Tag: fractii periodice

Transformarea fracțiilor zecimale (periodice)

„Cu un talent și o perseverență extraordinare toate lucrurile pot fi atinse.”

Thomas Foxwell Buxton

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva exerciții la Transformarea fracțiilor zecimale în fracție ordinare.

Dacă copilul tau preferă o lecție video vă invit pe canalul meu de YouTube să urmărești lecțiaTransformarea fractiilor periodice in fractii ordinare!

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  ! (more…)

Exercițiul 1:  Transformați în fracții ordinare următoarele fracții zecimale:

a)7,5   ;             b)0,03 ;

c)13,(2) ;          d) 0,2(5) ;

e) 0,2(5);          f) 15,14(15);

Rezolvare: 

  • a) 7,5 este o fracție zecimală finită     \Rightarrow  7,5=\frac{75}{10}^{(5}=\frac{15}{2}

Pentru că avem o singură cifră după virgulă numitorul este 10. În cazul în care vom avea mai multe cifre după virgulă vom pune atâția dea 0 cate cifre avem după virgulă.

  • b) 0,03=\frac{3}{100}.

În acest caz avem două cifre după virgulă am pus doi de 0 la numitor.

  • c) 13,(2) este o fracție periodică simplă.

Pentru a transforma o fracție periodică simplă într-o fracție ordinară vom scrie la numărător întreg numărul (în cazul nostru 132) din care scădem numărul format din cifrele din fața virgulei (în cazul nostru 13), iar la numitor punem o cifră de 9 deoarece avem o singură cifră în perioadă. Astfel obținem:

13,(2)=\frac{132-12}{9}=\frac{119}{9}

Observație :   În  cazul în care avem mai multe cifre în perioadă punem atâția de 9 câte numere avem în perioadă.

  • d) 0,2(5)  este o fracție periodică mixtă (deoarece avem o cifră între virgulă și perioadă)

Pentru a transforma o fracție periodică mixtă într-o fracție ordinară vom scrie la numărător întreg numărul (în cazul nostru 25) din care scădem numărul format din cifrele din fața virgulei (în cazul nostru 2), iar la numitor punem o cifră de 9 deoarece avem o singură cifră în perioadă și o cifră de 0 deoarece avem o cifră între virgulă și perioadă. Astfel obținem:

0,2(5)=\frac{25-2}{90}=\frac{23}{90}

Observație :   În  cazul în care avem mai multe cifre în perioadă punem atâția de 9 câte numere avem în perioadă, iar dacă avem mai multe cifre între virgulă și perioadă punem atâția de 0 câte numere avem între virgulă și perioadă.

  • e) 10,12(3)=\frac{10123-1012}{900}=\frac{9111}{{900}}^{(3}=\frac{3037}{{300}}
  • f)  15,14(15)=\frac{151415-1514}{9900}=\frac{149901}{{9900}}^{(3}=\frac{49967}{{300}}

Exercițiul 2:  Se consideră numărul x=2,1(39).

a) Determinați a 2018-a zecimală a numărului x.

b) Calculați suma primelor 100 zecimale ale lui x.

c) Transformați numărul x în fracție ordinară.

Rezolvare:

Observăm că numărul x are după virgulă o cifră (1), iar în perioadă două cifre (39). Știm că cifra dintre virgulă și perioadă nu se repetă iar cifrele din perioada se repetă la nesfârșit.

Scris ca număr zecimal fară perioadă numărul x ar arăta așa:

x=2,1(39)=2,139393939..........39......

Pentru a determina a 2018-a zecimală a lui x scădem din 2018 - 1=2017 (deoarece avem o singură cifră între virgulă și perioadă).

După care împărțim 2017 la 2 (deoarece avem 2 cifre în perioadă).

2017\ \ \ :\ \ \ \ 2=1008 \ \ \ rest \ \ 1

Pentru că am obținut restul 1 a 2018-a zecimală a lui x este 3 (prima cifră din perioadă).

  • b) Pentru a calcula suma primelor 100 zecimale ale lui x scădem :

100-1=99 (deoarece avem o singură cifră între virgulă și perioadă)

După care împărțim 99 la 2 (deoarece avem 2 cifre în perioadă) și obținem:

99\ \ \ \ :\ \ \ \ 2=49 \ \ \ rest \ \ \ 1

Obținem că suma celor 100 de zecimale ale lui x sunt:

S=1+3+9+3+9+3+9+......+3 =

Pentru că 99\ \ \ \ :\ \ \ \ 2=49 \ \ \ rest \ \ \ 1  \Rightarrow 3+9 se repetă de 49 de ori.

Astfel putem scrie: S=1+49\cdot (3+9)+3 \Rightarrow S=1+49\cdot 12 +3 \Rightarrow S=1+588 +3  \Rightarrow S= 592

  • c)  x=2,1(39) \Rightarrow x=\frac{2139-21}{{990}}=\frac{2118}{{990}}^{(2}=\frac{1059}{{495}}^{(3}=\frac{353}{{165}}

Exercițiul 3:  Determinați cifra a știind că :

\overline{0,1a}+\overline{0,(a)}+\overline{0,a(1)} \in N

Rezolvare:

Transformăm fracțiile zecimale în fracții ordinare:

\overline{0,1a}+\overline{0,(a)}+\overline{0,a(1)} =\frac{\overline{1a}-1}{{90}}+ \frac{a}{9}+ \frac{\overline{a1}-a}{90}=

Aducem la același numitor prin amplificarea celei de-a doua fracții cu 10. Astfel obținem:

\frac{\overline{1a}-1}{{90}}+ ^{10)_}\textrm{\frac{a}{9}}+ \frac{\overline{a1}-a}{90}=\frac{\overline{1a}-1}{{90}}+ \frac{10a}{90}}+ \frac{\overline{a1}-a}{90}=\frac{\overline{1a}-1+10a+\overline{a1}-a}{{90}}

Desfacem în baza 10 numerele: \overline{1a} și \overline{a1} astfel:\overline{1a}= 10 +a iar \overline{a1}= 10a +1.

Obținem: \frac{10 +a -1+10a+10a+1 -a}{{90}} =\frac{10+20a}{{90}}= =\frac{10\cdot(1+2a)}{{90}}^{(10}= =\frac{1+2a}{{9}} \in N\Rightarrow 1+2a=9 |\ \ -1

\Rightarrow 2a=9 -1   \Rightarrow 2a=8 \ \ | \ \ \ \ :\ \ \ 2     \Rightarrow a=8 \ \ \ \ :\ \ \ 2   \Rightarrow a=4.

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții Ușoare Transformarea  fracților zecimale în fracții ordinare  pentru copilul tău, pe care o gasești aici: Fisa de lucru fractii periodice

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Adunarea și Scăderea Fracțiilor

"Învată tot ce poți, în orice moment disponibil, de la oricine și întotdeuna va veni o vreme când te vei simți recompensat pentru ceea ce ai învațat"

Sarah Caldwel

Dragul meu părinte bine te-am regăsit! Azi te invit să rezolvăm și să explicăm pas cu pas  împreună cateva exerciții la "Adunarea și Scăderea Fracțiilor".

