Etichetă: clasa a V-a

Exerciții rezolvate la Înmulțirea fracțiilor zecimale

"Fă azi ce alţii nu fac ca să trăieşti mâine cum alţii nu pot."

Zig Ziglar

Dragul meu părinte bine te-am regăsit! În articolul precedent am efectuat câteva exerciții ușoare la înmulțirea fracțiilor zecimale. Azi îți propun să rezolvăm împreună câteva exerciții cu un grad de dificultate mai ridicat!

(mai mult…)

Exercițiul 1:

Dacă x \cdot (y-z)=2,4  și  x \cdot (z+t)=3,1 \Rightarrow  , atunci calculați:

 x \cdot 2,4 \cdot( y+ t )

Rezolvare:

 x \cdot (y-z)=2,4 \Rightarrow   x \cdot y- x \cdot z=2,4

 x \cdot (z+t)=3,1 \Rightarrow   x \cdot z+ x \cdot t=3,1

Adunăm cele două relații și obținem:

 x \cdot y- x \cdot z+x \cdot z+ x \cdot t=2,4 + 3,1

Observăm că  x \cdot z  se reduce și obținem:

  •  x \cdot y+ x \cdot t=5,5
  •  x \cdot( y+ t )=5,5
  • Înmulțim relația cu 2,4 și obținem:
  •  x \cdot( y+ t )=5,5 | \cdot 2,4
  •  x \cdot 2,4 \cdot( y+ t )=5,5 \cdot 2,4
  •  x \cdot 2,4 \cdot( y+ t )=13,20

Exercițiul 2 :

Dacă x+y=7,05 și y+z=14,1 atunci calculați:  (x+3y+2z) \cdot (z-x)

Rezolvare:

  • x+y=7,05         \Rightarrow   x+y =7,05
  • y+z=14,1   | \cdot 2    \Rightarrow  2y+2z=28,2

Adunam cele două relații si obținem:

  • x+y+2y+2z=7,05+28,2
  • x+3y+2z=35,25

Observăm ca am obținut prima paranteză.

Revenim la cele două relații inițiale:

  • x+y=7,05
  • y+z=14,1

Scădem din a doua relație prima relație  și obținem:

  • y+z-x-y=14,1-7,05
  • z-x=7,05

Înmulțim cele două relații obținute:

  •  (x+3y+2z)\cdot (z-x)=35,25 \cdot 7,05
  •  (x+3y+2z)\cdot (z-x)=248,5125

Exercițiul 3:

Determinați cifrele a și b care verifică relația:

Rezolvare:

Transformăm fracțiile zecimale în fracții ordinare și obținem:

Pentru ca avem peste tot același numitor putem scrie relația fară numitor:

Desfacem în baza 10 numerele:

   și obținem:

  •  (10 \cdot a + a+ 10 \cdot b +b)\cdot b=1287
  •  (11 \cdot a + 11 \cdot b )\cdot b=1287
  •  11 \cdot (a +b)\cdot b=1287 | : 11
  •  (a +b)\cdot b=117
  •  (a +b)\cdot b= 3^{{2}}\cdot 13
  • Verificăm varianta b=3
  •  (a+3)\cdot 3=117
  •  3a+9=117
  •  3a=117 -9
  •  3a=108
  •  a=108 : 3
  •  a=36

Această variantă nu ne convine deoarece a trebuie să fie cifră.

Verificăm cea de-a doua variantă  b=3 ^{2} =9 și obținem:

  •  (a+9)\cdot 9=117
  •  9a+81=117
  •  9a=117-81
  •  9a=36
  •  a=36:9
  •  a=4

Această variantă este ok deci obținem soluția  a=4 și b=9.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la Amplificarea și Simplificarea Fracțiilor.

„Fii încăpățânat! Uneori, perseverența face minuni.” — Donald Trump.

Dragul meu părinte, bine te-am regăsit. Azi îți propun o nouă lecție la capitolul Fracții care ridică ceva dificultăți elevilor de clasa a V-a: Exerciții Rezolvate la Amplificarea și Simplificarea Fracțiilor.Am să explic pas cu pas rezolvarea unor exerciții cu un grad de dificultate mai ridicat la care elevii întâmpină dificultăți.

(mai mult…)

EXERCIŢIUL 1:  Amplificați cu 3 următoarele fracții:

\frac{2x}{3y} , \frac{x+2}{y+1} , \frac{a+b}{x+y}

Rezolvare:

EXERCIŢIUL 2:  Simplificați  următoarele fracții, obținând fracții ireductibile:

\frac{20}{30} , \frac{5a}{10b}, \frac{10a+10b}{25x+25y}, \frac{2^7\cdot3^2\cdot5^4 }{2^7\cdot3^3\cdot5^2\cdot11} , \frac{6^3 }{10^4}

Rezolvare:

 \frac{20 }{30}^{(10}=\frac{2 }{3}

 \frac{5a }{10b}^{(5}=\frac{a }{2b}

 \frac{10a+10b }{25x+25y}

Observație: Nu avem voie să simplificăm decât dacă dăm factor comun și la numărător și la numitor. Observăm că la  numărător putem da factor comun pe 10, iar la numitor îl putem da factor comun pe 25.

