Tag: c.m.m.m.c

Transformarea fracțiilor zecimale (periodice)

„Cu un talent și o perseverență extraordinare toate lucrurile pot fi atinse.”

Thomas Foxwell Buxton

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva exerciții la Transformarea fracțiilor zecimale în fracție ordinare.

Dacă copilul tau preferă o lecție video vă invit pe canalul meu de YouTube să urmărești lecțiaTransformarea fractiilor periodice in fractii ordinare!

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  ! (more…)

Exercițiul 1:  Transformați în fracții ordinare următoarele fracții zecimale:

a)7,5   ;             b)0,03 ;

c)13,(2) ;          d) 0,2(5) ;

e) 0,2(5);          f) 15,14(15);

Rezolvare: 

  • a) 7,5 este o fracție zecimală finită     \Rightarrow  7,5=\frac{75}{10}^{(5}=\frac{15}{2}

Pentru că avem o singură cifră după virgulă numitorul este 10. În cazul în care vom avea mai multe cifre după virgulă vom pune atâția dea 0 cate cifre avem după virgulă.

  • b) 0,03=\frac{3}{100}.

În acest caz avem două cifre după virgulă am pus doi de 0 la numitor.

  • c) 13,(2) este o fracție periodică simplă.

Pentru a transforma o fracție periodică simplă într-o fracție ordinară vom scrie la numărător întreg numărul (în cazul nostru 132) din care scădem numărul format din cifrele din fața virgulei (în cazul nostru 13), iar la numitor punem o cifră de 9 deoarece avem o singură cifră în perioadă. Astfel obținem:

13,(2)=\frac{132-12}{9}=\frac{119}{9}

Observație :   În  cazul în care avem mai multe cifre în perioadă punem atâția de 9 câte numere avem în perioadă.

  • d) 0,2(5)  este o fracție periodică mixtă (deoarece avem o cifră între virgulă și perioadă)

Pentru a transforma o fracție periodică mixtă într-o fracție ordinară vom scrie la numărător întreg numărul (în cazul nostru 25) din care scădem numărul format din cifrele din fața virgulei (în cazul nostru 2), iar la numitor punem o cifră de 9 deoarece avem o singură cifră în perioadă și o cifră de 0 deoarece avem o cifră între virgulă și perioadă. Astfel obținem:

0,2(5)=\frac{25-2}{90}=\frac{23}{90}

Observație :   În  cazul în care avem mai multe cifre în perioadă punem atâția de 9 câte numere avem în perioadă, iar dacă avem mai multe cifre între virgulă și perioadă punem atâția de 0 câte numere avem între virgulă și perioadă.

  • e) 10,12(3)=\frac{10123-1012}{900}=\frac{9111}{{900}}^{(3}=\frac{3037}{{300}}
  • f)  15,14(15)=\frac{151415-1514}{9900}=\frac{149901}{{9900}}^{(3}=\frac{49967}{{300}}

Exercițiul 2:  Se consideră numărul x=2,1(39).

a) Determinați a 2018-a zecimală a numărului x.

b) Calculați suma primelor 100 zecimale ale lui x.

c) Transformați numărul x în fracție ordinară.

Rezolvare:

Observăm că numărul x are după virgulă o cifră (1), iar în perioadă două cifre (39). Știm că cifra dintre virgulă și perioadă nu se repetă iar cifrele din perioada se repetă la nesfârșit.

Scris ca număr zecimal fară perioadă numărul x ar arăta așa:

x=2,1(39)=2,139393939..........39......

Pentru a determina a 2018-a zecimală a lui x scădem din 2018 - 1=2017 (deoarece avem o singură cifră între virgulă și perioadă).

După care împărțim 2017 la 2 (deoarece avem 2 cifre în perioadă).

2017\ \ \ :\ \ \ \ 2=1008 \ \ \ rest \ \ 1

Pentru că am obținut restul 1 a 2018-a zecimală a lui x este 3 (prima cifră din perioadă).

  • b) Pentru a calcula suma primelor 100 zecimale ale lui x scădem :

100-1=99 (deoarece avem o singură cifră între virgulă și perioadă)

După care împărțim 99 la 2 (deoarece avem 2 cifre în perioadă) și obținem:

99\ \ \ \ :\ \ \ \ 2=49 \ \ \ rest \ \ \ 1

Obținem că suma celor 100 de zecimale ale lui x sunt:

S=1+3+9+3+9+3+9+......+3 =

Pentru că 99\ \ \ \ :\ \ \ \ 2=49 \ \ \ rest \ \ \ 1  \Rightarrow 3+9 se repetă de 49 de ori.

