Etichetă: clasa a VIII-a

Teste Antrenament Evaluare Nationala Matematica 2020

"Fără educaţie, ce este omul? Un splendid sclav, un sălbatic al raţiunii.”

 Joseph Addison

Dragul meu părinte, bine te-am regăsit!

Postez aici modelele de Teste de antrenament pentru Evaluarea Nationala 2020 propruse de Ministerul Educației.

Testul 40

 

Testul 39

Testul 38

Testul 37

Testul 36

Testul 35           Barem Testul 35

Testul 34           Barem Testul 34

Testul 33           Barem Testul 33

Testul 32           Barem Testul 32

Testul 31            Barem Testul 31

Testul 30

Testul 29

Testul 28

Testul 27

Testul 26

Testul 25

Testul 24

Testul 23

Testul 22

Testul 21

Testul 20

Testul 19

Testul 18

Testul 17

Testul 16

Testul 15

Testul 14

Testul 13

Testul 12

Testul 11

Testul 10

Testul 9

Testul 8

Testul 7

Testul 6

Testul 5

Testul 4

Testul 3

Testul 2

Testul 1

Exerciții rezolvate la Adunarea și Scăderea Fracțiilor

"Învată tot ce poți, în orice moment disponibil, de la oricine și întotdeuna va veni o vreme când te vei simți recompensat pentru ceea ce ai învațat"

Sarah Caldwel

Dragul meu părinte bine te-am regăsit! Azi te invit să rezolvăm și să explicăm pas cu pas  împreună cateva exerciții la "Adunarea și Scăderea Fracțiilor".

Exercițiul 1:        Calculați:

a) \frac{7}{13}+\frac{2}{13}+\frac{5}{13}=

b) -\frac{10}{9}+\frac{11}{9}+(-\frac{7}{9})=

c) -\frac{3}{{5}}+(-\frac{5}{{6}})+(+\frac{1}{{2}})+(+\frac{4}{{15}})=

d)-\frac{13}{{18}}+(-\frac{5}{{108}})+(-\frac{14}{{5}})+(-\frac{7}{{36}})=

Rezolvare:

  • a) \frac{7}{13}+\frac{2}{13}+\frac{5}{13}=

Observăm că cele 3 fracții au acelasi numitor, în acest caz efectuez calculele între numărători și pastrez numitorul.

  • -\frac{7}{13}+\frac{2}{13}+\frac{5}{13}= \frac{7+2+5}{13}= \frac{14}{13}

 

  • b) -\frac{10}{9}+\frac{11}{9}+(-\frac{7}{9})=\frac{-10+11-7}{9}=

Avem la numărător -10+11-7 numere întregi cu semne diferite așa că vom respecta regula de adunare dacă termenii au semne diferite pastrăm semnul celui mai mare și efectuăm scădere. Noi avem -10+11   păstrăm semnul + și efectuîm 11-10

\frac{-10+11-7}{9}=\frac{+1-7}{9}=\frac{-6}{9}= \frac{-6}{9}^{(3}= \frac{-2}{3}

  • c) -\frac{3}{{5}}+(-\frac{5}{{6}})+(+\frac{1}{{2}})+(+\frac{4}{{15}})=

Observăm că în acest exercițiu fracțiile au numitor diferit așa că trebuie să determinăm numitorul comun.

Pentru a determina numitorul comun trebuie să calculăm c.m.m.m.c-ul numerelor de la numitor 5, 6, 2, 15.

Descompunem în factori primi cele 4 numere:

5=5

6=2\cdot3

2=2

15=3\cdot5

Calculăm c.m.m.m.c\left [ 5,6,2,15 \right ]=2\cdot3\cdot5=30

Deci numitorul comun este 30.

Trebuie să amplificăm fiecare fracție astfel încât să obținem  numitorul 30.

-_{{}}^{6)}\textrm{\frac{3}{{5}}}+(-_{{}}^{5)}\textrm{\frac{5}{{6}}})+ (+_{{}}^{15)}\textrm{\frac{1}{{2}}})+(+_{{}}^{2)}\textrm{\frac{4}{{15}}}) =

-\frac{18}{{30}}}+(-{\frac{25}{{30}}})+ (+{\frac{15}{{30}}})+(+{\frac{8}{{30}}})=

Știm că semnul (+) înmulțit cu semnul (-) obținem (-) , iar semnul (+) înmulțit cu semnul (+) obținem (+) . Astfel obținem:

  • -\frac{18}{{30}}}+(-{\frac{25}{{30}}})+ (+{\frac{15}{{30}}})+(+{\frac{8}{{30}}})=
  • -\frac{18}{{30}}}-{\frac{25}{{30}}}+ {\frac{15}{{30}}}+{\frac{8}{{30}}}=
  • \frac{-18-25+15+8}{{30}}}=
  •   \frac{-43+15+8}{{30}}}=
  •  \frac{- 28+8}{{30}}}=  \frac{- 20}{{30}}}^{(10} =- \frac{ 2}{{3}}}

d)      -\frac{13}{{18}}+(-\frac{5}{{108}})+(-\frac{14}{{5}})+(-\frac{7}{{36}})=

Determinăm numitorul comun:

18= 2\cdot 3^2

108= 2^2\cdot 3^3

5=5

36= 2^2\cdot 3^2

[18, 108, 5, 36]= 2^2\cdot 3^3\cdot 5=4\cdot 27\cdot 5=540

Trebuie să amplificăm fiecare fracție astfel încât să obținem  numitorul 540.

-_^{30)}\textrm{\frac{13}{{18}}}+(-_^{5)}\textrm{\frac{5}{{108}}})+(-_^{108)}\textrm{\frac{14}{{5}}})+(-_^{15)}\textrm{\frac{7}{{36}}})=

-{\frac{13\cdot30}{{18\cdot 30}}}+(-{\frac{5\cdot 5}{{108\cdot 5}}})+(-{\frac{14\cdot 108}{{5\cdot 108}}})+(-{\frac{7\cdot 15}{{36\cdot 15}}})=

-{\frac{390}{{540}}}+(-{\frac{25}{{540}}})+(-{\frac{1512}{{540}}})+(-{\frac{105}{{540}}})=

{\frac{-390-25-1512-105}{{540}}}=  {\frac{-(390+25+1512+105)}{{540}}}=  {\frac{-2032}{{540}}}^{(2}=  {\frac{-1016}{{270}}}^{(2}=  {\frac{-508}{{135}}}

 

Exercițiul 2:  Efectuați calculele:

a) [-3\frac{1}{{2}} +1\frac{1 }{{15}} ] + [-1\frac{1}{{7}}+2\frac{7 }{{3}} ]=

Introducem întregii în fracție:

(-\frac{3\cdot2+1}{{2}} +\frac{1\cdot 15+1 }{{15}} ) + (-\frac{1\cdot7+1}{{7}}+\frac{2\cdot3+7 }{{3}} )=