 \frac{10a+10b }{25x+25y}=    \frac{10\cdot (a+b) }{25\cdot (x+y)}^{{(5}}=  \frac{2\cdot (a+b) }{5\cdot (x+y)}

\frac{2^7\cdot3^2\cdot5^4 }{2^7\cdot3^3\cdot5^2\cdot11}

Această fracție o simplificăm prin bazele care se repetă și la numărător și la numitor la puterea cea mai mică. Pentru că prin simplificare trebuie să fac operația de împărțire, scriu baza și scad exponentii.

\frac{2^7\cdot3^2\cdot5^4 }{2^7\cdot3^3\cdot5^2\cdot11} ^{(2^7\cdot3^2\cdot5^2}=     \frac{2^0\cdot3^0\cdot5^2 }{2^0\cdot3^1\cdot5^0\cdot11} =    \frac{1 \cdot1\cdot25 }{1\cdot3\cdot1\cdot11} = \frac{25 }{33}

\frac{6^3 }{10^4}

Pentru a simplifica această fracție mai întâi trebuie să aplicăm regulile de calcul cu puteri.

Dacă nu-ți mai aduci aminte regulile de calcul cu puteri le găsești aici: http://mathmoreeasy.ro/reguli-de-calcul-cu-puteri/

\frac{6^3 }{10^4} =  \frac{(2\cdot 3)^3 }{(2\cdot 5)^4} =  \frac{2^3\cdot 3^3 }{2^4\cdot 5^4} =  \frac{2^3\cdot 3^3 }{2^1\cdot 2^3\cdot5^4}^{{( 2^3}}=  \frac{2^0\cdot 3^3 }{2^1\cdot 2^0\cdot5^4}=  \frac{1\cdot 3^3 }{2\cdot 1\cdot5^4}=  \frac{ 3^3 }{2\cdot5^4}

 

EXERCIŢIUL 3:  Simplificați  următoarea fracție,  obținând fracție ireductibilă:

 \frac{4^{{25}}+8^{{17}}}{2^{{52}}-16^{{12}}}}

Rezolvare:

Pentru a simplifica această fracție mai întâi trebuie să aplicăm regulile de calcul cu puteri.

Dacă nu-ți mai aduci aminte regulile de calcul cu puteri le găsești aici: http://mathmoreeasy.ro/reguli-de-calcul-cu-puteri/

 

 \frac{4^{{25}}+8^{{17}}}{2^{{52}}-16^{{12}}}}=   \frac{(2^2)^{{25}}+{(2^3)^{{17}}}}{2^{{52}}-(2^4)^{{12}}}}=  \frac{2^{{2\cdot 25}}+{2^{{3\cdot 17}}}}{2^{{52}}-2^{{4\cdot12}}}}= \frac{2^{{50}}+{2^{{51}}}}{2^{{52}}-2^{{48}}}}= \frac{2^{{50}}(1+{2^{{51-50}})}}{2^{{52}}(2^{{52-48}}-1) }}=\frac{2^{{50}}\cdot(1+{2)}}{2^{{48}}\cdot(2^{{4}} -1)}}=  \frac{2^{{50}}\cdot3}{2^{{48}}\cdot 15}}^{{(2^{{48}}}}=  \frac{2^{{50-48}}\cdot3}{2^{{48-48}}\cdot 15}}= \frac{2^{{2}}\cdot3}{2^{{0}}\cdot 15}}^{{(3}}=   \frac{2^{{2}}}{1 \cdot 5}}=  \frac{4}{5}}

 

EXERCIŢIUL 4:  Simplificați  următoarea fracție,  obținând fracție ireductibilă:

\frac{2+4+6+.............+400}{3+6+9+.............+600}}

Rezolvare:

Observăm că la numărător și la numitor avem câte o sumă Gauss. La numărător putem da factor comun pe 2, iar la numitor putem da factor comun pe 3.

\frac{2+4+6+.............+400}{3+6+9+.............+600}} =  \frac{2\cdot(1+2+3+.............+200)}{3\cdot(1+2+3+.............+200)}}

Calculăm Suma Gauss cu formula  S= n\cdot(n+1) : 2

S=1+2+3+..........+200

S=200\cdot(200+1) : 2

S=200\cdot201 : 2

S=100\cdot201

\frac{2\cdot(1+2+3+.............+200)}{3\cdot(1+2+3+.............+200)}}=   \frac{2\cdot 100\cdot 201 }{3\cdot 100 \cdot 201}} ^{{(100\cdot 201}}=  \frac{2}{3}

PS: Dragul meu părinte dacă copilul tău nu a înțeles Suma Gauss sau nu-și mai amintește cum se calculează te invit sa descarci PDF-ul gratuit (special conceput cu foarte multe exemple pentru fiecare clasa de la a V-a la a-VIII-a) de aici:

http://mathmoreeasy.ro/pdf-gratuit-suma-gauss-explicatie-definitie-si-exercitii-rezolvate/

EXERCIŢIUL 4:  Simplificați  următoarea fracție,  obținând fracție ireductibilă:

 \frac{2^{n}\cdot3^{n}+2^{n}\cdot3^{n}\cdot5+6^{n+1}}{6^{n}\cdot3+6^{n}\cdot7-6^{n}}

Rezolvare:

Pentru a simplifica această fracție mai întâi trebuie să aplicăm regulile de calcul cu puteri.