Exercițiul 1:        Calculați:

a) \frac{7}{13}+\frac{2}{13}+\frac{5}{13}=

b) -\frac{10}{9}+\frac{11}{9}+(-\frac{7}{9})=

c) -\frac{3}{{5}}+(-\frac{5}{{6}})+(+\frac{1}{{2}})+(+\frac{4}{{15}})=

d)-\frac{13}{{18}}+(-\frac{5}{{108}})+(-\frac{14}{{5}})+(-\frac{7}{{36}})=

Rezolvare:

  • a) \frac{7}{13}+\frac{2}{13}+\frac{5}{13}=

Observăm că cele 3 fracții au acelasi numitor, în acest caz efectuez calculele între numărători și pastrez numitorul.

  • -\frac{7}{13}+\frac{2}{13}+\frac{5}{13}= \frac{7+2+5}{13}= \frac{14}{13}

 

  • b) -\frac{10}{9}+\frac{11}{9}+(-\frac{7}{9})=\frac{-10+11-7}{9}=

Avem la numărător -10+11-7 numere întregi cu semne diferite așa că vom respecta regula de adunare dacă termenii au semne diferite pastrăm semnul celui mai mare și efectuăm scădere. Noi avem -10+11   păstrăm semnul + și efectuîm 11-10

\frac{-10+11-7}{9}=\frac{+1-7}{9}=\frac{-6}{9}= \frac{-6}{9}^{(3}= \frac{-2}{3}

  • c) -\frac{3}{{5}}+(-\frac{5}{{6}})+(+\frac{1}{{2}})+(+\frac{4}{{15}})=

Observăm că în acest exercițiu fracțiile au numitor diferit așa că trebuie să determinăm numitorul comun.

Pentru a determina numitorul comun trebuie să calculăm c.m.m.m.c-ul numerelor de la numitor 5, 6, 2, 15.

Descompunem în factori primi cele 4 numere:

5=5

6=2\cdot3

2=2

15=3\cdot5

Calculăm c.m.m.m.c\left [ 5,6,2,15 \right ]=2\cdot3\cdot5=30

Deci numitorul comun este 30.

Trebuie să amplificăm fiecare fracție astfel încât să obținem  numitorul 30.

-_{{}}^{6)}\textrm{\frac{3}{{5}}}+(-_{{}}^{5)}\textrm{\frac{5}{{6}}})+ (+_{{}}^{15)}\textrm{\frac{1}{{2}}})+(+_{{}}^{2)}\textrm{\frac{4}{{15}}}) =

-\frac{18}{{30}}}+(-{\frac{25}{{30}}})+ (+{\frac{15}{{30}}})+(+{\frac{8}{{30}}})=

Știm că semnul (+) înmulțit cu semnul (-) obținem (-) , iar semnul (+) înmulțit cu semnul (+) obținem (+) . Astfel obținem:

  • -\frac{18}{{30}}}+(-{\frac{25}{{30}}})+ (+{\frac{15}{{30}}})+(+{\frac{8}{{30}}})=
  • -\frac{18}{{30}}}-{\frac{25}{{30}}}+ {\frac{15}{{30}}}+{\frac{8}{{30}}}=
  • \frac{-18-25+15+8}{{30}}}=
  •   \frac{-43+15+8}{{30}}}=
  •  \frac{- 28+8}{{30}}}=  \frac{- 20}{{30}}}^{(10} =- \frac{ 2}{{3}}}

d)      -\frac{13}{{18}}+(-\frac{5}{{108}})+(-\frac{14}{{5}})+(-\frac{7}{{36}})=

Determinăm numitorul comun:

18= 2\cdot 3^2

108= 2^2\cdot 3^3

5=5

36= 2^2\cdot 3^2

[18, 108, 5, 36]= 2^2\cdot 3^3\cdot 5=4\cdot 27\cdot 5=540

Trebuie să amplificăm fiecare fracție astfel încât să obținem  numitorul 540.

-_^{30)}\textrm{\frac{13}{{18}}}+(-_^{5)}\textrm{\frac{5}{{108}}})+(-_^{108)}\textrm{\frac{14}{{5}}})+(-_^{15)}\textrm{\frac{7}{{36}}})=

-{\frac{13\cdot30}{{18\cdot 30}}}+(-{\frac{5\cdot 5}{{108\cdot 5}}})+(-{\frac{14\cdot 108}{{5\cdot 108}}})+(-{\frac{7\cdot 15}{{36\cdot 15}}})=

-{\frac{390}{{540}}}+(-{\frac{25}{{540}}})+(-{\frac{1512}{{540}}})+(-{\frac{105}{{540}}})=

{\frac{-390-25-1512-105}{{540}}}=  {\frac{-(390+25+1512+105)}{{540}}}=  {\frac{-2032}{{540}}}^{(2}=  {\frac{-1016}{{270}}}^{(2}=  {\frac{-508}{{135}}}

 

Exercițiul 2:  Efectuați calculele:

a) [-3\frac{1}{{2}} +1\frac{1 }{{15}} ] + [-1\frac{1}{{7}}+2\frac{7 }{{3}} ]=

Introducem întregii în fracție:

(-\frac{3\cdot2+1}{{2}} +\frac{1\cdot 15+1 }{{15}} ) + (-\frac{1\cdot7+1}{{7}}+\frac{2\cdot3+7 }{{3}} )=

(-\frac{7}{{2}} +\frac{16 }{{15}} ) + (-\frac{8}{{7}}+\frac{13}{{3}} )=

Determinăm numitorul comun și aducem fracțiile la același numitor:

Știm că 2,3,7 și 5 sunt numere prime între ele. Numitorul comun este 2\cdot 3\cdot 5\cdot 7= 210

Amplificăm fracțiile și obținem:

(-_{{}}^{105)}\textrm{\frac{7}{{2}}}+_{{}}^{14)}\textrm{\frac{16}{{15}}})+(-_{{}}^{30)}\textrm{\frac{8}{{7}}}+_{{}}^{70)}\textrm{\frac{13}{{3}}})=  (-{\frac{735}{{210}}}+{\frac{224}{{210}}})+(-{\frac{240}{{210}}}+{\frac{910}{{210}}})=

{\frac{-735+224}{{210}}}+{\frac{-240+910}{{210}}}=  {\frac{-511}{{210}}}+{\frac{670}{{210}}}=  {\frac{-511+670}{{210}}}= {\frac{159}{{210}}}^{(3}= {\frac{53}{{70}}}

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții Rezolvate la Scăderea Fracțiilor (Numerelor Raționale)

"Dacă nu esti dispus sa inveți nimeni nu te poate ajuta. Dacă esti determinat să înveți, numeni nu te  poate opri."

Zig Ziglar.

Dragul meu părinte bine te-am regăsit!