(-\frac{7}{{2}} +\frac{16 }{{15}} ) + (-\frac{8}{{7}}+\frac{13}{{3}} )=

Determinăm numitorul comun și aducem fracțiile la același numitor:

Știm că 2,3,7 și 5 sunt numere prime între ele. Numitorul comun este 2\cdot 3\cdot 5\cdot 7= 210

Amplificăm fracțiile și obținem:

(-_{{}}^{105)}\textrm{\frac{7}{{2}}}+_{{}}^{14)}\textrm{\frac{16}{{15}}})+(-_{{}}^{30)}\textrm{\frac{8}{{7}}}+_{{}}^{70)}\textrm{\frac{13}{{3}}})=  (-{\frac{735}{{210}}}+{\frac{224}{{210}}})+(-{\frac{240}{{210}}}+{\frac{910}{{210}}})=

{\frac{-735+224}{{210}}}+{\frac{-240+910}{{210}}}=  {\frac{-511}{{210}}}+{\frac{670}{{210}}}=  {\frac{-511+670}{{210}}}= {\frac{159}{{210}}}^{(3}= {\frac{53}{{70}}}

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții Rezolvate la Graficul Funcției

"Nu îmi învăț niciodată studenții; tot ce fac este să le creez condițiile pentru ca ei să învețe."
Albert Einstein

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții la Graficul unei Funcții! (mai mult…)

Exercițiul 1:

Fie funcția f \ \ \ : \ \ \ R \rightarrow R , f (x)=-2x+1.

a) Reprezentați grafic funcția.

b)Determinați numărul real a \in R, știind că punctul A(2a-1,\ \ \ a-2) este situate pe graficul funcției f(x).

c) Calculați suma S=f(0)+f(1)+f(2)+..........+f(2011)

Rezolvare:

a) Pentru a obține punctul în care graficul funcției intersectează axa OX punem condiția ca  y=0 \Rightarrow f(x)=0 .

  •  \cap OX :   y=0 \Rightarrow f(x)=0 \Rightarrow -2\cdot x+ 1=0

\Rightarrow  -2\cdot x=-1    \Rightarrow x=\frac{-1}{{-2}}

\Rightarrow   x=\frac{1}{{2}}   \Rightarrow A( \frac{1}{{2}} \ ; 0)

  • Pentru a obține punctul în care graficul funcției intersectează axa OX punem condiția ca  x=0
  • \cap OY:  x=0  \Rightarrow  f(0)= -2\cdot 0+ 1 = 1
  •                        B(0\ \ ;\ \ \ 1)

b) Pentru a arăta că punctul A(2a-1,\ \ \ a-2) aparține graficului funcției f(x) punem condiția ca : f(2a-1)= a-2 adică în forma funcției f(x)  înlocuim x cu 2a-1 și obținem:

f(2a-1)= a-2 \Rightarrow -2\cdot (2a-1) + 1 = a-2 \Rightarrow -4\cdot a+2 + 1 = a-2

\Rightarrow -4a+3 = a-2

Trecem toți termenii cu a într-o parte și toți termenii fară a în cealaltă parte.

\Rightarrow -4a-a=-2-3  \Rightarrow -5a=- 5 \ \ \ \ /:(-5)   \Rightarrow a= 1

c)  S=f(0)+f(1)+f(2)+... . . . . + f(2011)

Calculăm f(0), f(1), f(2), . . . . . , f(2011) și observăm că obținem Suma Gauss.

f(0)= -2 \cdot 0 + 1= 0+1=1

f(1)= -2 \cdot 1 + 1= - 2 +1= -1

f(2)= -2 \cdot 2 + 1= - 4 +1= -3

. . . . . . ..  .. . . . . . . .. . .. . . . .. . . . . . . .. . . . .

 f(2011)= -2 \cdot 2011 + 1= - 4 022+1= -4021

Obținem :

S= 1-1-3-5-. . .. . . . -4021  \Rightarrow S= -(3+5+. . .. . . . +4021)

Aplicăm Suma Gauss a numerelor impare :

n= (4021-3) \ \ \ : \ \ \ 2 +1  \Rightarrow n= 4018 \ \ \ : \ \ \ 2 +1  \Rightarrow n= 2009 +1 = 2010 (termeni)

S=-[2010\cdot (4021+3) \ \ \ : \ \ \ 2]

S=-[2010\cdot 4024 \ \ \ : \ \ \ 2]

S=-[2010\cdot 2012]

S=- 4 044 120

Exercițiul 2:

Se consideră funcția    f : R\rightarrow R  , f(x)= -\sqrt{3}x+2\sqrt{3}

a) Reprezentați grafic funcția

b) Determinați aria triunghiului format de graficul funcției și axele de coordinate.c

c) Determinați distanța de la punctul  O(0,0)   la graficul funcției f(x).

Rezolvare:

  • a) \cap OX :   y=0 \Rightarrow f(x)=0 \Rightarrow -\sqrt{3}\cdot x+2\sqrt{3} = 0

\Rightarrow -\sqrt{3}x=-2\sqrt{3}

\Rightarrow x=\frac{2\sqrt{3}}{\sqrt{3}}

\Rightarrow   x= __{{}}^{\sqrt{3})}\textrm{\frac{2\sqrt{3}}{\sqrt{3}} }

\Rightarrow   x=2  \Rightarrow A(2\ \ \ ; \ \ \ 0 )

  • \cap OY:  x=0  \Rightarrow  f(0)= -\sqrt{3}\cdot 0+2\sqrt{3} = 2\sqrt{3}
  •                        \Rightarrow B(0 , 2\sqrt{3})

b) Calculăm  A_{\bigtriangleup AOB }. Observăm că \bigtriangleup AOB este dreptunghic în unghiul O astfel putem aplica formula:

 A_{{\bigtriangleup AOB}}= \frac{c_{1}\cdot c_{2}}{2}= \frac{OA\cdot OB}{2}= \frac{2\cdot 2\sqrt{3}}{2}=2\sqrt{3} u.m^{{2}}

c)  Știm că distanța de la un punct la o dreaptă este perpendiculara din acel punct pe dreaptă. Adică înălțimea triunghiului AOB. Pentru a afla înălțimea ne folosim de aria triunghiului pe care am calculate-o deja. Folosim formula:

 A_{\triangle AOB}= \frac{b \cdot h}{{2}}   = \frac{AB \cdot OM}{{2}}

Calculăm  AB cu formula distanței dintre punctele A(2,0) și  B(0, 2\sqrt{3}) astfel:

AB= \sqrt{(x_{{B}}-x_{{A}})^2+(y_{{B}}-y_{{A}})^2}

x_{{A}}=2   și  y_{{A}}=0 iar x_{{B}}=0 și y_{B}=2\sqrt{3} , înlocuim in formula și obținem:

AB=\sqrt{(x_{{B}}-x_{{A}})^2+(y_{{B}}-y_{{A}})^2}

AB=\sqrt{{(2-0})^2+(2\sqrt{3}-0})^2}}   \Rightarrow AB=\sqrt{{2^2+(2\sqrt{3})^2}}

\Rightarrow AB=\sqrt{{4+2^2 \cdot 3}}  \Rightarrow AB=\sqrt{{4+12}}  \Rightarrow AB=\sqrt{{16}} = 4

Înlocuim în formula ariei și aflăm OM.