 \frac{2^{n}\cdot3^{n}+2^{n}\cdot3^{n}\cdot5+6^{n+1}}{6^{n}\cdot3+6^{n}\cdot7-6^{n}} =   \frac{(2\cdot3)^{n}+(2\cdot3)^{n}\cdot5+6^{n}\cdot 6}{6^{n}\cdot (3+7-1)} =   \frac{6^{n}+6^{n}\cdot5+6^{n}\cdot 6}{6^{n}\cdot (10-1)} =   \frac{6^{n}(1+5+ 6)}{6^{n}\cdot 9} =   \frac{6^{n}\cdot12}{6^{n}\cdot 9}^{(6^{n}} = \frac{12}{ 9}^{(3}} =  \frac{4}{ 3}

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăti în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Pătratul unui număr natural

Clasa a V-aDragul meu părinte bine te-am regăsit! In articolul de azi vreau să îţi vorbesc despre "Pătratul unui număr natural". În articolele anterioare am vorbit despre "Ridicarea la putere a unui număr natural" şi " Regulile de calcul cu puteri". Azi vom studia "Pătratele perfecte" .

(mai mult…)
Să analizăm următorul sir de pătrate:
  • Definiţie: Un număr obţinut prin ridicarea la puterea a doua aunui număr natural se numeşte pătrat perfect.
Exemple:     81=9 ^{2} putem spune că 81 este pătrat perfect
  • Observaţie: Pentru a arăta că un număr nu este pătrat perfect este suficient să arătăm că numărul este cuprin între două pătrate perfecte.
Exemplu: 115 nu este pătrat perfect pentru că 10 ^{2}=100 \lt 115 \lt121=11 ^{2} Să analizăm următorul tabel: patrat-perfect
  • Observăm că ultima cifră a unui pătrat perfect poate fi: 0,1, 4,5,  6 sau 9.
  • Numerele care au ultima cifră 2, 3, 7 sau 8 nu pot fi pătrate perfecte.
  • Observaţie: Nu întotdeauna numerele care au ultima cifră 0; 1; 4; 5; 6 sau 9  sunt pătrate perfecte
  • Exemplu: 10, 11, 15, 26 sau 39 nu sunt pătrate perfecte.
Dacă dorești să ai acces la mai multe exemple de exerciții cu un grad de dificultate ridicat rezolvate și explicate pas cu pas te invit alături de mine in Clubul de Matematică "Math More Easy" sau accesează link-ul de mai jos: http://mathmoreeasy.ro/exercitii-rezolvate-la-patrate-perfecte/
Succes! PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  ! Math More Easy - YouTubehttps:/ https://www.facebook.com/MathMoreEasy. Cu mare drag şi mult respect Alina Nistor

Criterii de divizibilitate

Clasa a V-aBine te-am regăsit dragul meu părinte! În articolul anterior   ţi-am prezentat lecţia "Divizor.Multiplu". Am învăţat împreună care sunt divizorii unui număr, care sunt multiplii unui număr natural şi cum arătăm dacă un număr natural divide sau nu un alt număr natural. Astăzi voi continua cu o noua lecţie la acest capitol "Criterii de divizibilitate" .

 

Criteriul de divizibilitate cu 2

  •  Un număr natural este divizibil cu 2 dacă şi numai dacă ultima cifră a numărului este o cifră pară.
  • numar-divizibil-cu-2

Criteriul de divizibilitate cu 5

  •  Un număr natural este divizibil cu 5 dacă şi numai dacă ultima cifră a numărului este 0 sau 5
  • numar-divizibil-cu-5

Criteriul de divizibilitate cu 10.

  • Un număr natural este divizibil cu 10 dacă şi numai dacă ultima cifră a numărului este 0.
  • numar-divizibil-cu-10

Criteriul de divizibilitate cu 100(1000, 10000, etc).

  • Un număr natural este divizibil cu 100(respectiv 1000, 10000, etc) dacă şi numai dacă ultimile două )respectiv trei, patru, etc) cifre ale numărului sunt egale cu 0.
  • numar-divizibil-cu-100

 

Criteriul de divizibilitate cu 3 (respectiv 9).

  • Un număr natural este divizibil cu 3 (respectiv 9) dacă şi numai dacă suma cifrelor sale se divide cu 3 (respectiv 9).
  • numar-divizibil-cu-3

Criteriul de divizibilitate cu 4.

  • Un număr natural este divizibil cu 4  dacă şi numai dacă numărul format din ultimele două cifre se divide cu 4
  • numar-divizibil-cu-4

Criteriul de divizibilitate cu 25.

  • Un număr natural este divizibil cu 25  dacă şi numai dacă  ultimele două cifre ale sale sunt 00, 25, 50 sau 75.
  • numar-divizibil-cu-25

    Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

    De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

    https://www.facebook.com/MathMoreEasy.

    Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

    Cu mare drag şi mult respect Alina Nistor!

Test Initial Propus Şi Rezolvat

Clasa a V-aDragul meu părinte, bine te-am regasăsit . De ieri 15.09.2016 a început oficial anul şcolar 2016-2017.Urez pe această cale "Mult succes tuturor şcolarilor, părinţilor dar şi profesorilor".