Astfel putem scrie: S=1+49\cdot (3+9)+3 \Rightarrow S=1+49\cdot 12 +3 \Rightarrow S=1+588 +3  \Rightarrow S= 592

  • c)  x=2,1(39) \Rightarrow x=\frac{2139-21}{{990}}=\frac{2118}{{990}}^{(2}=\frac{1059}{{495}}^{(3}=\frac{353}{{165}}

Exercițiul 3:  Determinați cifra a știind că :

\overline{0,1a}+\overline{0,(a)}+\overline{0,a(1)} \in N

Rezolvare:

Transformăm fracțiile zecimale în fracții ordinare:

\overline{0,1a}+\overline{0,(a)}+\overline{0,a(1)} =\frac{\overline{1a}-1}{{90}}+ \frac{a}{9}+ \frac{\overline{a1}-a}{90}=

Aducem la același numitor prin amplificarea celei de-a doua fracții cu 10. Astfel obținem:

\frac{\overline{1a}-1}{{90}}+ ^{10)_}\textrm{\frac{a}{9}}+ \frac{\overline{a1}-a}{90}=\frac{\overline{1a}-1}{{90}}+ \frac{10a}{90}}+ \frac{\overline{a1}-a}{90}=\frac{\overline{1a}-1+10a+\overline{a1}-a}{{90}}

Desfacem în baza 10 numerele: \overline{1a} și \overline{a1} astfel:\overline{1a}= 10 +a iar \overline{a1}= 10a +1.

Obținem: \frac{10 +a -1+10a+10a+1 -a}{{90}} =\frac{10+20a}{{90}}= =\frac{10\cdot(1+2a)}{{90}}^{(10}= =\frac{1+2a}{{9}} \in N\Rightarrow 1+2a=9 |\ \ -1

\Rightarrow 2a=9 -1   \Rightarrow 2a=8 \ \ | \ \ \ \ :\ \ \ 2     \Rightarrow a=8 \ \ \ \ :\ \ \ 2   \Rightarrow a=4.

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții Ușoare Transformarea  fracților zecimale în fracții ordinare  pentru copilul tău, pe care o gasești aici: Fisa de lucru fractii periodice

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Legătura dintre C.M.M.D.C și C.M.M.M.C

”Trebuie să încerci necontenit să urci foarte sus, dacă vrei să poți să vezi foarte departe.”

Constantin Brâncuși

Dragul meu părinte bine te-am regăsit!
Azi îți propun să rezolvăm și să explicăm pas cu pas câteva exerciții  la Legătura dinte C.M.M.D.C și C.M.M.M.

Vezi lectia video aici:  https://youtu.be/kVj29S1JkgA

Exercițiul 1:
Determinați numerele naturale a și b care verifică următoarele relații:
a)  (a,b)=6     și    a\cdot b=468
b)  (a,b)=15   și   [a,b]=540
c)  (a,b)=14  și   a + b=7
d)  [a,b]=180  și  a\cdot b=2160
Rezolvare:
  • a)   (a,b)=6     și    a\cdot b=468

Știm că Cel mai mare divizor al numerelor a și b este 6 \Rightarrow a și b sunt multipli lui 6 \Rightarrow a=6\cdot x și  b=6\cdot y , iar ( x, y )=1 .

Punem condiția ca x și y să fie primi între ei, dacă nu ar fi primi între ei nu am mai obține c.m.m.d.c-ul =6.

Înlocuim a și b și obținem:

6\cdot x\cdot 6\cdot y=468 \Rightarrow 36 \cdot xy=468 | \ \ \ \ : \ \ \ 36 \Rightarrow xy=468 \ \ \ \ : \ \ \ 36 \Rightarrow x\cdot y=13

Astfel obținem posibilitățile:

Cazul I :   x=1 \Rightarrow a=6\cdot 1=6   și    y=13 \Rightarrow b= 6\cdot 13= 78

Cazul II:   x=13 \Rightarrow a= 6\cdot 13= 78   și    y=1 \Rightarrow b= 6\cdot 1= 6

  • b)   (a,b)=15 și [a,b]=540

Știm formula: (a,b)\cdot [a,b]=a\cdot b. Înlocuim în formulă și aflăm a și b.

15 \cdot 540=a\cdot b \Rightarrow a\cdot b= 8100.

Știm că Cel mai mare divizor al numerelor a și b este 15 \Rightarrow a și b sunt multipli lui 15 \Rightarrow a= 15 \cdot x și \Rightarrow b= 15 \cdot y , iar ( x, y )=1 .

Punem condiția ca x și y să fie primi între ei, dacă nu ar fi primi între ei nu am mai obține c.m.m.d.c-ul =15.

Înlocuim a și b și obținem: 15\cdot x\cdot 15\cdot y=8100 \Rightarrow 225\cdot x\cdot y=8100| \ \ \ :\ \ \ 225\Rightarrow x\cdot y=8100 \ \ \ :\ \ \ 225\Rightarrow x\cdot y=36.

Astfel obținem următoarele perechi de numere prime între ele :

Cazul I:   x=1 \Rightarrow a= 15\cdot 1= 15 și  y=36 \Rightarrow b= 15\cdot 36= 540

Cazul II:  x=4 \Rightarrow a= 15\cdot 4= 60 și   y=9 \Rightarrow b= 15\cdot 9= 135

Cazul III:   x=9 \Rightarrow a= 15\cdot 9= 135  și   y=4 \Rightarrow b= 15\cdot 4= 60

Cazul IV:  x=36 \Rightarrow a= 15\cdot 36= 540  și  y=1 \Rightarrow b= 15\cdot 1= 15

În acest caz nu putem lua perechile de numere (2\ \ \ ;\ \ \ 18) și (18\ \ \ ;\ \ \ 2) deoarece aceste numere nu sunt numere prime între ele.