2\sqrt{3}u.m^2= \frac{4 u.m \cdot OM}{2} \ \ \ \ \ / \cdot 2

2 \cdot 2\sqrt{3}u.m^2= 4 u.m \cdot OM  \Rightarrow 4\sqrt{3}u.m^2= 4 u.m \cdot OM \ \ \ \ / \ \ : \ \ 4 u.m

\Rightarrow OM = \sqrt{3} \ \ u.m

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Graficul unei funcții  pentru copilul tău o gasești aici:Fisa de lucru Graficul unei functii

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.” 

Exerciții rezolvate la Factorul Comun la Puteri

"Un ratat nu știe ce va face dacă pierde, dar vorbește despre ce va face dacă va castiga. Un învingător nu vorbește despre ce va face dacă va caștiga, dar știe ce va face dacă pierde."
Eric Berne
Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună cateva exerciții la "Factorul comun la Puteri".

Exercițiul 1:

Efectuați calculele, folosind factorul comun:

a) 3^{96}+3^{98}+3^{100}

b) 2\cdot2^{47}+3\cdot2^{48}+2^{50}

c) 8^{300}-24\cdot8^{298}-64\cdot8^{297}

d) 3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}

e) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

(mai mult…)

  • Rezolvare: 
  • a) 3^{96}+3^{98}+3^{100}
  • Adunarea este o operație de gradul I și ridicarea la putere este o operație de gradul III, iar ordinea efectuării operațiilor ne spune că trebuie să facem mai întâi operațiile de gradul III și apoi cele de gradul I

Observăm că avem puteri foarte mari și nu putem ridica la putere așa că ne vom folosi de factorul comun și vom da factor comun puterea cea mai mică.

Observăm că 3^{96} este puterea cea mai mică asa ca îl dăm factor comun pe 3^{96} și obținem:

3^{96}\cdot(3^{96-96}+3^{98-96}+3^{100-96})

Scădem puterile și obținem:

3^{96}\cdot(3^{0}+3^{2}+3^{4})

Ridicăm la putere termenii din paranteza rotundă:

3^{96}\cdot(1+9+81)=3^{96}\cdot91

  • b)      2\cdot2^{47}+3\cdot2^{48}+2^{50}

Observăm că  2^{47} este puterea cea mai mică așa că îl dăm factor comun pe 2^{47} și obținem:

2^{47}\cdot(2\cdot2^{47-47}+3\cdot2^{48-47}+2^{50-47})

Scădem puterile și obținem:

2^{47}\cdot(2\cdot2^{0}+3\cdot2^{1}+2^{3})

Ridicăm la putere termenii din paranteza rotundă și obținem:

2^{47}\cdot(2\cdot 1+3\cdot2+8)

Efectuăm  înmulțirile și obținem:

2^{47}\cdot(2+6+8)=

Efectuăm adunarea din paranteză și obținem:

2^{47}\cdot 16=

Știm că 16 îl putem scrie în baza 2 ca 2^{4} și obținem

2^{47}\cdot2^{4}=

Aplicăm Regulile de calcul cu puteri și scriem baza și adunam exponenții:

2^{47+4}=2^{51}

  • c)   8^{300}-24\cdot8^{298}-64\cdot8^{297}

Observăm că 8^{297} este cea mai mică putere, îl dăm factor comun pe 8^{297} și obținem:

8^{297}\cdot(8^{300-297}-24\cdot8^{298-297}-64\cdot8^{297-297})

Scădem puterile și obținem:

8^{297}\cdot(8^{3}-24\cdot8^{1}-64\cdot8^{0})

Ridicăm la putere termenii din paranteză și obținem:

8^{297}\cdot(512-24\cdot8-64\cdot1) =

Efectuăm înmulțirile din paranteză și obținem:

  • 8^{297}\cdot(512-192-64) =

Efectuăm scăderea din paranteza rotundă și obținem:

8^{297}\cdot 256 =

Știm că putem scrie 8=2^3 și 256=2^8 și obținem:

(2^3)^{297}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri înmulțim puterile și obținem:

2^{3\cdot297}\cdot 2^8=2^{891}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri, scriem baza și adunam puterile și obținem astfel:

2^{891+8}=2^{899}

  • d)  3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}=

Aplicăm Regulile de calcul cu puteri și obținem:

3^{2n}\cdot3^2+7\cdot 3^{2n}\cdot3^1-6\cdot3^{2n}=

Observăm că se repetă în fiecare termen al adunării 3^{2n},  îl dăm factor comun și obținem:

3^{2n}\cdot(3^2+7\cdot3^1-6\cdot1)=

Ridicăm la putere termenii din paranteza rotundă și obținem:

3^{2n}\cdot(9+7\cdot3-6)=

Efectuăm Înmulțirea din paranteză și obținem:

3^{2n}\cdot(9+21-6)=

Efectuăm calculele din paranteza rotundă și obținem:

3^{2n}\cdot 24=3^{2n}\cdot 3\cdot8=

Aplicăm Regulile de calcul cu puteri scriem baza și adunăm exponenții și obținem:

3^{2n+1}\cdot8

  • d) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri  transformăm bazele pe 6 îl scriem 6=2\cdot3 , pe 4=2^2, 9=3^2 , pe  18=2\cdot3^2  și obținem:

(2\cdot3)^{2n+1}+6\cdot (2^2)^{n+1}\cdot (3^2)^{n+2}+(2\cdot3^2)^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri, distribuim puterea și obținem:

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2\cdot(n+1)}\cdot 3^{2\cdot(n+2)}+2^{n+1}\cdot3^{2(n+1)}\cdot2^{n+1}

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2n+2}\cdot 3^{2n+4}+2^{n+1}\cdot3^{2n+2}\cdot2^{n+1}

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n}\cdot2^1\cdot3^{2n}\cdot3^2\cdot2^{n}\cdot2^1

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n+n}\cdot2^{1+1}\cdot3^{2n}\cdot3^2

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{2n}\cdot2^{2}\cdot3^{2n}\cdot3^2

Observăm că se repeta 2^{2n}\cdot3^{2n} și îl dăm factor comun, astfel obținem:

2^{2n}\cdot3^{2n}\cdot(2^1\cdot3^1+6\cdot2^2\cdot3^4+2^{2}\cdot3^2)

Ridicăm la putere termenii din paranteza rotundă:

2^{2n}\cdot3^{2n}\cdot(2\cdot3+6\cdot4\cdot81+4\cdot9)

Efectuăm înmulțirile din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot(6+1944+36)

Efectuăm calculele din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot 1986=(2\cdot3)^{2n}\cdot 6\cdot331=(6)^{2n}\cdot 6^1\cdot331=(6)^{2n+1}\cdot331

Segment de dreaptă. Semidreapta

"Singurul lucru mai rău decât să începi ceva și să ratezi........ este să nu începi acel ceva"

Seth Godin

Dragul meu părinte bine te-am regăsit. Azi îți propun o nouă lecție de Geometrie în Plan.  În articolele anterioare am vorbit despre Dreaptă și Plan. Azi îți propun lecția  "Segment de dreaptă. Semidreapta".