Cum bine ştim deja din experienţa anilor trecuţi, un nou an şcolar debutează cu recapitularea noţiunilor învăţate pe parcursul anului de studiu anterior şi cu un test iniţial. Având în vedere structura acestui an 2016-2017 (15 septembrie a picat joi), majoritatea elevilor vor susţine testul iniţial săptămâna viitoare.

Dragul meu părinte, m-am gândit să propun spre exersare un model de test iniţial  pentru  clasa a V-a rezolvat, pentru a venii în ajutorul părinţilor şi a copiilor care urmaresc blogul meu.Aşadar iată prima propunere un test iniţial rezolvat pentru clasa a V-a.

Test iniţial Anul Şcolar 2016-2017

  • Subiectul I:(Pentru fiecare răspuns corect completat se primeşte cu 0,5 puncte )

Completaţi spaţiile libere:

  1. Cel mai mic număr natural de trei cifre distincte este:  ....102....

Rezolvare: Numere distincte înseamnă numere diferite. Obţinem astfel numărul 102 drept cel mai mic număr natural de trei cifre distincte.

 

2. Diferenţa numerelor 1243 şi 756 este: ……487................

Rezolvare: Diferenţa numerelor înseamnă operaţia de scădere. Obţinem astfel numărul 1243-756= 487 .

3. Produsul numerelor 137 şi 125 este: ……17125……………

Rezolvare: Produsul numerelor înseamnă operaţia de înmulţire. Obţinem astfel numărul 137\cdot125= 17125 .

4. Numărul cu 1325 mai mare decât 23 este: ……1348…………...

Rezolvare: Facem operatie de adunare 1325+23=1348 .

5. Valoarea fracţiei \frac{3}{8} din 64 este: …24………….

Rezolvare: Pentru a calcula valoarea unei fracţii dintr-un număr împărţim pe 64 cu numitorul 8 si înmulţim cu numărătorul 3  .Obţinem astfel (64 : 8) \cdot 3= 8 \cdot 3 = 24

Subiectul II: (Pentru fiecare răspuns corect completat se primeşte cu 0,5 puncte )

Alege răspunsul corect:

  1. Numărul care împărţit la 7 dă câtul 10 şi restul 3 este :

a)    66;     b) 76;    c) 63;    d) 73.

Rezolvare: Aplicăm teorema împărţirii cu rest care îmi spune

deîmpărţitul=împărţitorul \cdot cîtul +restul

În cayul nostru deîmpărţitul = 7 \cdot 10 + 3 = 70+3 = 73

Răspuns corect punctul d)

 

  1. Ştiind că a=7 şi b=3 atunci 2a+3b este egal cu:

a)    27;     b) 23;    c) 5;    d) 15.

Rezolvare : Înlocuim "a" şi "b" şi obţinem : 2a+3b= 2 \cdot 7 + 3 \cdot 3=14 + 9 = 23

  1. Cel mai mic număr care se poate forma din numerele 7, 3 şi 2 este numărul:

a)    237;     b) 273;    c) 732;    d) 327.

Rezolvare : Numerele pe care le putem forma cu cele trei numere sunt: 732, 723, 372, 327, 273, 237. Observăm ca cel mai mic număr este 237.

  1. Perimetrul unui dreptunghi care are lungimea egală cu 25cm  şi lăţimea egală cu 10cm este egal cu:

a)    50cm;     b) 20cm;    c) 70cm;    d) 250cm.

Rezolvare : Ştim că perimetrul unei figuri geometrice este egal cu suma tuturor laturilor. Mai ştim deasemenea că dreptunghiul are 2 lungimi şi 2 lăţimi.

P = 2\cdotL+2\cdotl = 2\cdot25cm+2\cdot10cm = 50cm + 20 cm= 70 cm

  1. Succesorul numărului 5399 este:

a)    5398;     b) 5400;    c) 5300;    d) 5310.

Rezolvare : Ştim că predecesorul ete numărul dinaintea lui 5399 adică 5398, iar succesorul este primul număr după , adica 5400.

Subiectul III: (Pentru fiecare rezolvare corectă se obţine 1 punct).

   Calculaţi respectând ordinea efectuării operaţiilor:

  1. (320 : 8 + 44) – 18x3 =

Rezolvare : Întâi facem operaţiile din paranteză:

(320 : 8 + 44) – 18x3 = (40 + 44) - 54 = 84 - 54 = 30

2.   2 + 10 x [ 632 + 10 x (14 +14 :7)]=

Rezolvare : Facem operaţiile din paranteza rotundă întâi împărţirea apoi adunarea restul exerciţiului îl copiem aşa cum este scris:

2 + 10 x [ 632 + 10 x (14 +14 :7)]=2 + 10 x [ 632 + 10 x (14 +2)]

=2 + 10 x ( 632 + 10 x16)= 2 + 10 x ( 632 + 160)= 2 + 10 x 792 = 2 + 7920 =7922.

Subiectul IV: (Pentru rezolvarea corectă se obţine cu 2 puncte)

În trei lăzi sunt 480 mere. În lada a doua sunt de 3 ori mai multe mere decât în prima, iar în a treia de 2 ori mai multe decât în a doua. Câte mere sunt în fiecare ladă?

