Etichetă: numere reale

Exerciții rezolvate la modulul unui număr întreg

"Inteligența nu înseamnă să nu faci greșeli, ci să vezi repede cum poți să le îndrepți"

Brelot Breckt

Dragul meu părinte bine te-am regăsit! Azi te invit să rezolvăm și să explicăm pas cu pas  împreună cateva exerciții la “Modulul unui număr intreg”. (mai mult…)

Exercițiul 1: Completați pentru a obține propoziții adevarate:

a) \left \ | -11 \right \ |=?

b) \left \ | 13 \right \ |=?

c) \left \ | 0 \right \ |=?

d) \left \ | (-2)^2 \right \ |=?

e) \left \ | -3^4 \right \ |=?

f) \left \ | -7 +11 \right \ |=?

g) \left \ | -15 -6 \right \ |=?

h) \left \ | -2^2+3^2 \right \ |=?

i) \left \ | 2^{164}-3^{123} \right \ |=?

Rezolvare: 

Știm că modulul sau valoarea absolută  a unui număr întreg este valoarea pozitivă a acelui număr.

a) \left \| -11 \right \ |=11   ;     b) \left \ | 13 \right \ |=13   ;    c) \left \ | 0 \right \ |=0    ;        

d) \left \ | (-2)^2 \right \ |=?

Știm că semnul minus la putere pară obținem semnul + , astfel  (-2)^2=+ 4. Astfel obținem:

\left \ | (-2)^2 \right \ |=\left \ | 4 \right \ |=4

e)  \left \ | -3^4 \right \ |=?

Știm că semnul minus la putere impară obținem semnul - , astfel   -3^4=-81. Astfel obținem:

\left \ | -3^4 \right \ |=\left \ | -81 \right \ |=81

f) \left \ | -7 +11 \right \ |=?

Efectuăm calculele din modul după care explicităm modulul.

Știm că la adunarea a două numere întregi păstrăm semnul celui mai mare și efectuăm scădere între termini. Astfel obținem:

\left \ | -7 +11 \right \ |= \left \ | +4 \right \ |= 4

g) \left \ | -15 -6 \right \ |= ?

Efectuăm calculele din modul după care explicităm modulul.

Știm că la scăderea a două numere întregi negative păstrăm semnul  și efectuăm adunare între termini. Astfel obținem:

\left \ | -15 -6 \right \ |= \left \ | - 21 \right \ | = 21

h) \left \ | -2^2+3^2 \right \ |= ?

Mai întâi ridicăm numerele întregi la putere, apoi facem calculele după care explicităm modulul. Astfel obținem:

\left \ | -2^2+3^2 \right \ |= \left \ | - 4+9\right \ | = \left \ | +5\right \ | = 5

i) \left \ | 2^{164}-3^{123} \right \ |= ?

Pentru a putea explicita modului trebuie mai întâi să comparăm puterile:

Comparăm 2^{164}   cu  3^{123} .

Observăm că 164=4 \cdot 41 ,  iar  123= 3\cdot 41. Astfel obținem:

2^{4\cdot 41}   comparat cu 3^{3\cdot 41}. Aplicăm regulile de calcul cu puteri și obținem:

(2^{4})^{41} comparat cu  (3^{3})^{41}  \Rightarrow 16^{41} comparat cu  \Rightarrow 27^{41} .

Pentru că am obținut același exponent, comparăm bazele iar numărul cu baza mai mare va fii mai mare. Obținem astfel că : 2^{164} \lt 3^{123} \Rightarrow semnul rezultatului din modul va fii negative. În acest caz vom scoate termenii de sub modul cu semen schimbate.

\left \ | 2^{164}-3^{123} \right \ |= - 2^{164}+3^{123}

Pentru că avem puteri foarte mari lăsăm așa răspunsul final.

Exercițiul 2:  Rezolvați în Z ecuațiile:

a)   \left \| x \right \|=5

b) \left \| 2x-17 \right \|=21

c) 29-3\cdot \left \ | 2x-7 \right \ | \geq -4

d) 3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]-8=7

Rezolvare: 

a)  \left \| x \right \|=5 \Rightarrow x= \pm 5

b)  \left \| 2x-17 \right \|=21

Egalăm pe rând valoarea din modul cu 21 și cu -21.

  • \left \| 2\cdot x-17 \right \|=21 \Rightarrow 2\cdot x-17=21  \Rightarrow 2\cdot x=21+17 \Rightarrow 2\cdot x=38 \Rightarrow x=38 \ \ \ : \ \ \ 2 \Rightarrow x=19
  • \left \| 2x-17 \right \|=21\Rightarrow 2x-17=-21 \Rightarrow 2\cdot x=- 21+17 \Rightarrow 2\cdot x=- 4 \Rightarrow x=-4 \ \ \ : \ \ \ 2 \Rightarrow x=-2

x\in \left \{-2 \ \ ; \ \ 19 \right \}

d) 3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]-8=7

Aplicăm metoda mersului invers.

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]-8=7 \ \ \ \ \ \ | \ \ +8

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]=7+8

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]=15

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]=15\ \ \ \ \ \ | \ \ : \ \ 3

 2 \cdot \left \ | 2x- 3 \right \ | -9=15 \ \ : \ \ 3

 2 \cdot \left \ | 2x- 3 \right \ | -9=5 \ \ \ \ \ \ | \ \ +9

 2 \cdot \left \ | 2x- 3 \right \ | =5 +9

 2 \cdot \left \ | 2x- 3 \right \ | =14 \ \ \ \ \ \ | \ \ :2

 \left \ | 2x- 3 \right \ | =14 \ \ \ :\ \ \ 2

 \left \ | 2x- 3 \right \ | = 7

Egalăm pe rând valoarea din modul cu 7 și cu -7.