Dacă copilul tau preferă o lecție video vă invit pe canalul meu de YouTube să urmărești lecția Segment de dreaptă. Semidreapta".

PS: Asigura-te ca te-ai abonat la canalul meu de YouTube  pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Segment de dreaptă:

  • Este o porțiune din acea dreaptă delimitat de două puncte distincte numite extremitățile segmentului sau capetele segmentului.
  • Se notează : \left [ AB \right ]

Segmentul de dreaptă închis:

  • Se notează: \left [ AB \right ]
  • Include cele două puncte A și B

Segmentul de dreaptă deschis:

  • Se notează: \left ( AB \right )
  • nu include cele două puncte A și B.

Segmentul de dreaptă nul:

  • Este segmentul de dreaptă care are proprietatea că punctele care delimitează segmentul coincid.

Semidreapta: 

  • Este un segment de dreaptă mărginit la un singur capăt.
  • Se notează: \left [ MN
  • M se numește origine

Semidreaptă închisă: 

  • Este semidreapta care își conține originea
  • Se notează: \left [ MN

Semidreaptă deschisă:

  • Este semidreapta care nu își conține originea.
  • Se notează: \left ( MN

Semidrepte opuse:

  • Sunt două semidrepte conținute în aceeași dreaptă, care au aceeași origine și sensuri diferite.

Semidrepte identice:

  • Sunt două semidrepte de acelasi fel (închise sau deschise), conținute în aceeași dreaptă, care au aceeași origine și același sens.

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor

Model Rezolvat Teza clasa a VIII-a Semestrul II

Şcoala trebuie să te înveţe a fi propriul tău dascăl, cel mai bun şi cel mai aspru.

Nicolae Iorga

Dragul meu părinte bine te-am regăsit!  A început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(mai mult…)

Model Propus Teza clasa a VIII-a Semestrul II

 

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului: \sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  este:……………………………

Rezolvare:

\sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  =\sqrt{2\cdot 3}-3\sqrt{6} =\sqrt{6}-3\sqrt{6} =-2\sqrt{6}

Exercițiul 2 (1 punct):

Simplificând cu x^2+1  raportul : \frac{x^4-1}{{x^2+1}} se obține:.....................................

Rezolvare:

Aplicăm formulele de calcul prescurtat pentru expresia: x^4-1 și se obține:

\frac{x^4-1}{{x^2+1}}=\frac{(x^2)^2-1^2}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}^{(x^2+1}=\frac{x^2-1}{1}=x^2-1.

Exercițiul 3 (1 punct):

Soluția ecuației: x-\sqrt{3}=0 este: ........................................

Rezolvare:

x-\sqrt{3}=0 \Rightarrow x-\sqrt{3}=0 /-\sqrt{3} \Rightarrow x=-\sqrt{3}

Exercițiul 4 (1 punct):

Se considera funcția f : R \to R  ,  f (x)=x-3. Valoarea funcției în punctul x=3 este egală cu: .........................

Rezolvare:

Pentru a afla valoarea functiei în punctul x=3 calculăm  f (3) (îl înlocuim pe x cu 3 în funcție.

 f (3)=3-3=0

Exercițiul 5 (1punct):

Volumul cubului cu lungimea diagonalei de \sqrt{12}cm este: ........................

Rezolvare:

Știm că diagonala cubului este egală cu:

 d=l\sqrt{3}\Rightarrow  l\sqrt{3}=\sqrt{12}\Rightarrow   l\sqrt{3}=\sqrt{4\cdot3}\Rightarrow   l\sqrt{3}=2\sqr{3}\Rightarrow  l\sqrt{3}=2\sqr{3} / :\sqr{3} \Rightarrow   l=2 cm

Știm că volumul cubului are formula:  V= l^3  ; înlocuim latura cu 2 cm și obținem:

 V= l^3 \Rightarrow  V= (2cm)^3 \Rightarrow V= 8cm^3 .

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete.

Exercițiul 1 (1,5 puncte):

Se consideră expresia: E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}.

a) Determina'i valorile reale ale lui x pentru care expresia E(x) este bine definită.

b) Demonstrați că E(x)=1,  (\forall ) x \in R \setminus \left \{ -2; 1\right \}.

Rezolvare:

E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

  • a)Punem condițiile de existență ale fracțiilor (numitorul fracției trebuie să fie diferit de 0):

 x-2 \neq 0 \Rightarrow x \neq 2

 3x-1 \neq 0 \Rightarrow 3x \neq 1 \Rightarrow 3x \neq \frac{1}{{3}}

 \Rightarrow x \in R\setminus \left \{ \frac{1}{{3}} , 2 \right \}

  • E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2

Înmulțim cu a doua fracție răsturnată.

  •  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

Aducem la același numitor în paranteză.

  •  \Rightarrow E(x)=(_{{}}^{x-2)}\textrm{1}- _{{}}^{x-2)}\textrm{x}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}    \Rightarrow E(x)=(\frac{x-2}{x-2}- \frac{x(x-2)}{x-2}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=(\frac{x-2-x^2+2x+x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=\frac{3x-1}{x-2}\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=1

Exercițiul 2 (1,5 puncte):

Se consideră funcția  f : R \to R , f(x)= -x+2 .

a) Calculați media aritmetică a numerelor a=f(0)  și b=f(2) .

b) Reprezentați grafic funcția f(x).

c) Calculați aria triunghiului determinat de graficul funcției f(x) și axele de coordonate OX și OY.

Rezolvare:

  • a) f(0)=0+2=2

f(2)=-2+2=0

 M_{a}=\frac{f(0)+f(2)}{{2}} \Rightarrow  M_{a}=\frac{2+0}{{2}} \Rightarrow  M_{a}=\frac{2}{{2}} \Rightarrow M_{a}= 1

  • b) Pentru a reprezenta grafic funcția f(x) facem intersecția cu cele două axe OX și OY
  • \cap OX : y=0 \Rightarrow f(x)=0   \Rightarrow -x+2=0   \Rightarrow -x=-2  \Rightarrow x=2  \Rightarrow A(2;0)
  • \cap OY:   x=0 \Rightarrow f(0)=0+2=2\Rightarrow B(0;2)

Exercițiul 3 (1,5 puncte):

O piramidă triunghiulară regulată VABC are latura AB=4\sqrt{6} cm și VO=2\sqrt{6} cm, unde O este centrul bazei ABC. Calculați:

a) aria laterală a piramidei;

b) distanța de la O la planul (VBC)

c) distanța de la punctul A la planul (VBC)

d) măsura unghiului format de planele (VBC) și (ABC).