Rezolvare : Este o problemă care se rezolvă cu ajutorul metodei grafice.

test-initial-cls-v-pb-sub-4Observăm că avem 10 segmente în figura de mai sus.

Împărţim 480 la 10 şi obţinem astfel numărul de mere din prima ladă.

480 : 10 = 48 (mere în prima ladă)

48 \cdot 3 = 144 (mere în a doua ladă)

144 \cdot 2 = 288 (mere în a treia ladă)

Probă : 48 + 144 + 288 = 480 (mere în total)

Observatie: Se acordă un punct din oficiu.

Timp estimative: 50 min.

  • Succes tuturor copiilor şi să obţineţi note mari! 
Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul să se pregătească şi să aibă numai note bune in  noul an şcolar.

Dacă ţi-a plăcut articolul te invit sa distribui acest material şi să inviţi şi alţi părinţi să viziteze acest blog!

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:mathmoreeasy@yahoo.com
De asemenea, te invit şi pe pagina de facebook a blogului:
https://www.facebook.com/MathMoreEasy

 

10 Aşi pe care un profesor trebuie să-i aibă pentru ca elevii să iubească materia pe care o predă

Profesorul esteDragul meu părinte, bine te-am regăsit. În articolul de azi am să mă adresez atât ţie dar şi profesorilor, în mod special profesorilor de matematică.

Este bine ştiut că un copil învaţă mai bine o materie atunci când îl place pe profesor. Astfel se creează între copil şi profesor o legatură bazată pe admiraţie, iar copilul asimilează mult mai uşor materia predată de profesor. Şi este şi motivat să înveţe, îşi doreşte să îşi depăşească limitele, să fie remarcat dar şi lăudat de profesor. Însă copiii sunt extrem de atenţi la toate gesturile pe care le face profesorul, la felul în care se prezintă, la felul în care comunică, la câtă siguranţă emană şi speculează toate greşelile pe care le face.

Ca să obţii încrederea şi admiraţia unui copil este foarte greu. Ca să obţii admiraţia unei clase de aproximativ 30 de elevi trebuie sa fii impecabil ca persoană, ca profesor dar să ai şi câţiva "AŞI" în mânecă cu care să dezarmezi o armată de pitici dornici de adrenalină.

În articolul de azi vreau să-ţi vorbesc exact despre aceşti „10 AŞI pe care fiecare profesor ar trebui să-i aibă pentru ca elevii să iubească materia pe care o predă”.

(mai mult…)

Ei bine, dragul meu părinte, dacă copilului tău nu-i place matematica sau nu o înţelege foarte bine, vorbeşte cu el şi încearcă să aflii dacă nu cumva este şi vina profesorului de la clasă şi atrage-i atenţia acestuia de greselile pe care le face.

  • Să intre în clasă zâmbind.

Dragul meu părinte, atunci când zâmbeşti unui om, în 99% din cazuri îţi răspunde şi el tot cu un zâmbet. Zâmbetul transmite o stare de optimism, de bună dispoziţie, de fericire. Atunci când un profesor intră în clasă cu zâmbetul pe buze a transmis elevilor o stare de linişte.

Vă spun din experienţă copiii gândesc astfel:

  • Dacă profesorul intră în clasă supărat : sigur dăm lucrare sau ne ascultă.
  • Dacă profesorul intră în clasă vesel: ne predă şi scăpăm de note mici.

Ei bine, dacă profesorul nu a intrat în clasă cu zâmbetul pe buze, copiii încep să se agite, să intre în panică, iar atenţia lor la ceea ce spune profesorul se diminuează, ei sunt concentraţi să nu fie ascultaţi şi să ia note mici.

  • Să aibă foarte mare răbdare.

Dragul meu părinte, am auzi adesea mulţi părinţi care se vaită că profesorul de la clasă al copilului lor nu vrea să mai explice o dată lecţia atunci când un copil spune că nu a înţeles ceea ce a predat. Dragul meu părinte, este absolut necesar ca profesorul să repete până când copiii au înţeles. Este adevărat că materia este stufoasă iar timpul limitat, însă menirea unui profesor este de a-i învăţa pe elevi. Dacă trece la următoarea lecţie iar copilul nu a înţeles lecţia predată anterior, (în special la matematică) copilul nu are cum să înţeleagă lecţia următoare.

  • Matematica este precum lanţul de la bicicletă, s-a rupt o zală de la lanţ, bicicleta nu mai merge.

Atrage-i atenţia profesorului şi nu permite să se întămple aşa ceva copilului tău.

  • Să trateze elevii cu blândeţe şi respect.

Dragul meu părinte, atunci când proferorul adoptă o atitudine adresivă şi dură, atitudinea copilului este una defensivă, de apărare. În astfel de cazuri comportamentul copilului este cuprins de o stare de frică şi panică, iar comunicarea cu el devine aproape imposibilă. Copilul nu mai are curajul de a pune întrebări, de a răspunde, de a întelege noţiunile care îi sunt transmise. Dacă copilul este învăluit cu blândeţe şi respect de profesor el prinde aripi în a-şi imagina noţiunile receptate, are curajul de a pune întrebări şi a spune dacă a înţeles noile noţiuni, comunică deschis ştiind că are suportul profesorului, vine cu idei noi şi îşi pune întreaga imaginaţie în funcţiune.