 \left \ | 2x- 3 \right \ | = 7\Rightarrow 2\cdot x-3=-7 \ \ \ | \ \ \ +3\Rightarrow 2\cdot x=-4 \ \ \ | \ \ \ : \ \ \ \ 2 \Rightarrow x=-2

 \left \ | 2x- 3 \right \ | = 7\Rightarrow 2\cdot x-3=7 \ \ \ | \ \ \ +3  \Rightarrow 2\cdot x=10 \ \ \ | \ \ \ : \ \ \ \ 2 \Rightarrow x=5

x\in \left \{ -2\ \ \ ;\ \ \ 5 \right \}

Exercițiul 3 :  Rezolvați în mulțimea numerelor întregi inecuațiile:

a) \left \| x \right \|\leq 5

b) \left \| x-6 \right \|\ \ \ \lt \ \ \ 3

c) 29- 3\cdot \left \| 2x-7 \right \| \geq -4

Rezolvare: 

a) \left \| x \right \|\leq 5 \Rightarrow -5 \leq x\leq 5 \Rightarrow x\in \left \{ -5\ ;\ \ \ -4\ ; \ \ \ -3;\ -2;\ -1;\ \ \ \ 0;\ \ \ \ 1;\ \ \ \ 2;\ \ \ 3;\ \ \ \ 4;\ \ \ \ 5 \right \}

b) \left \| x-6 \right \|\ \ \ \lt \ \ \ 3 \Rightarrow -3\ \ \ \ \lt \ \ \ \ x-6\ \ \ \ \lt \ \ \ \3\ \ \ \ | \ \ \ +6\Rightarrow -3+6\ \ \ \ \lt \ \ \ \ x\ \ \ \ \lt \ \ \ \3+6\ \  \Rightarrow 3\ \ \ \ \lt \ \ \ \ x\ \ \ \ \lt \ \ \ \9\ \\Rightarrow x\in \left \{ 4 \ ;\ \ \ \5\ ;\ \ \ \6\ ;\ \ \ \7\ ;\ \ \ \8 \right \}

c) 29-3\cdot \left \ | 2x-7 \right \ | \geq -4\ \ \ | \ \ \ -29

-3\cdot \left \ | 2x-7 \right \ | \geq -4-29

În momentul în care înmulțim o inecuație cu un număr negativ se schimbă semnul. Astfel obținem:

\left \ | 2x-7 \right \ | \leq -33 \ \ \ \ :\ \ \ (-3)

\left \ | 2x-7 \right \ | \leq 11  \Rightarrow -11\leq 2x-7 \leq 11 \ \ \ | \ \ \ +7 \Rightarrow -11+7 \leq \ \ \ 2x \leq \ \ \ \ 11+7  \Rightarrow -4 \leq \ \ \ 2x \leq \ \ \ \ 18 \ \ \ | \ \ \ :\ \ 2  \Rightarrow -4\ \ \ :\ \ \ 2 \leq \ \ \ x \leq \ \ \ \ 18 \ \ \ :\ \ 2\Rightarrow - 2 \leq \ \ \ x \leq \ \ \ \ 9

\Rightarrow x\in \left \{ -2 \ ;\ \ \ \ -1\ ;\ \ \ \ 0 \ ;\ \ \ \ 1 \ ;\ \ 2 \ \ ;\ \ \ 3 \ ;\ \ \ \ 4\ ;\ \ \ \ 5\ ;\ \ \ \ 6\ ;\ \ \ \ 7\ ;\ \ \ \ 8\ ;\ \ \ \ 9\ \right \}

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor

Exerciții rezolvate la Adunarea și Scăderea Fracțiilor

"Învată tot ce poți, în orice moment disponibil, de la oricine și întotdeuna va veni o vreme când te vei simți recompensat pentru ceea ce ai învațat"

Sarah Caldwel

Dragul meu părinte bine te-am regăsit! Azi te invit să rezolvăm și să explicăm pas cu pas  împreună cateva exerciții la "Adunarea și Scăderea Fracțiilor".

Exercițiul 1:        Calculați:

a) \frac{7}{13}+\frac{2}{13}+\frac{5}{13}=

b) -\frac{10}{9}+\frac{11}{9}+(-\frac{7}{9})=

c) -\frac{3}{{5}}+(-\frac{5}{{6}})+(+\frac{1}{{2}})+(+\frac{4}{{15}})=

d)-\frac{13}{{18}}+(-\frac{5}{{108}})+(-\frac{14}{{5}})+(-\frac{7}{{36}})=

Rezolvare:

  • a) \frac{7}{13}+\frac{2}{13}+\frac{5}{13}=

Observăm că cele 3 fracții au acelasi numitor, în acest caz efectuez calculele între numărători și pastrez numitorul.

  • -\frac{7}{13}+\frac{2}{13}+\frac{5}{13}= \frac{7+2+5}{13}= \frac{14}{13}

 

  • b) -\frac{10}{9}+\frac{11}{9}+(-\frac{7}{9})=\frac{-10+11-7}{9}=

Avem la numărător -10+11-7 numere întregi cu semne diferite așa că vom respecta regula de adunare dacă termenii au semne diferite pastrăm semnul celui mai mare și efectuăm scădere. Noi avem -10+11   păstrăm semnul + și efectuîm 11-10

\frac{-10+11-7}{9}=\frac{+1-7}{9}=\frac{-6}{9}= \frac{-6}{9}^{(3}= \frac{-2}{3}

  • c) -\frac{3}{{5}}+(-\frac{5}{{6}})+(+\frac{1}{{2}})+(+\frac{4}{{15}})=

Observăm că în acest exercițiu fracțiile au numitor diferit așa că trebuie să determinăm numitorul comun.

Pentru a determina numitorul comun trebuie să calculăm c.m.m.m.c-ul numerelor de la numitor 5, 6, 2, 15.

Descompunem în factori primi cele 4 numere:

5=5

6=2\cdot3

2=2

15=3\cdot5

Calculăm c.m.m.m.c\left [ 5,6,2,15 \right ]=2\cdot3\cdot5=30

Deci numitorul comun este 30.

Trebuie să amplificăm fiecare fracție astfel încât să obținem  numitorul 30.