Rezolvare:

Scriem datele problemei și apoi le analizăm:

Realizăm și desenul:

  • a)  Știm formula arie laterale:  A_{l}= \frac{P_{b}\cdot a_{p}}{2}.

Pentru a calcula A_{{l}} trebuie să aflăm mai întâi apotema piramidei a_{{p}}=VM.

VABC este piramidă triunghiulară regulată  \Rightarrow \bigtriangleup ABC  echilateral   \Rightarrow  AM înălțimea \bigtriangleup ABC  \Rightarrow AM=\frac{l\sqrt{3}}{{2}}  \Rightarrow AM=\frac{AB\sqrt{3}}{{2}}   \Rightarrow AM=\frac{4\sqrt{6}\cdot \sqrt{3}}{{2}}  \Rightarrow AM=\frac{4\sqrt{6\cdot 3}}{{2}}    \Rightarrow AM=\frac{4\cdot 3\sqrt{2}}{{2}}   \Rightarrow AM=\frac{12\sqrt{2}}{{2}}   \Rightarrow AM=6\sqrt{2} cm

Știm că OM= \frac{1}{{3}}\cdot AM \Rightarrow OM= \frac{1}{{3}}\cdot 6\sqrt{2} cm \Rightarrow OM= \frac{6\sqrt{2}}{{3}} cm \Rightarrow OM= 2\sqrt{2}} cm.

Aplicăm Teorema lui Pitagora în \bigtriangleup VOM pentru a afla apotema VM.

\bigtriangleup VOM((\widehat{VOM})=90^\circ )\RightarrowT.P \Rightarrow VM^2=VO^2+OM^2  \Rightarrow VM^2= (2\sqrt{6} cm)^2 + (2\sqrt{2} cm)^2

\Rightarrow VM^2= 2^2\cdot (\sqrt{6})^2 cm^2 + 2^2\cdot (\sqrt{2})^2 cm^2

\Rightarrow VM^2= 4\cdot 6 cm^2 + 4\cdot 2 cm^2

\Rightarrow VM^2= 24 cm^2 + 8 cm^2

\Rightarrow VM^2= 32 cm^2   \Rightarrow VM= \sqrt{32 cm^2}  \Rightarrow VM= \sqrt{16 \cdot2} cm

 \Rightarrow VM= 4\sqrt{2} cm

Aflăm și perimetrul bazei. Pentru ca \bigtriangleup ABC  este echilateral  \Rightarrow P_{b}= 3 \cdot l  \Rightarrow P_{b}= 3 \cdot AB

 \Rightarrow P_{b}= 3 \cdot 4\sqrt{6} cm  \Rightarrow P_{b}= 12\sqrt{6} cm.

Înlocuim în aria laterală și obținem:

 A_{l}= \frac{P_{b}\cdot a_{p}}{2}  \Rightarrow A_{l}= \frac{12\sqrt{6} cm\cdot 4\sqrt{2} cm}{2}   \Rightarrow A_{l}= \frac{12 \cdot 4 \sqrt{6\cdot 2} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{12} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{4 \cdot 3} cm^2}{2}  \Rightarrow A_{l}= \frac{48\cdot 2 \sqrt{ 3} cm^2}{2}  \Rightarrow A_{l}= 48\sqrt{ 3} cm^2

  • b) d(O; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]  și  \left \{ O \right \} \in AM\Rightarrow \left [ OM \right ]\perp \left [ BC \right ]

  • OM=2\sqrt{2}cm

 

  • c) d(A; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]

  • d) m(\widehat{ (VOM),(ABC)} )=?

\bigtriangleup VOM((\widehat{VOM})=90^\circ ) : sin (\widehat{VMO})= \frac{VO}{{VM}} =\frac{2\sqrt{6}cm}{4\sqrt{2}cm} =\frac{\sqrt{3}}{2}   \Rightarrow m((\widehat{VMO})= 60^\circ)  \Rightarrow m((\widehat{VMA})= 60^\circ).

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

Model Rezolvat Teza clasa a VII-a Semestrul II

Încearcă să fii un om de valoare și nu neapărat un om de succes. – Albert Einstein

Dragul meu părinte bine te-am regăsit!  De azi a început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(mai mult…)

Model-Teza-clasa-a-VII-a-Semestrul-II

 

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului: \sqrt{20}+\sqrt{45}-3\sqrt{5}  este:.................................

Rezolvare:

\sqrt{20}+\sqrt{45}-3\sqrt{5}= \sqrt{4\cdot 5}+\sqrt{9\cdot 5}-3\sqrt{5}= 2\sqrt{5}+3\sqrt{5}-3\sqrt{5}=2\sqrt{5}

Exercițiul 2 (0,5 puncte):

Raționalizând fracția: \frac{4}{\sqrt{5}-1}  obținem:.....................

Rezolvare:

_{{}}^{\sqrt{5}+1)}\textrm{\frac{4}{\sqrt{5}-1}}={\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}}={\frac{4(\sqrt{5}+1)}{(\sqrt{5})^2-1^2}}= {\frac{4(\sqrt{5}+1)}{5-1}}={\frac{4(\sqrt{5}+1)}{4}}=\sqrt{5}+1

Exercițiul 3 (1 punct):

Rezultatul calculului: (2a+1)^2 - (2a)^2= este...........................

Rezolvare:

(2a+1)^2 - (2a)^2= (2a)^2+2\cdot2a\cdot1+(1)^2 - (2a)^2= 4a^2+4a+1 -4a^2= 4a+1

Exercițiul 4 (1 punct):

Dacă x+\frac{1}{{x}}=4 atunci x^2+\frac{1}{{x^2}}  este egal cu......................

Rezolvare:

Pornim de la relația x+\frac{1}{{x}}=4 și o ridicăm la pătrat iar relația x+\frac{1}{{x}} o ridicăm la pătrat cu formula de calcul prescurtat :(a+b)^2=a^2+2\cdot a\cdot b+b^2. Astfel obținem:

x+\frac{1}{{x}}=4 /^2 \Rightarrow(x+\frac{1}{{x}})^2=4^2 \Rightarrow  x^2+2\cdot x \cdot \frac{1}{{x}} +(\frac{1}{{x}})^2=16 \Rightarrow   x^2+(\frac{1}{{x}})^2 +2=16 /-2 \Rightarrow  x^2+(\frac{1}{{x}})^2 =16-2 \Rightarrow  x^2+(\frac{1}{{x}})^2 =14

Exercițiul 5 (0,5puncte):

Soluția ecuației x+\sqrt{2}=0 este: .........................