  •  Să fie siguri pe ei.

Dragul meu părinte, un profesor sigur pe el atât în atitudine, comportament cât şi sigur pe noţiunile pe care le transmite este considerat un om puternic. Ca să transmiţi siguranţă trebuie să îţi ţii spatele drept, să-ţi priveşti interlocutorul, să ştii foarte bine ce transmiţi şi mai important decât toate să-ţi menţi părerea.Dacă profesorul nu-i transmite copilului că este sigur pe el, nu poate obţine admiraţia şi respectul acestuia.

  • Să nu-şi uite misiunea.

Dragul meu părinte, misiunea unui profesor este aceea de a învăţa copii materia pe care o predă, de a le dezvălui tainele ascunse ale matematicii şi de a-i determina să iubească matematica. Un profesor bun este un deschizător de drum, un prezentator de noi pasiuni, un magician al noţiunilor matematice, un mentalist.

  •   Să lase orgoliul la poarta scolii.

Dragul meu părinte, un profesor bun trebuie să ştie că orgoliul nu are ce căuta în relaţia dintre el şi elevii săi. Un profesor bun ar trebui să-şi lase orgoliul la poarta şcolii, nicidecum să se prezinte în faţa elevilor cu atitudinea „Staţi că vă arăt cine sunt eu”. În relaţia profesor-elev trebuie să domnească prietenia, încurajarea, respectul reciproc, motivarea.

  • Să vorbească despre el dar să nu spună prea mult.

Dragul meu părinte, profesorul de la clasă trebuie să vorbească în faţa elevilor despre pasiunile sale, despre cum a început dragostea lui pentru materia pe care o predă, despre frumuseţea meseriei pe care a îmbrăţişat-o, despre suişurile şi coborâşurile pe care le-a întâmpinat în carieră şi cum le-a depăşit. Un profesor bun nu ar trebui să discute cu elevii săi despre problemele pe care le are acasă, despre nemulţumirile în carieră şi în familia sa.

  • Să fie o persoana empatică.

Dragul meu părinte, empatia este şi ea foarte importantă când discutăm despre calităţile unui bun profesor: acesta trebuie să aibe cunoştinţe despre psihologia tinerilor, să stie cum gândesc ei. Empatia înseamnă să intuieşti, să înţelegi, a ai puterea să pătrunzi în lumea interioara a copilului şi să priveşti lucrurile din perspectiva lor.

  •  Să aducă noua tehnologie in ajutorul predării lecţiilor.

Dragul meu părinte, un profesor bun ar trebui să ştie să folosească tehnologia de ultimă generaţie şi să ştie să o folosească în predarea lecţiilor. Copiii sunt atraşi de aparatura de nouă generaţie, iar daca aceasta este folosită în actul de predare copiii nu ar mai considera învăţarea o povară ci o provocare.

  •  Să iubească să predea dar şi mai important să iubească ceea ce predă.

Atunci când faci cu pasiune un lucru, din mâinile tale iese o opră de artă. Când eşti profesor şi îţi faci meseria cu dragoste şi pasiune, din mainele tale nu iese un copil învăţat ci o personalitate umană care va avea puterea să schimbe lumea.

Dragul meu părinte te îmbrăţişez cu drag, îţi urez un nou an şcolar plin de satisfacţii alături de copilul tău urmărind blogul http://mathmoreeasy.ro sau pagina de facebook a blogului:https://www.facebook.com/MathMoreEasy

De asemenea, măgăseşti şi pe mine  pagina de facebook la adresa:

https://www.facebook.com/alinamadalina.nistor

PS : Te invit să votezi blogul Math More Easy în competiţia Pasiunea ta dând un click pe link-ul: http://www.pasiuneata.ro/applications/?id=2072

 

Pentru că începe un nou an şcolar!

orar

Dragul meu părinte, pentru că începe un nou an şcolar şi pentru că tu îţi doreşti să ai un copil organizat, îţi fac cadou un Orar special care să-l inspire pe copilul tău să iubească mai tare matematica!

Click pe Download Orar  şi descarcă Orarul pe care îl poţi imprima!

Dragul meu părinte te îmbrăţişez cu drag, îţi urez un nou an şcolar plin de satisfacţii alături de copilul tău şi distracţie plăcută în ultimele zile de vacanţă urmărind blogul http://mathmoreeasy.ro. icon smile Top 10 site uri cu jocuri unde copilul tău poate învăţa matematica!

De asemenea, te invit şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy

 

Ridicarea la putere a unui număr natural

Clasa a V-aDragul meu părinte, bine te-am regăsit! Până acum copilul tău a învăţat adunarea, scăderea, înmulţirea şi împărţirea numerelor naturale. În clasele primare a învăţat că înmulţirea este o adunare repetată.

Iată că a sosit timpul să înveţe şi noţiuni noi cum ar fi ridicarea la putere a unui număr natural.

