Etichetă: #evaluarea nationala

Teste Antrenament Evaluare Nationala Matematica 2020

"Fără educaţie, ce este omul? Un splendid sclav, un sălbatic al raţiunii.”

 Joseph Addison

Dragul meu părinte, bine te-am regăsit!

Postez aici modelele de Teste de antrenament pentru Evaluarea Nationala 2020 propruse de Ministerul Educației.

Testul 40

 

Testul 39

Testul 38

Testul 37

Testul 36

Testul 35           Barem Testul 35

Testul 34           Barem Testul 34

Testul 33           Barem Testul 33

Testul 32           Barem Testul 32

Testul 31            Barem Testul 31

Testul 30

Testul 29

Testul 28

Testul 27

Testul 26

Testul 25

Testul 24

Testul 23

Testul 22

Testul 21

Testul 20

Testul 19

Testul 18

Testul 17

Testul 16

Testul 15

Testul 14

Testul 13

Testul 12

Testul 11

Testul 10

Testul 9

Testul 8

Testul 7

Testul 6

Testul 5

Testul 4

Testul 3

Testul 2

Testul 1

Relații între mulțimi de numere


Dragul meu părinte bine te-am regăsit. În articolul de data trecută am discutat despre Operații cu mulțimi. Am invățat ce operații putem face intre mulțimi, despre reuniunea a două mulțimi, despre intersecția a două mulțimi și diferența a două mulțimi dar și diferența simetrică a  două mulțimi. Azi te invit să studiem împreună lecția Relații între Mulțimi, să vedem ce sunt mulțimile egale și mulțimile disjuncte dar și mulțimile finite și mulțimile infinite.

(mai mult…)

Două mulțimi A și B sunt egale, dacă sunt formate din același elemente. Se notează A=B.

  • Observație: Orice element care aparține mulțimii A este și element al mulțimii B și reciproc orice element care aparține mulțimii B este și element al mulțimii A.
  • Dacă cel puțin un element al mulțimii A nu aparține mulțimii B sau invers, se spune ca mulțimile A și B sunt diferite și se notează: A \neq B .

Dacă intersecția a două mulțimi A și B este mulțimea vidă (cele două mulțimi A și B nu au nici un element comun) atunci mulțimile A și B sunt disjuncte.

  • Incluziunea: Mulțimea A este inclusă în mulțimea B și se notează : A\subset B , dacă orice element al mulțimii A aparține mulțimii B.

  • Dacă mulțimea B include mulțimea se notează: B \supset A
  • Dacă cel puțin un element al mulțimii A nu aparține și mulțimii B spunem că mulțimea A nu este inclusă în mulțimea B și notăm: A \not \subseteq B  sau spunem că B nu include mulțimea A și notăm: B \not \supset \ A .

  • Observații:
  • Mulțimea vidă este inclusă în orice mulțime       \not \bigcirc\subset A
  • Orice mulțime este inclusă în ea însăși         A \subset A .
  • Dacă A și B sunt două mulțimi, astfel încât A \subset B  și B \subset A  atunci  A=B .
  • Dacă A, B și C sunt trei mulțimi, astfel încât A \subset B  și B \subset C ,  atunci A \subset C .

Submulțimi:

  • Dacă mulțimea A este inclusă în mulțimea B, adică A \subset B  se spune că mulțimea A este o submulțime a mulțimii B.

  • Observații:
  • Mulțimea vidă este submulțime a oricărei mulțimi.
  • Numărul submulțimilor unei mulțimi A este egal cu  2^{{card A}}
  • Mulțimea submulțimilor (părților) lui A se notează cu P(A).

Exemplu:  Fie mulțimea M=\left \{ 1,3,5 \right \}. CArdinalul mulțimii M Card M =3 . Mulțimea M are  2^{3}=8 submulțimi.

\not\bigcirc, \left \{ 1 \right \}, \left \{ 3 \right \}, \left \{ 5 \right \}, \left \{ 1,3 \right \}, \left \{ 1,5 \right \}, \left \{ 3,5 \right \}, M.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rădăcina pătrată a unui număr natural pătrat perfect

clasa a VII-aDragul meu părinte, bine te-am regăsit!Până în clasa a VII-a copilul tău a studiat următoarele Mulţimi de Numere: Mulţimea Numerelor Naturale, Mulţimea Numerelor Întregi şi Mulţimea Numerelor Raţionale.Capitolul II din programa de matematica pentru clasa a VII-a prevede studierea Numerelor Reale. Prima lecţie din acest capitol este Rădăcina pătrată a unui număr natural pătrat perfect.

 

 

  • Definiţie:Un număr natural "a" se numeşte pătrat perfect dacă există un număr natural "n" astfel încât : n ^{2}=a
  • Rădăcina Pătrată:

    Fie "a" un număr natural pătrat perfect. Numărul natural "n" cu proprietatea: n ^{2}=a se numeşte rădăcină pătrată a numărului "a" şi se notează: n=\sqrt{a}

  • Exemple:   \sqrt{25}=\sqrt{5^{2}}=5
  •  \sqrt{100}=\sqrt{10^{2}}=10
  •  \sqrt{0}=\sqrt{0^{2}}=0

Observaţie: Evident numai unul este număr natural : \sqrt{n}=n

EXEMPLU: 

 \sqrt{ 25\cdot a^{4}\cdot b^{2}}=\sqrt{ (5\cdot a^{2}\cdot b)^{2}}=\left \| 5\cdot a^{2}\cdot b \right \|=5\cdot a^{2}\cdot \left \| b \right \|

Dacă te intrebi cum se aplica algoritmul de extragere a rădăcinii pătrate te invit sa citesti si lectia: http://mathmoreeasy.ro/algoritmul-de-extragere-a-radacinii-patrate/ 

Sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!