Rezolvare:

 x+\sqrt{2}=0 /-\sqrt{2} \Rightarrow  x=-\sqrt{2}

Exercițiul 6 (0,5puncte):

 sin 45^\circ  este egal cu ..............

Rezolvare:

 sin 45^\circ =\frac{\sqrt{2}}{2}

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete:

Exercițiul 1:(1,5 puncte):

Media geometrică a numerelor:  a=\left \| 2\cdot\sqrt{6} - 6\cdot\sqrt{2} \right \| și  b= \sqrt{72} + \sqrt{24} .

Rezolvare:

Știm că M_{{g}} =\sqrt{a\cdot b} .

Pentru a calcula \sqrt{a\cdot b} trebuie să aducem a și b la o formă mai simplă.

Pentru a aduce numărul "a" la o formă mai simplă trebuie să comparăm  2\cdot\sqrt{6}  cu  6\cdot\sqrt{2}  să aflăm dacă numărul a este un număr pozitiv sau negativ.

Pentru a compara  2\cdot\sqrt{6}  cu 6\cdot\sqrt{2}  trebuie să ridicăm la pătrat pentru a scăpa de redicali.

 2\cdot\sqrt{6} \sqcup 6\cdot\sqrt{2} /^2 \Rightarrow   2^2 \cdot6 \sqcup 6^2 \cdot2 \Rightarrow 4 \cdot6 \sqcup 36 \cdot2  \Rightarrow  24 \lt 72 \Rightarrow 2\cdot\sqrt{6} \lt 6\cdot\sqrt{2} \Rightarrow  numărul "a" este un număr negativ \Rightarrow  a=\left \| 2\cdot\sqrt{6} - 6\cdot\sqrt{2} \right \|=-2\cdot\sqrt{6}+6\cdot\sqrt{2}=6\cdot\sqrt{2}- 2\cdot\sqrt{6}

Pentru a aduce numărul "b" la o formă mai simplă trebuie să scoatem de sub radical:

 b= \sqrt{72} + \sqrt{24}   = \sqrt{2\cdot 36} + \sqrt{4\cdot 6}   =6 \sqrt{2} + 2\sqrt{ 6}

În concluzie  M_{{g}} =\sqrt{a\cdot b}  =\sqrt{(6 \sqrt{2} - 2\sqrt{ 6})\cdot(6 \sqrt{2} + 2\sqrt{ 6} )}  =\sqrt{(6 \sqrt{2})^2- (2\sqrt{ 6} )^2}  =\sqrt{36\cdot 2- 4\cdot 6}}  =\sqrt{72- 24}}  =\sqrt{48}} =\sqrt{16\cdot3 }}  =4\sqrt{3 }}.

Exercițiul 2:(1,5 puncte):

Rezolvați ecuația:  (x-2)^2-(x-1)(3-2x)=3(x+3)(x-3)+25

Rezolvare: Aplicăm formulele de calcul prescurtat și obținem:

 (x-2)^2-(x-1)(3-2x)=3(x+3)(x-3)+25

 (x)^2-2\cdot x \cdot 2+(2)^2-(x\cdot 3-x \cdot2x-1\cdot3+1\cdot2x)=3(x^2-3^2)+25

x^2-4x+4-3x +2x^2+3-2x=3(x^2-9)+25

3x^2-9x+7=3x^2-27+25

3x^2-9x+7=3x^2-2

3x^2-9x-3x^2 = -2-7

-9x= -9

-9x= -9 /:(-9)  \Rightarrow x= 1

Exercițiul 3:(1,5 puncte):

În trapezul ABCD cu  AB \parallel CD, m(\widehat{A})= m(\widehat{D})= 90^{\circ}, se consideră BE\perp CD, unde  E\in(CD). Știind că AB=6cm,CD=10cm și  BD \perp BC , determinați:

a) lungimea înălțimii BE.

b) perimetrul trapezului ABCD.

c) aria trapezului ABCD, rotunjită la cel mai apropiat număr întreg.

Rezolvare:

 

Scriem datele problemei după care le analizăm.

Trasăm desenul respectând datele problemei.

Trapez dreptunghic
  • a) Observăm că triunghiul este dreptunghic în unghiul B și putem aplica teorema înălțimii [ BE ] .

Mai știm Că  \left [ AB \right ] \equiv \left [ DE \right ] \Rightarrow \left [ EC \right ]=4 cm

\bigtriangleup DBC  (\widehat{DBC})= 90^{\circ}  \Rightarrow T.Î  \Rightarrow  BE^2=DE \cdot EC  \Rightarrow BE^2=6 cm \cdot 4 cm \Rightarrow BE^2= 24 cm^2  \Rightarrow BE= \sqrt{24 cm^2} \Rightarrow BE= \sqrt{4\cdot 6 } cm  \Rightarrow BE= 2\sqrt{6 } cm

Știm că  \left [ BE \right ] \equiv \left [ AD \right ] \Rightarrow  AD= 2\sqrt{6 } cm

  • b) Pentru a calcula perimetrul trapezului trebuie să aflam și latura \left [ BC \right ].

Știm că triunghiul \bigtriangleup BEC este dreptunghic în unghiul (\widehat{BEC})= 90^{\circ} astfel putem aplica Teorema lui Pitagora pentru a afla lungimea laturii \left [ BC \right ].

\bigtriangleup BEC (\widehat{BEC})= 90^{\circ} \Rightarrow T.P. \Rightarrow BC^2=BE^2+EC^2  \Rightarrow BC^2=(2\sqrt{6}cm)^2+(4cm)^2   \Rightarrow BC^2=2^2\cdot6} cm^2+16cm^2

 \Rightarrow BC^2=4\cdot6} cm^2+16cm^2   \Rightarrow BC^2=24 cm^2+16cm^2   \Rightarrow BC^2=40 cm^2

 \ \Rightarrow BC=\sqrt{40cm ^2}  \Rightarrow BC=\sqrt{4 \cdot 10cm ^2}  \Rightarrow BC=2\sqrt{ 10} cm

P_{{ABCD}}= AB+BC+CD+AD \Rightarrow P_{{ABCD}}= 6 cm+2\sqrt{ 10} cm+10 cm+2\sqrt{ 6} cm

\Rightarrow P_{{ABCD}}= 16 cm+2(\sqrt{ 10} +\sqrt{ 6}) cm.

  • c)  A_{ABCD}= \frac{(B+b)\cdot h}{{2}}\Rightarrow  A_{ABCD}= \frac{(AB+DC)\cdot AD}{{2}}\Rightarrow  A_{ABCD}= \frac{(6 cm+10 cm)\cdot 2\sqrt{6}cm }{{2}}\Rightarrow   A_{ABCD}= \frac{16cm\cdot 2\sqrt{6}cm }{{2}}\Rightarrow  A_{ABCD}= \frac{32\sqrt{6}cm^2 }{{2}}\Rightarrow   A_{ABCD}= 16\sqrt{6}cm^2

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la formulele de calcul prescurtat

Clasa a VIII-aBine te-am regăsit dragul meu părinte. În articolul anterior ţi-am prezentat "Formulele de Calcul Prescurtat" pentru numere reale.