-_{{}}^{6)}\textrm{\frac{3}{{5}}}+(-_{{}}^{5)}\textrm{\frac{5}{{6}}})+ (+_{{}}^{15)}\textrm{\frac{1}{{2}}})+(+_{{}}^{2)}\textrm{\frac{4}{{15}}}) =

-\frac{18}{{30}}}+(-{\frac{25}{{30}}})+ (+{\frac{15}{{30}}})+(+{\frac{8}{{30}}})=

Știm că semnul (+) înmulțit cu semnul (-) obținem (-) , iar semnul (+) înmulțit cu semnul (+) obținem (+) . Astfel obținem:

  • -\frac{18}{{30}}}+(-{\frac{25}{{30}}})+ (+{\frac{15}{{30}}})+(+{\frac{8}{{30}}})=
  • -\frac{18}{{30}}}-{\frac{25}{{30}}}+ {\frac{15}{{30}}}+{\frac{8}{{30}}}=
  • \frac{-18-25+15+8}{{30}}}=
  •   \frac{-43+15+8}{{30}}}=
  •  \frac{- 28+8}{{30}}}=  \frac{- 20}{{30}}}^{(10} =- \frac{ 2}{{3}}}

d)      -\frac{13}{{18}}+(-\frac{5}{{108}})+(-\frac{14}{{5}})+(-\frac{7}{{36}})=

Determinăm numitorul comun:

18= 2\cdot 3^2

108= 2^2\cdot 3^3

5=5

36= 2^2\cdot 3^2

[18, 108, 5, 36]= 2^2\cdot 3^3\cdot 5=4\cdot 27\cdot 5=540

Trebuie să amplificăm fiecare fracție astfel încât să obținem  numitorul 540.

-_^{30)}\textrm{\frac{13}{{18}}}+(-_^{5)}\textrm{\frac{5}{{108}}})+(-_^{108)}\textrm{\frac{14}{{5}}})+(-_^{15)}\textrm{\frac{7}{{36}}})=

-{\frac{13\cdot30}{{18\cdot 30}}}+(-{\frac{5\cdot 5}{{108\cdot 5}}})+(-{\frac{14\cdot 108}{{5\cdot 108}}})+(-{\frac{7\cdot 15}{{36\cdot 15}}})=

-{\frac{390}{{540}}}+(-{\frac{25}{{540}}})+(-{\frac{1512}{{540}}})+(-{\frac{105}{{540}}})=

{\frac{-390-25-1512-105}{{540}}}=  {\frac{-(390+25+1512+105)}{{540}}}=  {\frac{-2032}{{540}}}^{(2}=  {\frac{-1016}{{270}}}^{(2}=  {\frac{-508}{{135}}}

 

Exercițiul 2:  Efectuați calculele:

a) [-3\frac{1}{{2}} +1\frac{1 }{{15}} ] + [-1\frac{1}{{7}}+2\frac{7 }{{3}} ]=

Introducem întregii în fracție:

(-\frac{3\cdot2+1}{{2}} +\frac{1\cdot 15+1 }{{15}} ) + (-\frac{1\cdot7+1}{{7}}+\frac{2\cdot3+7 }{{3}} )=

(-\frac{7}{{2}} +\frac{16 }{{15}} ) + (-\frac{8}{{7}}+\frac{13}{{3}} )=

Determinăm numitorul comun și aducem fracțiile la același numitor:

Știm că 2,3,7 și 5 sunt numere prime între ele. Numitorul comun este 2\cdot 3\cdot 5\cdot 7= 210

Amplificăm fracțiile și obținem:

(-_{{}}^{105)}\textrm{\frac{7}{{2}}}+_{{}}^{14)}\textrm{\frac{16}{{15}}})+(-_{{}}^{30)}\textrm{\frac{8}{{7}}}+_{{}}^{70)}\textrm{\frac{13}{{3}}})=  (-{\frac{735}{{210}}}+{\frac{224}{{210}}})+(-{\frac{240}{{210}}}+{\frac{910}{{210}}})=

{\frac{-735+224}{{210}}}+{\frac{-240+910}{{210}}}=  {\frac{-511}{{210}}}+{\frac{670}{{210}}}=  {\frac{-511+670}{{210}}}= {\frac{159}{{210}}}^{(3}= {\frac{53}{{70}}}

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Transformarea unei fracții ordinare într-o fracție periodică

„Trebuie să încerci necontenit să urci foarte sus, dacă vrei să poți să vezi foarte departe.”

Constantin Brâncusi

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva exerciții la transformarea unei fracții ordinare în fracție periodică.

(mai mult…)

Exercițiul 1: Transformați următoarele fracții ordinare în fracții zecimale periodice simple:

a) \frac{31}{9}   ;   b)  \frac{517}{99}  ;

Rezolvare:

Pentru a transforma fracțiile ordinare în fracții zecimale periodice simple trebuie să împărțim numărătorul la numitor astfel:

a) \frac{31}{9}   Împărțim 31 la 9 și obținem:

Observăm că dacă am continua împărțirea se va repeat numărul 4. În aceste cazuri spunem că rezultatul    \frac{31}{9}=3,(4) și citim trei virgulă perioadă patru.

b)   \frac{517}{99}=

Observăm că dacă am continua împărțirea se va repeat numărul 4. În aceste cazuri spunem că rezultatul    \frac{517}{99}=5,(2) .

Exercițiul 2 : Transformați următoarele fracții ordinare în fracții zecimale periodice mixte:

a) \frac{233}{45} ;   b) \frac{553}{60}  ;

Rezolvare:

Pentru a transforma fracțiile ordinare în fracții zecimale periodice simple trebuie să împărțim numărătorul la numitor astfel:

a)  \frac{233}{45}

Observăm că dacă am continua împărțirea se va repeat numărul 7. În aceste cazuri spunem că rezultatul    \frac{233}{45}=5,1(7) și citim cinci virgulă unu perioadă șapte.

b) \frac{553}{60}

Observăm că dacă am continua împărțirea se va repeat numărul 6. În aceste cazuri spunem că rezultatul     \frac{553}{60}=9,21(6).

