot3\cdot5}{60}

Determinaţi din şirul de fracţii de mai sus  fracţiile:

-  ireductibile; subunitare;supraunitare;echiumitare.

Rezolvare: Observăm că unele fracţii pot fi simplificate aşa că mai întâi vom aduce şirul la forma cea mai simplă simplificând fracţiile care permit această operaţie:

 \frac{2}{6}^{(2}=\frac{1}{3} \frac{55}{1133}^{(11}=\frac{5}{103} \frac{3}{9}^{(3}=\frac{1}{3};

 \frac{14}{2\cdot7}=\frac{14}{14}^{(14}=\frac{1}{1}=1;   \frac{85}{15}^{(5}=\frac{17}{3};   \frac{35}{56}^{(7}=\frac{5}{8} \frac{4\cdot3\cdot5}{60}=\frac{60}{60}^{(60}=1

Obţinem astfel şirul: \frac{1}{2} , \frac{61}{37} \frac{1}{3} \frac{5}{103}\frac{4}{21}, \frac{1}{3} , \frac{8}{15}1\frac{17}{3}\frac{5}{8}\frac{19}{72}1.

- fracţii ireductibile: (fracţii care nu se poate simplifica, numărătorul şi numitorul , sunt numere prime între ele):

\frac{1}{2} , \frac{61}{37}\frac{4}{21}, \frac{8}{15}\frac{19}{72}.

-fracţii subunitare: (fracţii care au numărătorul mai mic decât numitorul):

\frac{1}{2} \frac{2}{6}\frac{55}{1133}\frac{4}{21},\frac{3}{9} , \frac{8}{15}\frac{35}{56}\frac{19}{72}

 

- fracţii supraunitare: (fracţii care au numărătorul mai mare decât numitorul):

\frac{61}{37}; \frac{85}{15}

- fracţii echiunitare: (fracţii care au numărătorul egal cu numitorul):

\frac{14}{2\cdot7}; \frac{4\cdot3\cdot5}{60}.

EXERCIŢIUL 2: Amplificaţi fracţiile: \frac{7}{15}, \frac{3}{12}, \frac{5}{16}, \frac{3}{10}, \frac{11}{24} , astfel încât să aibă acelaşi numitor comun.

Rezolvare: Determinăm numitorul comun calculând c.m.m.m.c (cel mai mic multiplu comun) al numerelor de la numitor.

Pentru a determina c.m.m.m.c-ul numitorilor trebuie sa desfacem în factori primi numerele după care luăm toate numerele prime o singură dată la puterea cea mai mare.exercitiul-2-aplicatii-nr-reale

 

În concluzie putem scrie:

15= 3\cdot5

12= 2^{2}\cdot3

16= 2^{4}

10= 2\cdot5

24= 2 ^{3}\cdot3

c.m.m.m.c= 2 ^{4}\cdot3\cdot5=16\cdot3\cdot5=240.

Pentru a ştii cu cât amplific fiecare fracţie impart 240 la numitor:ex-2-nr-reale-impartiriObţin astfel următoarele fracţii:

ex-2-nr-reale-amplificarea

EXERCIŢIUL 3:Fie mulţimeaA= \left \{ (-2)^{2}\right \ ; (-3)^{-2} ; \sqrt{0,09} ; \sqrt{5\frac{5}{9}} ;  (-1)^{4}; \sqrt{18} ; \sqrt{1\frac{2}{25}} ; (-\frac{1}{{2}}) ^{-1}; \sqrt{5\frac{3}{9}}  \}.

Calculaţi:  A\bigcap_{}^{}N ; A\bigcap_{}^{}Z; A\bigcap_{}^{}Q; A\bigcap_{}^{}(Q\setminus Z); A\bigcap_{}^{}R; A\bigcap_{}^{}(R\setminus Q)

Rezolvare: Observăm că trebuie să rescriem mulţimea efectuând calculele:

(-2) ^{2}= 4

(-3) ^{-2}= \frac{1}{3 ^2}=\frac{1}{9}

\sqrt{0,09}= 0,3 =\frac{3}{10}

\sqrt{5\frac{5}{9}}= \sqrt{\frac{5\cdot9+5}{9}}}=\sqrt{\frac{50}{9}}}=\frac{5\sqrt2}{3}

 (-1)^{4}= 1

\sqrt{18}= \sqrt{9\cdot2}=3 \sqrt{2}

\sqrt{1\frac{2}{25}}= \sqrt{\frac{1\cdot25+2}{25}}}=\sqrt{\frac{27}{25}}}=\frac{3\sqrt3}{5}

(-\frac{1}{2}) ^{-1}=(-2)

\sqrt{5\frac{3}{9}}= \sqrt{\frac{5\cdot9+3}{9}}}=\sqrt{\frac{48}{9}}}=\frac{4\sqrt3}{3}

Obţinem astfel mulţimea: A= \left \{ 4;\frac{1}{9} ; \frac{3}{10} ; \frac{5\sqrt{2}}{3} ; 1; 3\sqrt{2} ; \frac{3\sqrt{3}}{5} ; (-2); \frac{4\sqrt{3}}{3} \}.

A\bigcap {N}= \left \{ 4;1 \right \}

A\bigcap {Z}= \left \{-2;1; 4 \right \}

A\bigcap {Q}= \left \{ 4; \frac{1}{{9}}; \frac{3}{10}; 1; (-2)  \}

A\bigcap(Q\setminus Z)= \left \{ \frac{1}{9};\frac{3}{10} \right \}

A\bigcap {R}= A

A\bigcap {(R\setminus Q)}= \left \{\frac{5\sqrt{2}}{3};3\sqrt{2};\frac{3\sqrt{3}}{5}; \frac{4\sqrt{3}}{3} \right \} .

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul să se pregătească şi să aibă numai note bune in  noul an şcolar.

Dacă ţi-a plăcut articolul te invit sa distribui acest material şi să inviţi şi alţi părinţi să viziteze acest blog!

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:mathmoreeasy@yahoo.com
De asemenea, te invit şi pe pagina de facebook a blogului:
https://www.facebook.com/MathMoreEasy