Azi te invit să exersăm împreună câteva Eerciții Rzolvate la Scăderea fracțiilor (Numerelor Raționale)!

Exercițiul 1: Efectuați scăderile:

a)  \frac{9}{3}}-\frac{5}{3}}=?

b) \frac{17}{5}}-\frac{3}{5}}-\frac{7}{5}}=?

c) \frac{36}{5}}-\frac{7}{3}}=?

d)  \frac{5}{2}-\frac{2}{3}-\frac{3}{4}=?

e)  \frac{17}{15}}-\frac{3}{20}}-\frac{7}{12}}=?

Rezolvare:

a) Observăm că avem două fracții care au același numitor.

  • La scăderea a două sau mai multe fracții care au același numitor, scădem numărătorii între ei și păstrăm numitorul. Astfel obținem:
  •        \frac{9}{3}}-\frac{5}{3}}=\frac{9-5 }{3}}=\frac{4}{3}}

b)      \frac{17}{5}}-\frac{3}{5}}-\frac{7}{5}}=\frac{17-3-7}{5}}  =\frac{7}{5}}

c)   Observăm că avem două fracții care au numitori diferiți.

La scăderea a două sau mai multe fracții care au numitori diferiți mai întâi aducem fracțiile la același numitor determinăm c.m.m.m.c-ul numitorilor , amplificăm fracțiile pentru a le aduce la același numitor , apoi  scădem fracțiile folosind regula de mai sus  scădem numărătorii între ei și păstrăm numitorul. Astfel obținem:

\frac{36}{5}}-\frac{7}{3}}=?

Observăm că numitorul comun este 15; prima fracție o amplificăm cu 3 iar a doua cu 5.

 _{}^{3)}\textrm{\frac{36}{5}}-_{}^{5)}\textrm{\frac{7}{3}}= \frac{3\cdot 36}{3\cdot 5}-\frac{5\cdot 7}{5\cdot 3}= \frac{108}{15}-\frac{35}{15}= \frac{108-35}{15}= \frac{73}{15}

d)  Observăm că avem trei fracții care au numitori diferiți.

\frac{5}{2}-\frac{2}{3}-\frac{3}{4}=?

Știm că 3 și 4 sunt numere prime între ele. În acest caz numitorul comun este 12.

Prima fracție o amplificăm cu 6, a doua cu 4 iar a treia cu 3. Astfel obținem:

_{}^{6)}\textrm{\frac{5}{2}} -_{}^{4)}\textrm{\frac{2}{3}} -_{}^{3)}\textrm{\frac{3}{4}}= {\frac{6 \cdot 5}{6 \cdot 2}} - \frac{4 \cdot 2}{4\cdot 3}} -\frac{3\cdot 3}{3\cdot 4}}= {\frac{30}{12}} - \frac{8}{12}} -\frac{9}{12}}= {\frac{30- 8 - 9}{12}}= {\frac{13}{12}}

e) Observăm că avem trei fracții care au numitori diferiți.

 \frac{17}{15}}-\frac{3}{20}}-\frac{7}{12}}=?

Calculăm c.m.m.m.c-ul numerelor 15, 20, 12.Pentru a putea calcula c.m.m.m.c-ul numerelor mai întâi le descompunem în factori primi.

Asadar am obținut numitorul comun 60.Prima fracție o amplificăm cu 4, a doua fracție o amplificăm cu 3 , iar a treia fracție o amplificăm cu 5. Astfel obținem:

 _{}^{4)}\textrm{\frac{17}{15}} -_{}^{3)}\textrm{\frac{3}{20}} -_{}^{5)}\textrm{\frac{7}{12}}=  \frac{4\cdot 17}{4\cdot 15}} -\frac{3\cdot3}{3\cdot20}} -\frac{5\cdot 7}{5\cdot12}}=  \frac{68}{60}} -\frac{9}{60}} -\frac{35}{60}=  \frac{68-9-35}{60}} = \frac{24}{60}}^{(2} =  \frac{12}{30}}^{(2} =  \frac{6}{15}}^{(3} = \frac{2}{5}}

Exercițiul 2:  Efectuați calculele:

a) 5\frac{1}{4}} -3\frac{1}{3}} -\frac{5}{6}} = ?

b) 3\frac{1}{2}} -\frac{5}{3}} -1\frac{1}{9}} = ?

Rezolvare: 

Primul pas introducem întregii în fracție.

\frac{5\cdot4+1}{4}} -\frac{3\cdot3+1}{3}} -\frac{5}{6}} =  \frac{20+1}{4}} -\frac{9+1}{3}} -\frac{5}{6}} = \frac{21}{4}} -\frac{10}{3}} -\frac{5}{6}} =

Aducem fracțiile la același numitor . Mai întâi determinăm c.m.m.m.c-ul numerelor 4; 3; 6 astfel:

4= 2^2

3= 1\cdot3

6= 2\cdot3

\left [ 4; 3; 6 \right ]= 2^2 \cdot 3=4\cdot 3=12

Prima fracție o amplificăm cu 3, a doua fracție o amplificăm cu 4, iar a treia fracție o amplificăm cu 2.

_{}^{3)}\textrm{\frac{21}{{4}}}-_{}^{4)}\textrm{\frac{10}{{3}}}-_{}^{2)}\textrm{\frac{5}{{6}}}= {\frac{3\cdot 21}{{3\cdot 4}}}-{\frac{4\cdot 10}{{4\cdot 3}}}-{\frac{2\cdot 5}{{2\cdot 6}}}=  {\frac{63}{{12}}}-{\frac{40}{{12}}}-{\frac{10}{{12}}}=  {\frac{63-40-10 }{{12}}}= {\frac{13 }{{12}}}

b) 3\frac{1}{2}} -\frac{5}{3}} -1\frac{1}{9}} = ?

Primul pas introducem întregii în fracție.

\frac{3\cdot 2+1}{2}} -\frac{5}{3}} -\frac{1\cdot 9+1}{9}} =  \frac{6+1}{2}} -\frac{5}{3}} -\frac{9+1}{9}} =  \frac{7}{2}} -\frac{5}{3}} -\frac{10}{9}} =

Aducem fracțiile la același numitor . Mai întâi determinăm c.m.m.m.c-ul numerelor 2; 3; 9. Știm că 9=3^2   atunci obținem c.m.m.m.c-ul numerelor:

\left [ 2; 3; 9 \right ]= 2\cdot 3^2= 2\cdot 9=18

Prima fracție o amplificăm cu 9, a doua fracție o amplificăm cu 6, iar a treia fracție o amplificăm cu 2.