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Model Rezolvat Teza clasa a VII-a Semestrul II

Încearcă să fii un om de valoare și nu neapărat un om de succes. – Albert Einstein

Dragul meu părinte bine te-am regăsit!  De azi a început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(mai mult…)

Model-Teza-clasa-a-VII-a-Semestrul-II

 

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului: \sqrt{20}+\sqrt{45}-3\sqrt{5}  este:.................................

Rezolvare:

\sqrt{20}+\sqrt{45}-3\sqrt{5}= \sqrt{4\cdot 5}+\sqrt{9\cdot 5}-3\sqrt{5}= 2\sqrt{5}+3\sqrt{5}-3\sqrt{5}=2\sqrt{5}

Exercițiul 2 (0,5 puncte):

Raționalizând fracția: \frac{4}{\sqrt{5}-1}  obținem:.....................

Rezolvare:

_{{}}^{\sqrt{5}+1)}\textrm{\frac{4}{\sqrt{5}-1}}={\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}}={\frac{4(\sqrt{5}+1)}{(\sqrt{5})^2-1^2}}= {\frac{4(\sqrt{5}+1)}{5-1}}={\frac{4(\sqrt{5}+1)}{4}}=\sqrt{5}+1

Exercițiul 3 (1 punct):

Rezultatul calculului: (2a+1)^2 - (2a)^2= este...........................

Rezolvare:

(2a+1)^2 - (2a)^2= (2a)^2+2\cdot2a\cdot1+(1)^2 - (2a)^2= 4a^2+4a+1 -4a^2= 4a+1

Exercițiul 4 (1 punct):

Dacă x+\frac{1}{{x}}=4 atunci x^2+\frac{1}{{x^2}}  este egal cu......................

Rezolvare:

Pornim de la relația x+\frac{1}{{x}}=4 și o ridicăm la pătrat iar relația x+\frac{1}{{x}} o ridicăm la pătrat cu formula de calcul prescurtat :(a+b)^2=a^2+2\cdot a\cdot b+b^2. Astfel obținem:

x+\frac{1}{{x}}=4 /^2 \Rightarrow(x+\frac{1}{{x}})^2=4^2 \Rightarrow  x^2+2\cdot x \cdot \frac{1}{{x}} +(\frac{1}{{x}})^2=16 \Rightarrow   x^2+(\frac{1}{{x}})^2 +2=16 /-2 \Rightarrow  x^2+(\frac{1}{{x}})^2 =16-2 \Rightarrow  x^2+(\frac{1}{{x}})^2 =14

Exercițiul 5 (0,5puncte):

Soluția ecuației x+\sqrt{2}=0 este: .........................

Rezolvare:

 x+\sqrt{2}=0 /-\sqrt{2} \Rightarrow  x=-\sqrt{2}

Exercițiul 6 (0,5puncte):

 sin 45^\circ  este egal cu ..............

Rezolvare:

 sin 45^\circ =\frac{\sqrt{2}}{2}

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete:

Exercițiul 1:(1,5 puncte):

Media geometrică a numerelor:  a=\left \| 2\cdot\sqrt{6} - 6\cdot\sqrt{2} \right \| și  b= \sqrt{72} + \sqrt{24} .

Rezolvare:

Știm că M_{{g}} =\sqrt{a\cdot b} .

Pentru a calcula \sqrt{a\cdot b} trebuie să aducem a și b la o formă mai simplă.

Pentru a aduce numărul "a" la o formă mai simplă trebuie să comparăm  2\cdot\sqrt{6}  cu  6\cdot\sqrt{2}  să aflăm dacă numărul a este un număr pozitiv sau negativ.

Pentru a compara  2\cdot\sqrt{6}  cu 6\cdot\sqrt{2}  trebuie să ridicăm la pătrat pentru a scăpa de redicali.

 2\cdot\sqrt{6} \sqcup 6\cdot\sqrt{2} /^2 \Rightarrow   2^2 \cdot6 \sqcup 6^2 \cdot2 \Rightarrow 4 \cdot6 \sqcup 36 \cdot2  \Rightarrow  24 \lt 72 \Rightarrow 2\cdot\sqrt{6} \lt 6\cdot\sqrt{2} \Rightarrow  numărul "a" este un număr negativ \Rightarrow  a=\left \| 2\cdot\sqrt{6} - 6\cdot\sqrt{2} \right \|=-2\cdot\sqrt{6}+6\cdot\sqrt{2}=6\cdot\sqrt{2}- 2\cdot\sqrt{6}

Pentru a aduce numărul "b" la o formă mai simplă trebuie să scoatem de sub radical:

 b= \sqrt{72} + \sqrt{24}   = \sqrt{2\cdot 36} + \sqrt{4\cdot 6}   =6 \sqrt{2} + 2\sqrt{ 6}

În concluzie  M_{{g}} =\sqrt{a\cdot b}  =\sqrt{(6 \sqrt{2} - 2\sqrt{ 6})\cdot(6 \sqrt{2} + 2\sqrt{ 6} )}  =\sqrt{(6 \sqrt{2})^2- (2\sqrt{ 6} )^2}  =\sqrt{36\cdot 2- 4\cdot 6}}  =\sqrt{72- 24}}  =\sqrt{48}} =\sqrt{16\cdot3 }}  =4\sqrt{3 }}.