(mai mult…)

Să observăm:

ridicarea-la-putere-foto-1

  • Definiţie:Puterea "n" a unui număr natural "a" este produsul a n-factori egali cu numărul "a"  ridicarea-la-putere-foto-2
  • Convenţie matematică: a ^{1}=a
  •                                     a ^{0}=1    ; pentru orice    a\neq 0

ridicarea-la-putere-foto-3

  • Citim "a la puterea n"

ridicarea-la-putere-foto-4

  •  Putem reprezenta 16=4^{2}=4\cdot 4 printr-un pătrat cu 4 linii şi 4 coloane.reprezentare-16
  • O importanţă deosebită au puterile lui 10. Acestea se folosesc pentru a compara numerele foarte mari:

puterile-lui-10

  • Ce priorităţi au puterile în calcul?

rezolvare-corectarezolvare-corecta-2

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor

Exerciții rezolvate la Divizor. Multiplu

Clasa a V-a

Dragul meu părinte, în articolul anterior am vorbit despre „Divizor. Multiplu”.

Iată şi câteva aplicaţii la lecţia „Divizor. Multiplu”, exerciţii cu grad diferit de dificultate, explicate pas cu pas, să te ajute să i le explici copilului tău.

https://youtu.be/eHJq2pYv-4M

(mai mult…)

  • EXERCIŢIUL 1:
  • Dacă „a” şi „b” sunt numere naturale şi x = 3· a + 6 · b arătaţi că x este multiplu de 3.

Rezolvare:

Dragul meu părinte, la acest exerciţiu copilul tău trebuie să-l scrie pe „x” ca un multiplu de 3.

  • x = 3 · a + 6 · b 
  • x = 3·( a + 2 · b)
  • x 3
  • EXERCIŢIUL 2:
  • Arătaţi că numărul „m + n” este divizibil cu 12, unde

m = 2 + 4 + 6 + ....... + 100, iar n = 11· (2 + 4 + 6 + ....... + 100).

Rezolvare:

Dragul meu părinte, la acest exerciţiu copilul tău trebuie să-l scrie pe „m+n” ca un multiplu de 12. Dar, ca să-l scrie pe „m + n” ca un produs de numere dintre care un număr să fie 12, copilul tău trebuie să îl calculeze mai întâi pe „m” şi pe „n”.

Dragul meu părinte, observăm va „m” şi „n” sunt reprezentate de două numere scrise cu ajutorul sumei lui Gauss a numerelor pare cuprinse între 2 şi 100.

Dragul meu părinte, copilul tău trebuie să ştie că între numărul 1 şi 100 sunt 100 de termeni dintre care 50 de termeni sunt numere pare şi 50 de termeni sunt numere impare.

  • m = 2 + 4 + 6 + ....... + 100   (m are 50 termeni)
  • Pentru a calcula Suma lui Gauss a numerelor pare cuprinse între 2 şi 100 scriem astfel:
  • m = 2 + 4 + 6 + ....... 96+98+ 100.
  • Observăm că dacă adunăm:
  • 2 + 100 = 102.
  • 4 + 98 = 102.
  • 6 + 96 = 102.
  • .........................
  • După care, dragul meu părinte, copilul tău va trebui să grupeze termenii 2 câte 2 astfel: primul termen cu ultimul termen, al doilea termen cu penultimul şi aşa mai departe.
  • m = (2 + 100) + (4+ 96)+(6+98)+................      .   ("m" are 25 paranteze)
  • Obţinem astfel 25 de paranteze, iar rezultatul fiecărei paranteze este 102.
  • Putem scrie:
  • m = 25 · 102
  • Efectuând înmulţirea obţinem: m = 2550.
  • Analog îl calculăm şi pe „n” .
  • Observăm dragul meu părinte ca n = 11· (2 + 4 + 6 + ....... + 100), adică
  • n = 11· m
  • n = 11· 2550
  • n = 28 050
  • Dragul meu părinte, calculând „m + n” obţinem:
  • m + n = 2550+28050 = 30 600
  • Dragul meu părinte, la începutul rezolvării acestui exerciţiu am spus că pentru a demonstra că m+n este divizibil cu 12, copilul tău trebuie să scrie numărul „m + n” ca un produs de două nu numere dintre care unul dintre numere să fie 12.
  • În cazul acestui exerciţiu, copilul tău trebuie să-l scrie pe 30 600 ca un produs de două numere dintre care unul trebuie să fie 12.
  • Păi să vedem, dragul meu părinte, se împarte exact 30 600 la 12?
  • 30 600 : 12 = ?
  • 30 600 : 12 = 2550
  • 30 600 = 12 · 2550
  • 30 600 12
  • EXERCIŢIUL 3:
  • Scrieţi toţi multiplii lui 7 cuprinşi între 15 şi 65.

Rezolvare:

Dragul meu părinte, la acest exerciţiu copilul tău trebuie să gasească toate numerele cuprinse între 15 şi 65 care se împart exact la 7.