_{}^{9)}\textrm{\frac{7}{2}}}-_{}^{6)}\textrm{\frac{5}{3}}}-_{}^{2)}\textrm{\frac{10}{9}}}= {\frac{9\cdot 7}{9\cdot 2}}}-{\frac{6\cdot 5}{6\cdot 3}}}-{\frac{2\cdot 10}{2\cdot 9}}}= {\frac{63}{18}}}-{\frac{30}{18}}}-{\frac{20}{18}}}= {\frac{63-30-20}{18}}}={\frac{13}{18}}}

Exercițiul 3: Calculați:

S={\frac{3}{1\cdot4}}}+{\frac{3}{4\cdot7}}}+{\frac{3}{7\cdot10}}}+............+{\frac{3}{96\cdot99}}}

Rezolvare: 

Observăm ca numărătorul reprezintă diferența numerelor de la numitor si o vom scrie chiar așa:

S={\frac{3}{1\cdot4}}}+{\frac{3}{4\cdot7}}}+{\frac{3}{7\cdot10}}}+............+{\frac{3}{96\cdot99}}}

S={\frac{4-1}{1\cdot4}}}+{\frac{7-4}{4\cdot7}}}+{\frac{10-7}{7\cdot10}}}+............+{\frac{99-96}{96\cdot99}}}

S={\frac{4}{1\cdot4}}}-{\frac{1}{1\cdot4}}}+{\frac{7}{4\cdot7}}}-{\frac{4}{4\cdot7}}}+{\frac{10}{7\cdot10}}}-{\frac{7}{7\cdot10}}}+............+{\frac{99}{96\cdot99}}}-{\frac{96}{96\cdot99}}}

Observăm că se reduc termenii și obținem:

Observăm că ne rămâne prima și ultima fracție:

S={\frac{1}{1}}}-{\frac{1}{99}}}

Aducem la același numitor și obținem:

S=_{}^{99)}\textrm{{\frac{1}{1}}}}-{\frac{1}{99}}}= {{\frac{99}{99}}}}-{\frac{1}{99}}}={\frac{98}{99}}}

Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Scăderea  fracțiilor  pentru copilul tău, pe care o gasești aici:Fisa de lucru Scaderea fractiilor

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Aducerea fracțiilor la același numitor

„Învățătorii îți deschid ușa, însă numai tu însuți poți trece dincolo de ea.”

-Proverb chinezesc

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții rezolvate  la Aducerea fracțiilor la același numitor!

(more…)

Exercițiul 1: Se consider fracțiile:    \frac{3}{48}\frac{7}{72} ;  \frac{5}{56} ;  \frac{1}{45};

a) Calculați c.m.m.m.c-ul numitorilor fractiilor de mai sus;

b) Aduce-ți fracțiile la acelasi numitor.

Rezolvare:

a)  \frac{3}{48}\frac{7}{72} ;  \frac{5}{56} ;  \frac{1}{45};

Descompunem in factori primi numitorii:

Scriem numitorii ca produs de puteri:

48=2^{4} \cdot 3

72=2^{3} \cdot 3^{2}

56=2^{3} \cdot 7

45=3^{2} \cdot 5

Pentru a determina  c. m.m.m.c- ul luăm toate bazele la puterea cea mai mare.  [48; 72; 56; 45]=2^{4}\cdot 3^{2}\cdot 5^{1}\cdot 7^{1}   \Rightarrow [48; 72; 56; 45]=16 \cdot 9\cdot 5\cdot 7   \Rightarrow [48; 72; 56; 45]=5140

b) Pentru a aduce la același numitor fracțiile de mai sus trebuie sa le amplificam astfel incăt la numitor să obținem valoarea c.m.m.m.c-ului.Pentru a afla cu cat trebuie să amplificăm fiecare fracție împărțim valoarea c.m.m.m.c-ului la fiecare numitor.

5140 \ \ \ : \ \ \ 48=105 \Rightarrow Prima fracție o amplificăm cu 105.

5140 \ \ \ : \ \ \ 72=70  \Rightarrow A doua  fracție o amplificăm cu 70

5140 \ \ \ : \ \ \ 56 = 90  \Rightarrow A treia  fracție o amplificăm cu 90

5140 \ \ \ : \ \ \ 45 = 112 \Rightarrow A patra  fracție o amplificăm cu 112.

Astfel obținem:

_{}^{105)}\frac{3}{48}\ \ \ \ ; \ \ _{}^{70)}\frac{7}{72}\ \ \ \ ; \ \ _{}^{90)}\frac{5}{56}\ \ \ ; \ \ _{}^{112)}\frac{1}{45}\ \ \ \ ;     \Rightarrow \frac{105 \cdot 3}{{105 \cdot 48}}\ \ \ ; \ \ \frac{70 \cdot 7}{{70 \cdot 72}}\ \ \ ; \ \ \frac{90 \cdot 5}{{90 \cdot 56}}\ \ \ ; \ \ \frac{112 \cdot 1}{{112 \cdot 45}}

\Rightarrow \frac{315}{{5140}}\ \ \ ; \ \ \frac{490}{{5140}}\ \ \ ; \ \ \frac{450}{{5140}}\ \ \ ; \ \ \frac{112}{{5140}}

Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Aducerea fracțiilor la același numitor pentru copilul tău, pe care o gasești aici: Fisa de lucru Aducerea fractiilor la acelasi numitor

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

 

 

 

 

Transformarea unei fracții ordinare într-o fracție periodică

„Trebuie să încerci necontenit să urci foarte sus, dacă vrei să poți să vezi foarte departe.”

Constantin Brâncusi

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva exerciții la transformarea unei fracții ordinare în fracție periodică.

(more…)

Exercițiul 1: Transformați următoarele fracții ordinare în fracții zecimale periodice simple:

a) \frac{31}{9}   ;   b)  \frac{517}{99}  ;

Rezolvare:

Pentru a transforma fracțiile ordinare în fracții zecimale periodice simple trebuie să împărțim numărătorul la numitor astfel:

a) \frac{31}{9}   Împărțim 31 la 9 și obținem:

Observăm că dacă am continua împărțirea se va repeat numărul 4. În aceste cazuri spunem că rezultatul    \frac{31}{9}=3,(4) și citim trei virgulă perioadă patru.

b)   \frac{517}{99}=

Observăm că dacă am continua împărțirea se va repeat numărul 4. În aceste cazuri spunem că rezultatul    \frac{517}{99}=5,(2) .

Exercițiul 2 : Transformați următoarele fracții ordinare în fracții zecimale periodice mixte:

a) \frac{233}{45} ;   b) \frac{553}{60}  ;

Rezolvare:

Pentru a transforma fracțiile ordinare în fracții zecimale periodice simple trebuie să împărțim numărătorul la numitor astfel:

a)  \frac{233}{45}

Observăm că dacă am continua împărțirea se va repeat numărul 7. În aceste cazuri spunem că rezultatul    \frac{233}{45}=5,1(7) și citim cinci virgulă unu perioadă șapte.

b) \frac{553}{60}

Observăm că dacă am continua împărțirea se va repeat numărul 6. În aceste cazuri spunem că rezultatul     \frac{553}{60}=9,21(6).

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Procente.

" Tăria minții vine prin exercițiu nu prin repaos".

Alexander Pope

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas câteva Exerciții  rezolvate la Procente.