Exercițiul 2:(1,5 puncte):

Rezolvați ecuația:  (x-2)^2-(x-1)(3-2x)=3(x+3)(x-3)+25

Rezolvare: Aplicăm formulele de calcul prescurtat și obținem:

 (x-2)^2-(x-1)(3-2x)=3(x+3)(x-3)+25

 (x)^2-2\cdot x \cdot 2+(2)^2-(x\cdot 3-x \cdot2x-1\cdot3+1\cdot2x)=3(x^2-3^2)+25

x^2-4x+4-3x +2x^2+3-2x=3(x^2-9)+25

3x^2-9x+7=3x^2-27+25

3x^2-9x+7=3x^2-2

3x^2-9x-3x^2 = -2-7

-9x= -9

-9x= -9 /:(-9)  \Rightarrow x= 1

Exercițiul 3:(1,5 puncte):

În trapezul ABCD cu  AB \parallel CD, m(\widehat{A})= m(\widehat{D})= 90^{\circ}, se consideră BE\perp CD, unde  E\in(CD). Știind că AB=6cm,CD=10cm și  BD \perp BC , determinați:

a) lungimea înălțimii BE.

b) perimetrul trapezului ABCD.

c) aria trapezului ABCD, rotunjită la cel mai apropiat număr întreg.

Rezolvare:

 

Scriem datele problemei după care le analizăm.

Trasăm desenul respectând datele problemei.

Trapez dreptunghic
  • a) Observăm că triunghiul este dreptunghic în unghiul B și putem aplica teorema înălțimii [ BE ] .

Mai știm Că  \left [ AB \right ] \equiv \left [ DE \right ] \Rightarrow \left [ EC \right ]=4 cm

\bigtriangleup DBC  (\widehat{DBC})= 90^{\circ}  \Rightarrow T.Î  \Rightarrow  BE^2=DE \cdot EC  \Rightarrow BE^2=6 cm \cdot 4 cm \Rightarrow BE^2= 24 cm^2  \Rightarrow BE= \sqrt{24 cm^2} \Rightarrow BE= \sqrt{4\cdot 6 } cm  \Rightarrow BE= 2\sqrt{6 } cm

Știm că  \left [ BE \right ] \equiv \left [ AD \right ] \Rightarrow  AD= 2\sqrt{6 } cm

  • b) Pentru a calcula perimetrul trapezului trebuie să aflam și latura \left [ BC \right ].

Știm că triunghiul \bigtriangleup BEC este dreptunghic în unghiul (\widehat{BEC})= 90^{\circ} astfel putem aplica Teorema lui Pitagora pentru a afla lungimea laturii \left [ BC \right ].

\bigtriangleup BEC (\widehat{BEC})= 90^{\circ} \Rightarrow T.P. \Rightarrow BC^2=BE^2+EC^2  \Rightarrow BC^2=(2\sqrt{6}cm)^2+(4cm)^2   \Rightarrow BC^2=2^2\cdot6} cm^2+16cm^2

 \Rightarrow BC^2=4\cdot6} cm^2+16cm^2   \Rightarrow BC^2=24 cm^2+16cm^2   \Rightarrow BC^2=40 cm^2

 \ \Rightarrow BC=\sqrt{40cm ^2}  \Rightarrow BC=\sqrt{4 \cdot 10cm ^2}  \Rightarrow BC=2\sqrt{ 10} cm

P_{{ABCD}}= AB+BC+CD+AD \Rightarrow P_{{ABCD}}= 6 cm+2\sqrt{ 10} cm+10 cm+2\sqrt{ 6} cm

\Rightarrow P_{{ABCD}}= 16 cm+2(\sqrt{ 10} +\sqrt{ 6}) cm.

  • c)  A_{ABCD}= \frac{(B+b)\cdot h}{{2}}\Rightarrow  A_{ABCD}= \frac{(AB+DC)\cdot AD}{{2}}\Rightarrow  A_{ABCD}= \frac{(6 cm+10 cm)\cdot 2\sqrt{6}cm }{{2}}\Rightarrow   A_{ABCD}= \frac{16cm\cdot 2\sqrt{6}cm }{{2}}\Rightarrow  A_{ABCD}= \frac{32\sqrt{6}cm^2 }{{2}}\Rightarrow   A_{ABCD}= 16\sqrt{6}cm^2

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la Formulele de Calcul Prescurtat

"Invata tot ce poti, in orice moment disponibil, de la oricine si intotdeuna va veni o vreme cand te vei simti recompensat pentru ceea ce ai invatat."
Sarah Caldwel

Bine te-am regăsit dragul meu părinte. Azi te invit să efectuăm  împreună câteva exerciții la formulele de calcul prescurtat.

 EXERCIŢIUL 1: Efectuați, folosind formula de calcul prescurtat: 

  • a)       (2x+1) ^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=2x şi b=+1. Aplicând formula obţinem:

 (2x+1)^{2}=(2x)^{2}+2\cdot 2x\cdot (+1)+(+1)^{2}

 (2x+1)^{2}=4x^{2}+4 x+1

  •     b)  (4x - 7y)^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=4x şi b=7y . Aplicând formula obţinem:

 (4x - 7y)^{2}=(4x)^{2}-2\cdot 4x\cdot 7y +(7y)^{2}

 

 (4x - 7y)^{2}=16x^{2}-56xy +49y^{2}

  • c)  (2x+\sqrt{3})^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=2x şi b=\sqrt{3}. Aplicând formula obţinem:

 (2x+\sqrt{3})^{2}=(2x)^{2}+2\cdot 2x\cdot\sqrt{3}+(\sqrt{3})^{2}

 (2x+\sqrt{3})^{2}=4x^{2}+4\sqrt{3} x+3

  • d)  (5x-\sqrt{2})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=5x şi b=\sqrt{2}. Aplicând formula obţinem:

 (5x-\sqrt{2})^{2}=(5x)^{2}-2\cdot 5x\cdot \sqrt{2}+(\sqrt{2})^{2}

 (5x-\sqrt{2})^{2}=25x^{2}-10 \sqrt{2}x+2

  • e) (\frac{2}{3}x+\frac{1}{3})^{2}=

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru:  a=\frac{2}{3}x şi  b=\frac{1}{3} . Aplicând formula obţinem:

 (\frac{2}{3}x+\frac{1}{3})^{2}=(\frac{2}{3}x)^{2}+2\cdot \frac{2}{3}x\cdot \frac{1}{3}+(\frac{1}{3})^{2}