Dragul meu părinte, ţi-am spus că aceste formule sunt foarte importante deoarece le vom folosi în Operaţiile cu rapoarte? Aceste rapoarte de numere compun un exerciţiu care se dă şi la examenul de capacitate. (Cel puţin în anul anterior  Examenul de Evaluare Naţională 2016 a avut un exerciţiu cu rapoarte)

EXERCIŢIUL 1:  Folosind formula pentru pătratul sumei sau diferenţei a doi termeni, calculaţi:

  • a)       (x+1) ^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=x şi b=+1. Aplicând formula obţinem:

 (x+1)^{2}=x^{2}+2\cdot x\cdot (+1)+(+1)^{2}

 (x+1)^{2}=x^{2}+2 x+1

  •     b)  (x - 2)^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=x şi b=-2. Aplicând formula obţinem:

 (x - 2)^{2}=x^{2}-2\cdot x\cdot 2 +(-2)^{2}

 (x - 2)^{2}=x^{2}-4 x +4

  • c)  (2x+\sqrt{3})^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=2x şi b=\sqrt{3}. Aplicând formula obţinem:

 (2x+\sqrt{3})^{2}=(2x)^{2}+2\cdot 2x\cdot\sqrt{3}+(\sqrt{3})^{2}

 (2x+\sqrt{3})^{2}=4x^{2}+4\sqrt{3} x+3

  • d)  (5x-\sqrt{2})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=5x şi b=\sqrt{2}. Aplicând formula obţinem:

 (5x-\sqrt{2})^{2}=(5x)^{2}-2\cdot 5x\cdot \sqrt{2}+(\sqrt{2})^{2}

 (5x-\sqrt{2})^{2}=25x^{2}-10 \sqrt{2}x+2

  • e) (\frac{2}{3}x+\frac{1}{3})^{2}=

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru:  a=\frac{2}{3}x şi  b=\frac{1}{3} . Aplicând formula obţinem:

 (\frac{2}{3}x+\frac{1}{3})^{2}=(\frac{2}{3}x)^{2}+2\cdot \frac{2}{3}x\cdot \frac{1}{3}+(\frac{1}{3})^{2}

 (\frac{2}{3}x+\frac{1}{3})^{2}=\frac{4}{9}x^{2}+ \frac{4}{9}x +\frac{1}{9}

  • f) (\frac{2}{7}x-\frac{7}{4})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru:  a=\frac{2}{7}x şi  b=\frac{7}{4}. Aplicând formula obţinem:

 (\frac{2}{7}x-\frac{7}{4})^{2}=(\frac{2}{7}x)^{2}-2\cdot \frac{2}{7}x\cdot \frac{7}{4}+(\frac{7}{4})^{2}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-\frac{28}{28}x+\frac{49}{16}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-x+\frac{49}{16}

f)  (x+7)(x-7)

Aplicăm formula de calcul prescurtat:  (a+b)(a-b)= a^{2}-b^{2}

În cazul exerciţiului  nostru: a=x şi b=7. Aplicând formula obţinem:

 (x+7)(x-7)= x^{2}-7^{2}

 (x+7)(x-7)= x^{2}-49

EXERCIŢIUL 2:  Efectuaşi calculele :

  •  a)  (x+2)^{2}+ (x-1)^{2}

Aplicând formulele de calcul prescurtat obţinem:

 (x+2)^{2}+ (x-1)^{2}=x^{2}+2\cdot x\cdot 2+ 2^{2}+x^{2}-2\cdot x\cdot 1+1^{2}= aplicatii-formule-de-calcul-prescurtat-ex-2

  •  b) (x-\sqrt{2}) ^{2}-(\sqrt{2}x+1) ^{2}

Aplicând formulele de calcul prescurtat obţinem:

aplicatii-formule-de-calcul-prescurtat-ex-2-pct-b

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Înmulţirea, împărţirea şi ridicarea la putere a numerelor reale reprezentate prin litere.

Clasa a VIII-aBine te-am regăsit dragul meu părinte. În articolul pe care l-am postat ieri pe blog am vorbit despre "adunarea şi scăderea numerelor reale reprezentate prin litere".

În articolul de azi am să îţi vorbesc despre înmulţirea, împărţirea şi ridicarea la putere a numerelor reale reprezentate prin litere.

Gasesti lecția in format pdf aici : Inmultirea-Nnumerelor-Reprezentate--prin -Litere

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor

(mai mult…)

Observaţie:Prin "Inmulţirea a două numere reale reprezentate prin litere" (nu neapărat termeni asemenea)  se obţine un termen nou care are coeficientul egal cu produsul coeficienţilor termenilor daţi, iar partea literală este formată din toate literele luate o singură dată, iar ca exponent fiecare literă va avea suma exponenţilor pe care  i-a avut în termenii daţi.

inmultirea-nr-reale-reprezentate-prin-litere

Observaţie: Prin "Împărţirea a două numere reale reprezentate prin litere" (nu neapărat termeni asemenea)  se obţine un termen nou care are coeficientul egal cu câtul coeficienţilor termenilor daţi, iar partea literală este formată din toate literele luate o singură dată, iar ca exponent fiecare literă va avea diferenţa exponenţilor pe care  i-a avut în termenii daţi.

impartirea-nr-reale-reprezentate-prin-litere

Observaţie: Prin "Ridicarea la puterea întreagă a unui număr real reprezentat prin litere"   se obţine un termen nou care are coeficientul egal cu puterea întreagă a coeficienţului iniţial, iar partea literală este formată din aceleaşi litere ca ale temenului iniţial, fiecare literă având exponent egal cu produsul dintre exponentul iniţial şi puterea la care s-a ridicat numărul real reprezentat prin literă.

ridicarea-la-putere-a-nr-reale

Observaţie: 

  • Operaţiile de adunare, scădere, înmulţire, împărţire şi ridicare la putere a expresiilor algebrice îşi pastrează aceleaşi reguli şi proprietăţi ca la numere reale.
  • La înmulţirea unui factor cu o paranteză (proprietatea de distributivitate a înmulţirii faţă de adunare şi scădere) înmulţim factorul din faţa parantezei cu fiecare termen din paranteză.
  • La înmulţirea a două paranteze înmulţim fiecare termen din prima paranteză cu fiecare termen din cea de-a doua paranteză, iar la final reducem termenii asemenea.
  • La împărţirea unei paranteze cu un factor împărţim fiecare termen din paranteză la factor, dacă operaţia de împărţire este posibilă, dacă nu scriem termenii ca fracţie.

inmultirea-si-impartirea-numerelor-reprezentate-prin-litereimpartirea-unei-paranteze-la-un-factor

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

Exerciții Rezolvate la Numere Reale

Clasa a VIII-a

Dragul meu părinte bine te-am regăsit!