Exercițiul 1:  Calculați:

a) 75 % din 1600

b) 1,25 % din 2000

c) 25 % din 16 % din 750

d) 4,(2) % din 7200 .

Rezolvare:

a)  75 % din 1600 =  \frac{75}{{100}} \cdot 1600=  \frac{75\cdot 16\emptyset\emptyset}{{1\emptyset\emptyset}}=  75\cdot 16=  1200

b) 1,25 % din 2000 = \frac{1,25}{100} \cdot 2000=  \frac{1,25\cdot 20\emptyset\emptyset}{1\emptyset\emptyset}= 1,25\cdot 20=25

c) 25 % din 16 % din 750 =  25% \cdot (\frac{16}{{100}} \cdot 750)= \frac{25}{{100}} \cdot (\frac{16 \cdot 75\emptyset}{{10\emptyset}})= \frac{25}{{100}} \cdot (\frac{16 \cdot 75}{{10}})= \frac{25}{{100}} \cdot (\frac{1200}{{10}})= \frac{25}{{100}} \cdot (\frac{120\emptyset}{{1\emptyset}})= \frac{25}{{100}} \cdot 120= \frac{25}{{10\emptyset}} \cdot 12\emptyset= \frac{25\cdot 12}{{10}}= \frac{300}{{10}}= \frac{30\emptyset}{{1\emptyset}}= \frac{30}{{1}}=30

d) 4,(2) % din 7200 =  \frac{4,(2)}{{100}} \cdot 7200 =  \frac{4,(2)\cdot 72\emptyset\emptyset}{{1\emptyset\emptyset}} =  4,(2)\cdot 72 =   \frac{42-4}{{9}} \cdot 72=  \frac{38}{{9}} \cdot 72= \frac{38 \cdot 72}{{9}} = \frac{2736}{{9}} =304

Exercițiul 2:   Aflați un număr x știind că :

a)  20% din el este 80;

b) 2,75 % din el este 3,30;

c) 3,(6)% din el este 36,3.

Rezolvare:

a)  20% din x este 80  \Rightarrow \frac{20}{{100}} \cdot x = 80 \Rightarrow \frac{20}{{100}} \cdot x = 80 / \ \ \ \cdot 100 \Rightarrow 20 \cdot x = 80 \cdot 100 \Rightarrow 20 \cdot x = 8000 / \ \ \ :\ \ 20 \Rightarrow x = 8000 \ \ :\ \ 20 \Rightarrow x = 400

b) 2,75 % din el este 3,30 \Rightarrow \frac{2,75}{{100}} \cdot x = 3,30  \Rightarrow \frac{2,75}{{100}} \cdot x = 3,30 / \cdot100  \Rightarrow 2,75 \cdot x = 3,30 \cdot100  \Rightarrow 2,75 \cdot x = 330

\Rightarrow \frac{275}{{100}} \cdot x = 330 \Rightarrow \frac{275}{{100}} \cdot x = 330 /\cdot 100 \Rightarrow {275}\cdot x = 330 \cdot 100

\Rightarrow {275}\cdot x = 33000 \Rightarrow {275}\cdot x = 33000 / \ \ \ : \ \ 275\Rightarrow x = 33000 \ \ : \ \ 275

\Rightarrow x = 120

c) 3,(6)% din x este 36,3 \Rightarrow \frac{3,(6)}{{100}} \cdot x = 36,3 \Rightarrow \frac{3,(6)}{{100}} \cdot x = 36,3 / \cdot 100 \Rightarrow 3,(6) \cdot x = 36,3 \cdot 100

\Rightarrow \frac{36-3}{{9}} \cdot x = 3630

\Rightarrow \frac{33}{{9}} \cdot x = 3630 / \cdot 9 \Rightarrow 33\cdot x = 3630 \cdot 9

\Rightarrow 33\cdot x = 32670 / \ \ \ : \ \ \ 33 \Rightarrow x = 32670 \ \ \ : \ \ \ 33

\Rightarrow x = 990

PS: Dragul meu părinte am pregătit si o fișă de lucru pentru copilul tău o gasești aici:Fișă de lucru Procente

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Rapoarte.

„Nimic nu este prea dificil dacă împarți în pași mici ceea ce ai de făcut.”

Henry Ford

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas  Exerciții  rezolvate la Rapoarte! (more…)

Exercițiul1: Aflați termenul necunoscut din următoarele rapoarte:

a) \frac{x}{5}=\frac{21}{3}

b) \frac{5}{x}=0,20

c) \frac{6,(4)}{x}=8

Rezolvare:

a)  \frac{x}{5}=\frac{21}{3}

Înmulțim pe diagonală și obținem :

 \Rightarrow 3 \cdot x=21\cdot5  \Rightarrow 3 \cdot x=105  \Rightarrow x=105 \ \ \ :\ \ \ 3  \Rightarrow x=35

b) \frac{5}{x}=0,20

Transformăm fracția zecimală 0,20 în fracție ordinară și obținem:

\Rightarrow \frac{5}{{x}}=\frac{20}{{10}}\Rightarrow \frac{5}{{x}}=\frac{2}{{1}} \Rightarrow 5\cdot 1=x \cdot 2 \Rightarrow 2x=5 \ \ \ \ \ /:\ \ 2\Rightarrow x=\frac{5}{{2}}

c) \frac{6,(4)}{x}=8 \Rightarrow \frac{6,(4)}{x}=\frac{8}{1}\Rightarrow 6,(4)\cdot 1=8 \cdot x

Transformăm fracția periodică  6,(4) în fracție ordinară  astfel 6,(4)=\frac{64-6}{{9}}=\frac{58}{{9}} și obținem:

\Rightarrow 6,(4)\cdot 1=8 \cdot x  \Rightarrow \frac{58}{{9}}\cdot \frac{1}{{1}}=\frac{8\cdot x}{{1}} \Rightarrow \frac{58}{{9}}=\frac{8\cdot x}{{1}} \Rightarrow 58 \cdot 1 =9 \cdot 8\cdot x \Rightarrow 58=72\cdot x \Rightarrow 58=72\cdot x \ \ \ /\ \ \ \ :\ \ 72  \Rightarrow x = \frac{58}{{72}}^{{(2}}

 \Rightarrow x = \frac{29}{{36}}

Exercițiul 2: Se consideră numerele a= 1+2+3+.........................+2018 și b = 2+4+6+.........................+4036. Calculați :

a) Raportul dintre a și b;

b) Raportul dintre suma și diferența numerelor b și a;

Rezolvare:

Calculăm mai întâi numărul a ca să îl aducem la o formă mai simplă. Recunoaștem suma Gauss a primelor 2018 numere naturale consecutive și aplicăm formula lui Gauss.

a = 1+2+3+.........................+2018

 a = 2018\cdot(2018+1) \ \ \ : \ \ \ 2

 a = 2018\cdot 2019 \ \ \ : \ \ \ 2

 a = 2018 \ \ \ : \ \ \ 2 \cdot 2019

 a = 1009 \cdot 2019

PS: Dacă nu îți mai amintești Suma lui Gauss găsești aici PDF-ul gratuit : Suma Gauss

Calculăm și numărul b pentru a obține o formă mai simplă.

b = 2+4+6+.........................+4036.