 (\frac{2}{3}x+\frac{1}{3})^{2}=\frac{4}{9}x^{2}+ \frac{4}{9}x +\frac{1}{9}

  • f) (\frac{2}{7}x-\frac{7}{4})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru:  a=\frac{2}{7}x şi  b=\frac{7}{4}. Aplicând formula obţinem:

 (\frac{2}{7}x-\frac{7}{4})^{2}=(\frac{2}{7}x)^{2}-2\cdot \frac{2}{7}x\cdot \frac{7}{4}+(\frac{7}{4})^{2}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-\frac{28}{28}x+\frac{49}{16}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-x+\frac{49}{16}

f)  (x+9)(x-9)

Aplicăm formula de calcul prescurtat:  (a+b)(a-b)= a^{2}-b^{2}

În cazul exerciţiului  nostru: a=x şi b=9. Aplicând formula obţinem:

 (x+9)(x-9)= x^{2}-9^{2}

 (x+9)(x-9)= x^{2}-81

EXERCIŢIUL 2:  Efectuaşi calculele :

  •  a)  (x+2)^{2}+ (x-1)^{2}

Aplicând formulele de calcul prescurtat obţinem:

 (x+2)^{2}+ (x-1)^{2}=x^{2}+2\cdot x\cdot 2+ 2^{2}+x^{2}-2\cdot x\cdot 1+1^{2}= aplicatii-formule-de-calcul-prescurtat-ex-2

  •  b) (2\sqrt{2}-3\sqrt{3}) ^{2}-2(\sqrt{3}+3\sqrt{2}) ^{2}

Aplicând formulele de calcul prescurtat obţinem:

 [(2\sqrt{2})^{2}-2\cdot 2\sqrt{2}\cdot 3\sqrt{3}+(3\sqrt{3})^{2}]-2[(\sqrt{3})^{2}+2\cdot \sqrt{3}\cdot 3\sqrt{2}+(3\sqrt{2})^{2}] =

 (4\cdot 2-12\sqrt{2\cdot3}+9\cdot 3)-2(3+6 \sqrt{2\cdot3}+9\cdot2)=

 8-12\sqrt{6}+27-6+12 \sqrt{6}-36=

 8+27-6+12 -36=5

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Algoritmul de extragere a rădăcinii pătrate.

Dragul meu părinte, bine te-am regăsit! În articolul de azi vreau să îți explic pas cu pas "Algoritmul de extragere a rădăcinii pătrate" . În articolul precedent ți-am vorbit despre Rădăcina pătrată a unui număr natural pătrat perfect  azi trebuie să aflăm care este  algoritmul de extragere al radicalului unui număr real.

(mai mult…)

Pentru a înțelege cât mai bine algoritmul de extragere a rădăcinii pătrate voi lua un exemplu pe care îl voi explica pas cu pas.

Exemplu :   Reguli de calcul cu Radical

 

 

 

 

 

 

 

 

 

 

 

 

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Propunere Model Teza Semestriala (I) clasa a VII-a

clasa a VII-a"Succesul înseamnă a fi în stare să mergi din eșec în eșec, fără să-ți pierzi entuziasmul" spunea Winston Churchill.

Dragul meu părinte, bine te-am regăsit!Pentru că a început perioada tezelor semestriale, iar copilul tău trebuie să repete toate noţiunile învăţate în acest semestru m-am gândit să vă ajut cu un model de teză care îl va ajuta să parcurgă materia studiată pâna în acest moment.

(mai mult…)

  • Toate subiectele sunt obligatorii.
  • Se acordă 10 puncte din oficiu.
  • Timp de lucru 50 minute.

 Pe foaia de test se trec toate rezolvările.

Exerciţiul I: Calculaţi:

5p     1 .   \left \{ (-\frac{3}{4}) - [(-\frac{2}{3})-(+\frac{5}{6})] \right \}:(-\frac{3}{8})

10p     2.    [(-\frac{1}{5}) ^{10}:(-\frac{1}{5}) ^{6}:(-\frac{1}{5}) ^{4}] ^{4}:(\frac{9}{5}-2) ^{3}:(1-\frac{2}{7})

10p   3.     0,1(6)-[(0,25-1\frac{1}{2})-(0,(3)-2\frac{1}{3})]

10p   4.   \frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\frac{1}{3\cdot 4}+.....+\frac{1}{99\cdot 100}

  • Rezolvaţi ecuaţiile

 10p      1.   \frac{x+4}{{5}}-\frac{x+2}{{3}}=\frac{2x}{{15}}-\frac{x+1}{{3}}

5p       2.   1\frac{1}{2}\cdot x-0,5=(-\frac{3}{{2}})^{2}

10p         3. \left \| 2x+1 \right \|=7

10p        4. Un obiect se scumpeşte cu 20%. Ştiind că după scumpire preţul obiectului este de 30 lei, aflaţi preţul iniţial al obiectului.

  • Subiectul III. Pe foaia de test se trec rezolvările complete şi desenul:

20p       1. În trapezul isoscel ABCD (AB\parallel CD, AB<CD), AB = 5cm, BC = 6cm şi m(\widehat{AOB})=60 ^{\circ} .  Calculaţi:

a) Calculaţi dimensiunea laturii CD.

b) Dacă  AB\bigcap BC=\left \{ M \right \}, calculaţi perimetrul  \Delta MCD.

Ps: Dragul meu părinte, dacă copilul tău nu a înteles foarte bine Suma lui Gauss poţi descărca acest PDF gratuit  pe care l-am conceput special pentru copii care au dificultăţi la aceste noţiuni  şi care  vă va ajuta să stăpâniţi la perfecţie aceste noţiuni matematice dificile .