Stim că:

  • 2 · 7 = 14 (dar 14 este mai mic decât 15 deci nu este bun).
  • 3· 7 = 21 ( 15 < 21 < 65)( 21 este un număr bun)
  • 4· 7 = 28 ( 15 < 28 < 65)( 28 este un număr bun)
  • 5· 7 = 35 ( 15 < 35 < 65)( 35 este un număr bun)
  • 6· 7 = 42 ( 15 < 42 < 65)( 42 este un număr bun)
  • 7· 7 = 49 ( 15 < 49 < 65)( 49 este un număr bun)
  • 8· 7 = 56 ( 15 < 56 < 65)( 56 este un număr bun)
  • 9· 7 = 62 ( 15 < 63 < 65)( 63 este un număr bun)
  • 10· 7 = 70 ( 15 < 65 < 70) (70 nu este un număr bun).
  • În concluzie, avem mulţimea soluţiilor egală cu:
  • S = { 21, 28, 35, 42, 49, 56, 63}.
  • EXERCIŢIUL 4:
  • Un număr natural nenul „a” are printre divizorii săi numerele 3, 5 şi 7. Scrieţi încă 4 divizori diferiţi de aceştia ai numărului „a”.

Rezolvare:

Dragul meu părinte, copilul tău trebuie să stie că un număr natural nenul „a” care se divide în acelaşi timp cu numerele „b”, „c” şi „d” , atunci se divide şi cu produsul acestor numere.

În cazul nostru numărul „a” se divide cu numerele: 3, 5 şi 7 că numărul „a” se divide şi cu numărul 3 · 7 = 21, 3 · 5 = 15, 5· 7 = 35, 3 · 5 · 7 = 105.

În concluzie, avem mulţimea soluţiilor egală cu:

S = { 15, 21, 35, 105}.

  • EXERCIŢIUL 5:
  • Dacă a / b şi b /c , atunci arătaţi că a /c.

Rezolvare:

Dragul meu părinte, la acest exerciţiu copilul tău va lucra pe caz general ( nu stie ce valori au numerele „a”, „b” şi „c”). Aplicand definiţia divizibilităţii obţinem:

  • a / b     atunci “b” se împarte exact la „a”
  • b = a · m , m ϵ N   (relaţia 1)
  • b /c       atunci  “c” se împarte exact la „b”
  • c = b · n , n ϵ N     (relaţia  2 )

Dacă înlocuim în cea de-a doua relaţie pe numărul „b” obţinut în relaţia 1, obţinem:

  • c = a · (m· n)

În concluzie , obţinem că a /c.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:mathmoreeasy@yahoo.com

De asemenea, te invit şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy?ref=hl.

DIVIZOR. MULTIPLU

Clasa a V-a

Dragul meu părinte, dacă primele lecţii din clasa aV-a au avut noţiuni recapitulative din anii anteriori de studiu, iatădiuai copilului tău, uată că a sosit timpul ca să apară şi lecţii în care noţiunile sunt complet noi pentru copilul tău.

Cei drept aceste noţiuni se bazează pe cunoştinţe aprofundate în anii anteriori de studiu, cum ar fi împărţirea şi înmulţirea numerelor naturale, dar în această lecţie copilul tău ia contact cu noţiuni complet noi cum ar fi termenul de divizor sau termenul de multiplu.

(mai mult…)

  • Dar hai să vedem, dragul meu parinte, ce este un divizor ?

Pentru a introduce noţiunea de divizor, să luăm întâi un exempu bazat pe cunoştinţele învăţate anterior de copilul tău.

  • Exemplu:    Într-o tabără merg 290 copii. Aceştia vor fi transportaţi cu autocare de 45 de locuri. De câte autocare ar fi nevoie?

  • Rezolvare:    290 : 45 = 6 (autocare)

                             290 = 45 · 6

Spunem în acest caz că:

  • 290 se divide cu 45 sau
  • 290 este divizibil cu 45, sau
  • 290 este multiplu de 45.

Dar să vedem, dragul meu părinte, cum se notează matematic aceste notiuni.

poza 1 divizor

poza 2 divizor

Să observăm:

poza 3 divizor

În general :

  • Numărul natural „b” divide numărul natural „a”, dacă există numărul natural „c”, astfel încât a = b · c.

poa 4 divizor

  • Numărul natural „b” nu divide numărul natural „a”, dacă pentru orice număr natural „c”, a = b · c.

poza 5 divizor

Exemplu:

  • Divizorii numărului 6 sunt: 1, 2, 3, 6.

  • Multiplii numărului 2 sunt: 0, 2, 4, 6, 8, ..................

Pentru m, d, c ϵ N care satisfac relaţia de mai jos, folosim denumirile:

poza 6 divizor

Dar să vedem, dragul meu părinte cum putem afla dacă un număr este divizibil cu altul?

Exemplu:

  • verificăm dacă 154 14322 ?

Efectuăm împărţirea: 14322 : 154 = 93

                                  14322 = 154 93

                                  Deci 154 14322.

  • verificăm dacă 3727 25 ?

Efectuăm împărţirea: 3727 : 25 = 149 rest 2

                                  3727 = 149 25 + 2

                                   Deci 3727 nu divide 25.

Dragul meu părinte, observăm că:

Pentru a afla dacă un număr natural „a” este divizibil cu un număr natural nenul „b” , împărţim „a” la „b” şi obţinem numerele naturale „c” şi „r”, astfel încât: a = b c + r, unde

r < b.

  • Dacă restul împărţirii lui „a” la „b” este 0, obţinem a = b c, deci a este divizibil cu b.

  • Dacă restul împărţirii lui „a” la „b” este diferit de 0, atunci a nu este divizibil cu b.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:mathmoreeasy@yahoo.com

De asemenea, te invit şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy?ref=hl