Dăm factor comun pe 2 și obținem din nou Suma Gauss a primelor 2018 numere naturale consecutive.

 b =2 \cdot (1+2+3+...............+2018)

 b =2 \cdot [2018\cdot (2018+1) \ \ :\ \ \ 2]

 b =2 \cdot [2018\ \ :\ \ \ 2 \cdot (2018+1) ]

 b =2 \cdot [2018\ \ :\ \ \ 2 \cdot 2019 ]

 b =2 \cdot 1009 \cdot 2019

 b =2018 \cdot 2019

  • a) Facem raportul   \frac{a}{b} = \frac{1009 \cdot 2019}{2018 \cdot 2019} ^{{(1009 \cdot 2019}}  \Rightarrow \frac{a}{b} = \frac{1}{2}
  • b) Calculăm raportul     \frac{a+b}{b-a}=  \frac{1009\cdot 2019+2018\cdot 2019}{2018\cdot 2019-1009\cdot 2019}=

Observăm că putem da factor comun pe 1009\cdot2019 și la numărător și la numitor și obținem:

 \frac{1009\cdot 2019\cdot (1+2)}{1009\cdot 2019\cdot(2-1)}= \frac{1009\cdot 2019\cdot 3}{1009\cdot 2019\cdot 1}=

Observăm că putem simplifica raportul prin 1009\cdot2019 și obținem:

 \frac{1009\cdot 2019\cdot 3}{1009\cdot 2019\cdot 1}^{{(1009\cdot 2019}} =\frac{3}{1}=3

Exercițiul 3:

Știind că  \frac{a}{b} = \frac{7}{2}  calculați valoarea raportului:

a)  \frac{12\cdot a+6\cdot b}{6\cdot a-b} = ?

b) \frac{3\cdot a+5\cdot b}{2\cdot a+b} = ?

Rezolvare:

a) Știind raportul  \frac{a}{b} = \frac{7}{2}  înmulțim pe diagonală și scoatem a în funcție de b

 \Rightarrow 2\cdot a= 7 \cdot b \Rightarrow a=\frac{7\cdot b }{{2}}

Înlocuim a în raportul pe care îl avem de calculat și obținem:

 

\Rightarrow \frac{12\cdot \frac{7\cdot b }{{2}}+6\cdot b}{6\cdot \frac{7\cdot b }{{2}}-b} =  \frac{ \frac{84\cdot b }{{2}}+6\cdot b}{ \frac{42\cdot b }{{2}}-b} =

\frac{ {42\cdot b }+6\cdot b}{ 21\cdot b -b} =  \frac{ {48\cdot b }}{ 20\cdot b } ^{(4\cdot b} =  \frac{ {12 }}{ 5 }

b) Știind raportul  \frac{a}{b} = \frac{7}{2}  înmulțim pe diagonală și scoatem a în funcție de b

 \Rightarrow 2\cdot a= 7 \cdot b \Rightarrow a=\frac{7\cdot b }{{2}}

Înlocuim a în raportul pe care îl avem de calculat și obținem:

\frac{3\cdot a+5\cdot b}{2\cdot a+b} =  \frac{3\cdot \frac{7\cdot b }{{2}} +5\cdot b}{2\cdot \frac{7\cdot b }{{2}}+b} =  \frac{\frac{21\cdot b }{{2}} + 5\cdot b}{ \frac{14\cdot b }{{2}}+b} =  \frac{\frac{21\cdot b }{{2}} + _{{}}^{2)}{5\cdot b}}{ \frac{14\cdot b }{{2}}+_{{}}^{2)}{ b}} =  \frac{\frac{21\cdot b }{{2}} + {\frac{10\cdot b }{{2}}} }{ \frac{14\cdot b }{2}+{{{\frac{2\cdot b }{{2}}}}  = \frac{\frac{31\cdot b }{{2}} }{ \frac{16\cdot b }{2}} =  {\frac{31\cdot b }{{2}} }\ \ \ :\ \ \ { \frac{16\cdot b }{2}} =   {\frac{31\cdot b }{{2}} } \cdot { \frac{2}{16\cdot b}} =  {\frac{31 }{{16}} }

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Mulțimea Numerelor Raționale.

" Nu îți coborî așteptările pentru a se potrivi cu performanța ta. Ridică-ți nivelul de performananță pentru a se potrivi cu așteptările tale." 

Ralph Marston

Dragul meu părinte bine te-am regăsit. Azi revin cu o lecție pentru clasa a VII-a.

 

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

Model Rezolvat Teza clasa a VIII-a Semestrul II

Şcoala trebuie să te înveţe a fi propriul tău dascăl, cel mai bun şi cel mai aspru.

Nicolae Iorga

Dragul meu părinte bine te-am regăsit!  A început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(more…)

Model Propus Teza clasa a VIII-a Semestrul II

 

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului: \sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  este:……………………………

Rezolvare:

\sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  =\sqrt{2\cdot 3}-3\sqrt{6} =\sqrt{6}-3\sqrt{6} =-2\sqrt{6}

Exercițiul 2 (1 punct):

Simplificând cu x^2+1  raportul : \frac{x^4-1}{{x^2+1}} se obține:.....................................

Rezolvare:

Aplicăm formulele de calcul prescurtat pentru expresia: x^4-1 și se obține:

\frac{x^4-1}{{x^2+1}}=\frac{(x^2)^2-1^2}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}^{(x^2+1}=\frac{x^2-1}{1}=x^2-1.

Exercițiul 3 (1 punct):

Soluția ecuației: x-\sqrt{3}=0 este: ........................................

Rezolvare:

x-\sqrt{3}=0 \Rightarrow x-\sqrt{3}=0 /-\sqrt{3} \Rightarrow x=-\sqrt{3}

Exercițiul 4 (1 punct):

Se considera funcția f : R \to R  ,  f (x)=x-3. Valoarea funcției în punctul x=3 este egală cu: .........................

Rezolvare:

Pentru a afla valoarea functiei în punctul x=3 calculăm  f (3) (îl înlocuim pe x cu 3 în funcție.

 f (3)=3-3=0

Exercițiul 5 (1punct):

Volumul cubului cu lungimea diagonalei de \sqrt{12}cm este: ........................

Rezolvare:

Știm că diagonala cubului este egală cu:

 d=l\sqrt{3}\Rightarrow  l\sqrt{3}=\sqrt{12}\Rightarrow   l\sqrt{3}=\sqrt{4\cdot3}\Rightarrow   l\sqrt{3}=2\sqr{3}\Rightarrow  l\sqrt{3}=2\sqr{3} / :\sqr{3} \Rightarrow   l=2 cm

Știm că volumul cubului are formula:  V= l^3  ; înlocuim latura cu 2 cm și obținem:

 V= l^3 \Rightarrow  V= (2cm)^3 \Rightarrow V= 8cm^3 .