Mult succes la rezolvarea acestei teze  dar mai ales mult succes la teza de la şcoală! 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Poţi descărca teza în format pdf de aici:teza-de-evaluare-vii-semestriala-la-matematica

Formulele de calcul prescurtat

Clasa a VIII-aDragul meu părinte, bine te-am regăsit. În articolul anterior ţi-am explicat  cum facem "Operaţii între numerele reale  reprezentate prin litere". Am explicat pas cu pas cum facem "Adunarea şi scăderea numerelor reale reprezentate prin litere" , dar şi Înmulţirea, Împărţirea, ridicarea la puterea a numerelor reale reprezentate prin litere" . În articolul de azi vreau să îţi prezint formulele de calcul prescurtat pentru numere reale.

Aceste formule sunt foarte importante deoarece le vom folosi în Operaţiile cu rapoarte. Aceste rapoarte compun un exerciţiu care se dă şi la examenul de capacitate. (Cel puţin în anul anterior  Examenul de Evaluare Naţională 2016 a avut un exerciţiu cu rapoarte).

Avem următoarele formule:

 (a+b)^{2}=a^{2}+2\cdot a\cdot b+b^{2}

 (a-b)^{2}=a^{2}-2\cdot a\cdot b+b^{2}

 a^{2}-b^{2}=(a- b)(a+b)

 (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2\cdot a\cdot b+2\cdot a\cdot c+2\cdot b\cdot c

 (a-b+c)^{2}=a^{2}+b^{2}+c^{2}-2\cdot a\cdot b+2\cdot a\cdot c-2\cdot b\cdot c

 (a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2\cdot a\cdot b-2\cdot a\cdot c-2\cdot b\cdot c

 (a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2\cdot a\cdot b-2\cdot a\cdot c+2\cdot b\cdot c

 (a+b)^{3}=a^{3}+3\cdot a^{2}\cdot b+3\cdot a\cdot b^{2}+b^{3}

 (a-b)^{3}=a^{3}-3\cdot a^{2}\cdot b+3\cdot a\cdot b^{2}-b^{3}

a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})

a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})

Acestea  sunt cele mai importante şi uzuale formule de calcul prescurtat pentru numerele reale. În curând voi reveni şi cu un articol cu Aplicaţii la formulele de calcul prescurtat în care voi prezenta câteva exerciţii cu un grad de dificultate diferit.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

Înmulţirea, împărţirea şi ridicarea la putere a numerelor reale reprezentate prin litere.

Clasa a VIII-aBine te-am regăsit dragul meu părinte. În articolul pe care l-am postat ieri pe blog am vorbit despre "adunarea şi scăderea numerelor reale reprezentate prin litere".

În articolul de azi am să îţi vorbesc despre înmulţirea, împărţirea şi ridicarea la putere a numerelor reale reprezentate prin litere.

Gasesti lecția in format pdf aici : Inmultirea-Nnumerelor-Reprezentate--prin -Litere

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor

(mai mult…)

Observaţie:Prin "Inmulţirea a două numere reale reprezentate prin litere" (nu neapărat termeni asemenea)  se obţine un termen nou care are coeficientul egal cu produsul coeficienţilor termenilor daţi, iar partea literală este formată din toate literele luate o singură dată, iar ca exponent fiecare literă va avea suma exponenţilor pe care  i-a avut în termenii daţi.

inmultirea-nr-reale-reprezentate-prin-litere

Observaţie: Prin "Împărţirea a două numere reale reprezentate prin litere" (nu neapărat termeni asemenea)  se obţine un termen nou care are coeficientul egal cu câtul coeficienţilor termenilor daţi, iar partea literală este formată din toate literele luate o singură dată, iar ca exponent fiecare literă va avea diferenţa exponenţilor pe care  i-a avut în termenii daţi.

impartirea-nr-reale-reprezentate-prin-litere

Observaţie: Prin "Ridicarea la puterea întreagă a unui număr real reprezentat prin litere"   se obţine un termen nou care are coeficientul egal cu puterea întreagă a coeficienţului iniţial, iar partea literală este formată din aceleaşi litere ca ale temenului iniţial, fiecare literă având exponent egal cu produsul dintre exponentul iniţial şi puterea la care s-a ridicat numărul real reprezentat prin literă.

ridicarea-la-putere-a-nr-reale

Observaţie: 

  • Operaţiile de adunare, scădere, înmulţire, împărţire şi ridicare la putere a expresiilor algebrice îşi pastrează aceleaşi reguli şi proprietăţi ca la numere reale.
  • La înmulţirea unui factor cu o paranteză (proprietatea de distributivitate a înmulţirii faţă de adunare şi scădere) înmulţim factorul din faţa parantezei cu fiecare termen din paranteză.
  • La înmulţirea a două paranteze înmulţim fiecare termen din prima paranteză cu fiecare termen din cea de-a doua paranteză, iar la final reducem termenii asemenea.
  • La împărţirea unei paranteze cu un factor împărţim fiecare termen din paranteză la factor, dacă operaţia de împărţire este posibilă, dacă nu scriem termenii ca fracţie.

inmultirea-si-impartirea-numerelor-reprezentate-prin-litereimpartirea-unei-paranteze-la-un-factor

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

Exerciții rezolvate la numere reale!

Clasa a VIII-aBine te-am regăsit dragul meu părinte! În articolul pe care l-am publicat luni pe blog am rezolvat trei exerciţii la lecţia mulţimea numerelor reale. Astăzi revin cu un nou articol în care mai explic pas cu pas doua exemple de exerciţii cu un grad de dificultate mai ridicat pentru a veni în ajutorul tău şi al copilului tău.

 EXERCIŢIUL 1: Determinaţi elementele mulţimilor:

A=\left \{ x\epsilon N|  \frac{15}{2x+1}\epsilon N \} şi B=\left \{ x\epsilon Z| \frac{3x+9}{2x-3}\epsilon Z \}.

Rezolvare: Să aflăm întâi mulţimea A.

A=\left \{ x\epsilon N|  \frac{15}{2x+1}\epsilon N \}

Exerciţiul îmi cere să găsesc toate valorile numere naturale care îndeplinesc condiţia: \frac{15}{2x+1}\epsilon N \Rightarrow2x+1 \epsilon D_{{15}}.