În ultimul articol pe care l-am  postat am vorbit despre multimea numerelor reale. Astăzi te invit să rezolvăm împreună câteva aplicaţii la această lecţie. Unele exerciţii au un grad de dificultate mai scăzut, iar unele au grad de dificultate ridicat. De aceea o să le explic pas cu pas, pentru a veni în ajutorul tuturor celor care nu înţeleg foarte bine matematica.

 

(mai mult…)

EXERCIŢIUL 1:Se dau următoarele fracţii: \frac{1}{2} , \frac{61}{37}\frac{2}{6}\frac{55}{1133}\frac{4}{21}\frac{3}{9}\frac{8}{15}\frac{14}{2\cdot7}\frac{85}{15}\frac{35}{56}\frac{19}{72}\frac{4\cdot3\cdot5}{60}

Determinaţi din şirul de fracţii de mai sus  fracţiile:

-  ireductibile; subunitare;supraunitare;echiumitare.

Rezolvare: Observăm că unele fracţii pot fi simplificate aşa că mai întâi vom aduce şirul la forma cea mai simplă simplificând fracţiile care permit această operaţie:

 \frac{2}{6}^{(2}=\frac{1}{3} \frac{55}{1133}^{(11}=\frac{5}{103} \frac{3}{9}^{(3}=\frac{1}{3};

 \frac{14}{2\cdot7}=\frac{14}{14}^{(14}=\frac{1}{1}=1;   \frac{85}{15}^{(5}=\frac{17}{3};   \frac{35}{56}^{(7}=\frac{5}{8} \frac{4\cdot3\cdot5}{60}=\frac{60}{60}^{(60}=1

Obţinem astfel şirul: \frac{1}{2} , \frac{61}{37} \frac{1}{3} \frac{5}{103}\frac{4}{21}, \frac{1}{3} , \frac{8}{15}1\frac{17}{3}\frac{5}{8}\frac{19}{72}1.

- fracţii ireductibile: (fracţii care nu se poate simplifica, numărătorul şi numitorul , sunt numere prime între ele):

\frac{1}{2} , \frac{61}{37}\frac{4}{21}, \frac{8}{15}\frac{19}{72}.

-fracţii subunitare: (fracţii care au numărătorul mai mic decât numitorul):

\frac{1}{2} \frac{2}{6}\frac{55}{1133}\frac{4}{21},\frac{3}{9} , \frac{8}{15}\frac{35}{56}\frac{19}{72}

 

- fracţii supraunitare: (fracţii care au numărătorul mai mare decât numitorul):

\frac{61}{37}; \frac{85}{15}

- fracţii echiunitare: (fracţii care au numărătorul egal cu numitorul):

\frac{14}{2\cdot7}; \frac{4\cdot3\cdot5}{60}.

EXERCIŢIUL 2: Amplificaţi fracţiile: \frac{7}{15}, \frac{3}{12}, \frac{5}{16}, \frac{3}{10}, \frac{11}{24} , astfel încât să aibă acelaşi numitor comun.

Rezolvare: Determinăm numitorul comun calculând c.m.m.m.c (cel mai mic multiplu comun) al numerelor de la numitor.

Pentru a determina c.m.m.m.c-ul numitorilor trebuie sa desfacem în factori primi numerele după care luăm toate numerele prime o singură dată la puterea cea mai mare.exercitiul-2-aplicatii-nr-reale

 

În concluzie putem scrie:

15= 3\cdot5

12= 2^{2}\cdot3

16= 2^{4}

10= 2\cdot5

24= 2 ^{3}\cdot3

c.m.m.m.c= 2 ^{4}\cdot3\cdot5=16\cdot3\cdot5=240.

Pentru a ştii cu cât amplific fiecare fracţie impart 240 la numitor:ex-2-nr-reale-impartiriObţin astfel următoarele fracţii:

ex-2-nr-reale-amplificarea

EXERCIŢIUL 3:Fie mulţimeaA= \left \{ (-2)^{2}\right \ ; (-3)^{-2} ; \sqrt{0,09} ; \sqrt{5\frac{5}{9}} ;  (-1)^{4}; \sqrt{18} ; \sqrt{1\frac{2}{25}} ; (-\frac{1}{{2}}) ^{-1}; \sqrt{5\frac{3}{9}}  \}.

Calculaţi:  A\bigcap_{}^{}N ; A\bigcap_{}^{}Z; A\bigcap_{}^{}Q; A\bigcap_{}^{}(Q\setminus Z); A\bigcap_{}^{}R; A\bigcap_{}^{}(R\setminus Q)

Rezolvare: Observăm că trebuie să rescriem mulţimea efectuând calculele:

(-2) ^{2}= 4

(-3) ^{-2}= \frac{1}{3 ^2}=\frac{1}{9}

\sqrt{0,09}= 0,3 =\frac{3}{10}

\sqrt{5\frac{5}{9}}= \sqrt{\frac{5\cdot9+5}{9}}}=\sqrt{\frac{50}{9}}}=\frac{5\sqrt2}{3}

 (-1)^{4}= 1

\sqrt{18}= \sqrt{9\cdot2}=3 \sqrt{2}

\sqrt{1\frac{2}{25}}= \sqrt{\frac{1\cdot25+2}{25}}}=\sqrt{\frac{27}{25}}}=\frac{3\sqrt3}{5}

(-\frac{1}{2}) ^{-1}=(-2)

\sqrt{5\frac{3}{9}}= \sqrt{\frac{5\cdot9+3}{9}}}=\sqrt{\frac{48}{9}}}=\frac{4\sqrt3}{3}

Obţinem astfel mulţimea: A= \left \{ 4;\frac{1}{9} ; \frac{3}{10} ; \frac{5\sqrt{2}}{3} ; 1; 3\sqrt{2} ; \frac{3\sqrt{3}}{5} ; (-2); \frac{4\sqrt{3}}{3} \}.

A\bigcap {N}= \left \{ 4;1 \right \}

A\bigcap {Z}= \left \{-2;1; 4 \right \}

A\bigcap {Q}= \left \{ 4; \frac{1}{{9}}; \frac{3}{10}; 1; (-2)  \}

A\bigcap(Q\setminus Z)= \left \{ \frac{1}{9};\frac{3}{10} \right \}

A\bigcap {R}= A

A\bigcap {(R\setminus Q)}= \left \{\frac{5\sqrt{2}}{3};3\sqrt{2};\frac{3\sqrt{3}}{5}; \frac{4\sqrt{3}}{3} \right \} .

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul să se pregătească şi să aibă numai note bune in  noul an şcolar.

Dacă ţi-a plăcut articolul te invit sa distribui acest material şi să inviţi şi alţi părinţi să viziteze acest blog!

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:mathmoreeasy@yahoo.com
De asemenea, te invit şi pe pagina de facebook a blogului:
https://www.facebook.com/MathMoreEasy