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete.

Exercițiul 1 (1,5 puncte):

Se consideră expresia: E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}.

a) Determina'i valorile reale ale lui x pentru care expresia E(x) este bine definită.

b) Demonstrați că E(x)=1,  (\forall ) x \in R \setminus \left \{ -2; 1\right \}.

Rezolvare:

E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

  • a)Punem condițiile de existență ale fracțiilor (numitorul fracției trebuie să fie diferit de 0):

 x-2 \neq 0 \Rightarrow x \neq 2

 3x-1 \neq 0 \Rightarrow 3x \neq 1 \Rightarrow 3x \neq \frac{1}{{3}}

 \Rightarrow x \in R\setminus \left \{ \frac{1}{{3}} , 2 \right \}

  • E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2

Înmulțim cu a doua fracție răsturnată.

  •  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

Aducem la același numitor în paranteză.

  •  \Rightarrow E(x)=(_{{}}^{x-2)}\textrm{1}- _{{}}^{x-2)}\textrm{x}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}    \Rightarrow E(x)=(\frac{x-2}{x-2}- \frac{x(x-2)}{x-2}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=(\frac{x-2-x^2+2x+x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=\frac{3x-1}{x-2}\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=1

Exercițiul 2 (1,5 puncte):

Se consideră funcția  f : R \to R , f(x)= -x+2 .

a) Calculați media aritmetică a numerelor a=f(0)  și b=f(2) .

b) Reprezentați grafic funcția f(x).

c) Calculați aria triunghiului determinat de graficul funcției f(x) și axele de coordonate OX și OY.

Rezolvare:

  • a) f(0)=0+2=2

f(2)=-2+2=0

 M_{a}=\frac{f(0)+f(2)}{{2}} \Rightarrow  M_{a}=\frac{2+0}{{2}} \Rightarrow  M_{a}=\frac{2}{{2}} \Rightarrow M_{a}= 1

  • b) Pentru a reprezenta grafic funcția f(x) facem intersecția cu cele două axe OX și OY
  • \cap OX : y=0 \Rightarrow f(x)=0   \Rightarrow -x+2=0   \Rightarrow -x=-2  \Rightarrow x=2  \Rightarrow A(2;0)
  • \cap OY:   x=0 \Rightarrow f(0)=0+2=2\Rightarrow B(0;2)

Exercițiul 3 (1,5 puncte):

O piramidă triunghiulară regulată VABC are latura AB=4\sqrt{6} cm și VO=2\sqrt{6} cm, unde O este centrul bazei ABC. Calculați:

a) aria laterală a piramidei;

b) distanța de la O la planul (VBC)

c) distanța de la punctul A la planul (VBC)

d) măsura unghiului format de planele (VBC) și (ABC).

Rezolvare:

Scriem datele problemei și apoi le analizăm:

Realizăm și desenul:

  • a)  Știm formula arie laterale:  A_{l}= \frac{P_{b}\cdot a_{p}}{2}.

Pentru a calcula A_{{l}} trebuie să aflăm mai întâi apotema piramidei a_{{p}}=VM.

VABC este piramidă triunghiulară regulată  \Rightarrow \bigtriangleup ABC  echilateral   \Rightarrow  AM înălțimea \bigtriangleup ABC  \Rightarrow AM=\frac{l\sqrt{3}}{{2}}  \Rightarrow AM=\frac{AB\sqrt{3}}{{2}}   \Rightarrow AM=\frac{4\sqrt{6}\cdot \sqrt{3}}{{2}}  \Rightarrow AM=\frac{4\sqrt{6\cdot 3}}{{2}}    \Rightarrow AM=\frac{4\cdot 3\sqrt{2}}{{2}}   \Rightarrow AM=\frac{12\sqrt{2}}{{2}}   \Rightarrow AM=6\sqrt{2} cm

Știm că OM= \frac{1}{{3}}\cdot AM \Rightarrow OM= \frac{1}{{3}}\cdot 6\sqrt{2} cm \Rightarrow OM= \frac{6\sqrt{2}}{{3}} cm \Rightarrow OM= 2\sqrt{2}} cm.

Aplicăm Teorema lui Pitagora în \bigtriangleup VOM pentru a afla apotema VM.

\bigtriangleup VOM((\widehat{VOM})=90^\circ )\RightarrowT.P \Rightarrow VM^2=VO^2+OM^2  \Rightarrow VM^2= (2\sqrt{6} cm)^2 + (2\sqrt{2} cm)^2

\Rightarrow VM^2= 2^2\cdot (\sqrt{6})^2 cm^2 + 2^2\cdot (\sqrt{2})^2 cm^2

\Rightarrow VM^2= 4\cdot 6 cm^2 + 4\cdot 2 cm^2

\Rightarrow VM^2= 24 cm^2 + 8 cm^2

\Rightarrow VM^2= 32 cm^2   \Rightarrow VM= \sqrt{32 cm^2}  \Rightarrow VM= \sqrt{16 \cdot2} cm

 \Rightarrow VM= 4\sqrt{2} cm

Aflăm și perimetrul bazei. Pentru ca \bigtriangleup ABC  este echilateral  \Rightarrow P_{b}= 3 \cdot l  \Rightarrow P_{b}= 3 \cdot AB

 \Rightarrow P_{b}= 3 \cdot 4\sqrt{6} cm  \Rightarrow P_{b}= 12\sqrt{6} cm.

Înlocuim în aria laterală și obținem:

 A_{l}= \frac{P_{b}\cdot a_{p}}{2}  \Rightarrow A_{l}= \frac{12\sqrt{6} cm\cdot 4\sqrt{2} cm}{2}   \Rightarrow A_{l}= \frac{12 \cdot 4 \sqrt{6\cdot 2} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{12} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{4 \cdot 3} cm^2}{2}  \Rightarrow A_{l}= \frac{48\cdot 2 \sqrt{ 3} cm^2}{2}  \Rightarrow A_{l}= 48\sqrt{ 3} cm^2

  • b) d(O; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]  și  \left \{ O \right \} \in AM\Rightarrow \left [ OM \right ]\perp \left [ BC \right ]

  • OM=2\sqrt{2}cm

 

  • c) d(A; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]

  • d) m(\widehat{ (VOM),(ABC)} )=?

\bigtriangleup VOM((\widehat{VOM})=90^\circ ) : sin (\widehat{VMO})= \frac{VO}{{VM}} =\frac{2\sqrt{6}cm}{4\sqrt{2}cm} =\frac{\sqrt{3}}{2}   \Rightarrow m((\widehat{VMO})= 60^\circ)  \Rightarrow m((\widehat{VMA})= 60^\circ).

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

Model Rezolvat Teza clasa a V-a Semestrul II

Dacă A reprezintă succesul în viață, Atunci A= x+y+z, în care x reprezintă munca, y reprezintă joaca, iar z să știi să-ți ții gura. – Albert Einstein.