Numitorul 2x+1 trebuie să aparţină mulţimii divizorilor lui 15, deoarece împărţirea 15 la 2x+1 trebuie să fie o împărţire exactă, astfel încât rezultatul să aparţină mulţimii numerelor naturale.

 D_{{15}}=\left \{ 1,3,5,15 \right \}

2x+1=1 | -1 \Rightarrow 2x=1-1 \Rightarrow2x=0| :2 \Rightarrow x=0

2x+1=3 | -1 \Rightarrow 2x=3 -1 \Rightarrow 2x=2 | :2 \Rightarrow x=1

2x+1=5 | -1 \Rightarrow 2x=5 -1 \Rightarrow 2x=4 | :2 \Rightarrow x=2

2x+1=15 | -1 \Rightarrow 2x=15 -1 \Rightarrow 2x=14 | :2 \Rightarrow x=7

Soluţie :x \epsilon \left \{ 0, 1,2,7\right \}.

  • Determinăm şi mulţimea B=\left \{ x\epsilon Z| \frac{3x+9}{2x-3}\epsilon Z \}.

La această mulţime trebuie să prelucrăm numărătorul în funcţie de numitor, astfel încât să găsim  mulţimea divizorilor unui număr întreg.

\frac{3x+9}{2x-3}\epsilon Z \Rightarrow\frac{6x+18}{2x-3}\epsilon Z \Rightarrow\frac{6x-9+27}{2x-3}\epsilon Z \Rightarrow\frac{3(2x-3)}{2x-3}+\frac{27}{2x-3}\epsilon Z \Rightarrow3+\frac{27}{2x-3}\epsilon Z

Deoarece 3\epsilon Z ,  este suficient să demonstrez că \frac{27}{2x-3}\epsilon Z \Rightarrow{2x-3}\epsilon D_{27}

Deoarece sunt pe multimea Z, \Rightarrow D_{27}=\left \{ \pm1, \pm3,\pm9, \pm27 \right \}

2x-3=1| +3 \Rightarrow 2x=1+3 \Rightarrow 2x=4| :2 \Rightarrow x=2

2x-3=-1| +3 \Rightarrow 2x=-1+3 \Rightarrow 2x=2| :2 \Rightarrow x=1

2x-3=3| +3 \Rightarrow 2x=3+3 \Rightarrow 2x=6| :2 \Rightarrow x=3

 2x-3=-3| +3 \Rightarrow 2x=-3+3 \Rightarrow 2x=0 \Rightarrow x=0

 2x-3=9|+3 \Rightarrow 2x=9+3 \Rightarrow 2x=12| :2 \Rightarrow x=6 2x-3=-9|+3 \Rightarrow 2x=-9+3 \Rightarrow 2x=-6| :2 \Rightarrow x=-3

2x-3=27|+3 \Rightarrow 2x=27+3 \Rightarrow 2x=30| :2 \Rightarrow x=15

2x-3=-27|+3 \Rightarrow 2x=-27+3 \Rightarrow 2x=-24| :2 \Rightarrow x=-12

Soluţie : x\in \left \{ -12;-3;0;1;2;6;15 \right \}

EXERCIŢIUL 2: Determinaţi x\in Z pentru care \frac{\sqrt{7+4\sqrt{3}}+\sqrt{52-14\sqrt{3}}}{2x-1}\in Z

Rezolvare: Pentru a determina valorile pe care le poate lua x trebuie sa determinam numarătorul. Vom scrie cei doi radicali de la numărător cu ajutorul formulelor de calcul prescurtat ca un număr la puterea a doua.

Astfel vom scrie \sqrt{7+4\sqrt{3}}=\sqrt{(2+\sqrt{3})^2} , iar \sqrt{52-14\sqrt{3}}=\sqrt{(7-\sqrt{3})^2}.

Obţinem astfel: \frac{\sqrt{(2+\sqrt{3})^2}+\sqrt{(7-\sqrt{3})^2}}{2x-1}\in Z \Rightarrow\frac{\left \| 2+\sqrt{3} \right \|+\left \| 7-\sqrt{3} \right \|}{2x-1}\in Z

Considerăm \sqrt{3}\simeq 1,73 obţinem: 2+ 1,73 =3,73 şi 7-1,73 =5,27

Deoarece \left \| 2+\sqrt{3} \right \| şi \left \| 7-\sqrt{3} \right \| sunt numere pozitive, sunt mai mari decît 0,ambele numere  ies de sub modul cu sumnul +, adica 2+\sqrt{3} şi 7-\sqrt{3}.

Obţinem astfel: \frac{ 2+\sqrt{3} +7-\sqrt{3} }{2x-1}\in Z \Rightarrow\frac{ 2 +7 }{2x-1}\in Z \Rightarrow\frac{ 9 }{2x-1}\in Z \Rightarrow2x-1\in D_{9} .

D_{9} =\left \{ \pm1;\pm3;\pm9 \right \}.

 

2x-1=1| +1 \Rightarrow 2x=1 +1 \Rightarrow 2x=2| :2 \Rightarrow x=1
2x-1=-1| +1 \Rightarrow 2x=-1 +1 \Rightarrow 2x=0| :2 \Rightarrow x=0

2x-1=3| +1 \Rightarrow 2x=3 +1 \Rightarrow 2x=4| :2 \Rightarrow x=2

2x-1=-3| +1 \Rightarrow 2x=-3 +1 \Rightarrow 2x=-2| :2 \Rightarrow x=-1

2x-1=9| +1 \Rightarrow 2x=9 +1 \Rightarrow 2x=10| :2 \Rightarrow x=5 2x-1=-9| +1 \Rightarrow 2x=-9 +1 \Rightarrow 2x=-8| :2 \Rightarrow x=-4

Soluţie: x\in \left \{ -4;-1; 0; 1; 2; 5 \right \}

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăti în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!