Dragul meu părinte bine te-am regăsit! Azi este ultima zi de vacantă! De mâine începe școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(more…)

Model Propus Teza clasa a V-a Semestrul II

Exercițiul 1 (1punct):

Scrieți sub formă de fracție ordinară numerele: 0,3;     2,07;     2,1(3).

Rezolvare:

 0,3=\frac{3}{10} ;

   2,07=\frac{207}{100} ; 

2,1(3)=\frac{213-21}{90}=  \frac{192}{90}^{{(2}}=  \frac{96}{45}^{{(3}}=  \frac{32}{15}

Exercițiul 2 (1punct):

Calculați: 9,35 : 5 - 0,87=

  • Rezolvare:

9,35 : 5 - 0,87=1,87 - 0,87=1

Exercițiul 3 (1punct):

Aflați numărul x care este soluție a ecuației:

7,18-x=3,21

Rezolvare:

 7,18-x=3,21 \Rightarrow x=7,18 - 3,21 \Rightarrow x=3,97

Exercițiul 4 (1,5puncte):

Calculați:  1,5\cdot \left [ 6,4+2,2\cdot (3,1^2-4,61) \right ] : 2=

Rezolvare:

Conform ordinii efectuarii operațiilor,mai întâi trebuie să ridicăm la putere.

 1,5\cdot \left [ 6,4+2,2\cdot (3,1^2-4,61) \right ] : 2=

 1,5\cdot \left [ 6,4+2,2\cdot (9,61-4,61) \right ] : 2=

Următoarea operație pe care trebuie să o facem este scăderea din paranteza rotundă. Pentru că am efectuat toate operațiile din paranteza rotundă, transformăm paranteza pătrată în paranteză rotundă.

 1,5\cdot (6,4+2,2\cdot 5 ) : 2=

Următoarea  operație este înmulțirea din paranteza rotundă.

 1,5\cdot (6,4+11 ) : 2=

Apoi adunarea din paranteza rotundă.

 1,5\cdot 17,4 : 2=

Pentru că înmulțirea și împărțirea sunt operații de același ordin și nu mai avem nici o paranteză efectuăm operațiile în ordinea în care sunt scrise. Astfel obținem:

26,10 : 2=13,05

Exercițiul 5 (1,5 puncte):

Rezolvați ecuația:  \left [ 3\cdot(x+2,7)-4,2 \right ] : 1,5 = 7,2

Rezolvare:

Această ecuație se rezolvă pe metoda pasului invers.

 \left [ 3\cdot(x+2,7)-4,2 \right ] : 1,5 = 7,2

Prima oară îl eliminăm pe 1,5 prin operația inversă împărțirii, adică înmulțim întreaga relație cu 1,5.

 \left [ 3\cdot(x+2,7)-4,2 \right ] : 1,5 = 7,2 / \cdot1.5

 \left [ 3\cdot(x+2,7)-4,2 \right ] = 7,2\cdot1.5

Putem elimina și paranteza pătrată.

 3\cdot(x+2,7)-4,2 = 10,8

La pasul II scăpăm de 4,2 prin operația inversă scăderii și anume adunare.

 3\cdot(x+2,7)-4,2 = 10,8 / +4,2

 3\cdot(x+2,7) = 10,8 +4,2

 3\cdot(x+2,7) = 15

Următorul pas (III) împărțim cu trei întreaga relație.

 3\cdot(x+2,7) = 15 / :3

 (x+2,7) = 15 :3

 x+2,7 = 5

Ultima operație scădem 2,7.

 x+2,7 = 5 / -2,7

 x= 5-2,7

 x= 2,3

Exercițiul 6 (1,5 puncte):

Media aritmetică a două numere este 8,6. Aflați cele două numere dacă se știe că diferența lor este 1,5.

  • Rezolvare:
  • Notăm cu a și b cele două numere.
  • Scriem formula mediei aritmetice pentru cele două numere

M_{{a}}= \frac{a+b}{2}

M_{{a}}=8,6 \Rightarrow  \frac{a+b}{2}=8,6 \Rightarrow  \frac{a+b}{2}=8,6 / \cdot2 \Rightarrow    a+b=8,6 \cdot 2

\Rightarrow  a+b=17,2

Dar mai știm din enunțul problemei că diferența celor două numere este 1,5.

Astfel obținem următoarea relație:  a-b=1,5.

Dar mai sus am obținut și relația:    a+b=17,2

Adunăm cele două relații și obținem:  a+b+a-b=17,2+1,5 \Rightarrow

 2a=18,7 \Rightarrow  a=18,7:2 \Rightarrow   a=9,35

Înlocuim a în prima relație și îl aflăm pe b.

 9,35 +b =17,2 \Rightarrow b= 17,2 - 9,35 \Rightarrow  b=7,85

Exercițiul 7 (1 punct):

Calculați și exprimați rezultatul în  m^{2}: 0,07 dam^2 -2,3 m^2+140 dm^2=?m^2

Rezolvare:

Transformăm  0,07 dam^2  și 140 dm^2  în m^2 .

Știm că 1 dam =10 m atunci 1 dam^2 =100 m^2

și 1 dm =0,1 m atunci 1 dm^2 =0,01 m^2

Astfel 0,07 dam^2 =7 m^2 și 140 dm^2 =1,4 m^2

Înlocuim și obținem: 0,07 dam^2 -2,3 m^2+140 dm^2=7m^2 -2,3 m^2 +1,4 m^2

4,7m^2 +1,4 m^2=6,1 m^2

Exercițiul 7 (1,5 puncte):

Un dreptunghi are perimetrul egal cu 16 dm. Știind că lățimea este egală cu o treime din lungime, aflați aria dreptunghiului.

Rezolvare:

dreptunghi

Știm că perimetrul este suma laturilor și că P_{{ABCD}}=2\cdot L+2\cdot l

Din datele problemei mai știm l = \frac{1}{3}\cdot L   \Rightarrow L =3\cdot l

Înlocuim în formula perimetrului și aflăm lățimea.

P_{{ABCD}}=2\cdot L+2\cdot l \Rightarrow  P_{{ABCD}}=2\cdot 3\cdot l+2\cdot l \Rightarrow  P_{{ABCD}}=6\cdot l+2\cdot l \Rightarrow  P_{{ABCD}}=8\cdot l \Rightarrow  8\cdot l = 16 dm \Rightarrow l= 16 dm :8  l= 2 dm

Înlocuim și aflăm lungimea :  L =3\cdot l \Rightarrow L=3\cdot 2 dm \Rightarrow L=6 dm

Știm Aria dreptunghiului : A_{{ABCD}}=L \cdot l \Rightarrow  A_{{ABCD}}=6dm \cdot 2dm \Rightarrow  A_{{ABCD}}=12dm^2

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

"Math More Easy Club"

Cu mare drag şi mult respect Alina Nistor!