  • c) (a\ \ \ ;\ \ \ b) = 14 și  a + b=7

Știm că Cel mai mare divizor al numerelor a și b este 14 \Rightarrow a și b sunt multipli lui 14  \Rightarrow a= 14 \cdot x și  \Rightarrow b= 14 \cdot y ,   iar ( x, y )=1 .

Înlocuim în a și b și obținem:

14 \cdot x+ 14\cdot y=98\Rightarrow 14 \cdot (x+ y) =98 | \ \ \ :\ \ \ 14 \Rightarrow (x+ y) =98 \ \ \ :\ \ \ 14\Rightarrow (x+ y) =7

Astfel obținem următoarele perechi de numere prime între ele :

Cazul I:   x=1 \Rightarrow a= 14\cdot 1= 14  și  y=6 \Rightarrow a= 14\cdot 6= 84

Cazul II:  x=2 \Rightarrow a= 14\cdot 2= 28  și   y=5 \Rightarrow b= 14\cdot 5= 70

Cazul III:  x=3 \Rightarrow a= 14\cdot 3= 42 și  y=4 \Rightarrow b= 14\cdot 4= 56

Cazul IV:  x=4 \Rightarrow a= 14\cdot 4= 56 și  y=3 \Rightarrow b= 14\cdot 3= 42

Cazul IV:  x=5 \Rightarrow a= 14\cdot 5= 70 și  y=2 \Rightarrow b= 14\cdot 2= 28

Cazul V:  x=6 \Rightarrow a= 14\cdot 6= 84  și  y=1 \Rightarrow b= 14\cdot 1= 14

 

Exercițiul 2: Determinați cel mai mic număr natural de trei cifre care împărțit la 48 dă restul  42 și împărțit la 56 dă restul 50.

Rezolvare:

Din enunțul problemei știm că:

x\ \ \ : \ \ \ 48 = c_{1}\ \ \ \ rest 42 \Rightarrow x=48 \cdot c_{1}+ 42

x\ \ \ : \ \ \ 56 = c_{2}\ \ \ \ rest 50  \Rightarrow x=56 \cdot c_{2}+ 50.

Observăm  în ambele relații  că trebuie să adunăm un 6 pentru a putea da factor comun pe 48 și pe 56.

\Rightarrow x=48 \cdot c_{1}+ 42 \ \ \ \ | \ \ \ \ +6 \Rightarrow x+6 =48 \cdot c_{1}+ 48 \Rightarrow x+6 =48 \cdot (c_{1}+ 1)

\Rightarrow x=56 \cdot c_{2}+ 50 \ \ \ \ | \ \ \ \ +6   \Rightarrow x+6 =56 \cdot c_{2}+ 56  \Rightarrow x+6 =56 \cdot (c_{2}+ 1)

Mai departe trebuie să calculăm c.m.m.m.c-ul numerelor 48 și 56 pentru a afla cât este x+6.

Descompunem în factori primi numerele 48 și 56 și obținem:

48= 2^4 \cdot 3

56= 2^3 \cdot 7

[48, 56]= 2^4\cdot 3\cdot 7= 16\cdot 3\cdot 7=336

\Rightarrow x+6 =336 | \ \ \ -6\Rightarrow x=336-6 \Rightarrow x=330

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții Ușoare la Legătura dintre c.m.m.d.c și c.m.m.m.c  pentru copilul tău, pe care o gasești aici:Fisa de lucru Legatura dintre cmmdc si cmmmc

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Cel Mai Mic Multiplu Comun (c.m.m.m.c)

„Un om educat se deosebeşte de un om needucat, asa cum un om viu se deosebeşte de un om mort.”

 Aristotel

Dragul meu părinte bine te-am regăsit!
Azi îți propun să rezolvăm și să explicăm pas cu pas câteva exerciții  la Cel  Mai  Mic Multiplu Comun (c.m.m.m.c).

Exercițiul 1: Aflați cel mai mic multiplu comun al următoarelor numere:

a) 24,\ \ \ \ 12, \ \ \ 18

b) 28,\ \ \ \ 147, \ \ \ 63

c) 120,\ \ \ \ 240, \ \ \ 360

d) 121,\ \ \ \ 330, \ \ \ 49

Rezolvare:   Pentru a putea determina c.m.m.m.c-ul numerelor mai întâi le descompunem în factori primi și apoi le scriem ca produs de puteri.

a) 24,\ \ \ \ 12, \ \ \ 18

24=2^3\cdot 3

12=2^2\cdot 3

18=2^1\cdot 3^2

Cel mai mic multiplu comun este produsul tuturor factorilor comuni și necomuni luați o singură dată la puterea cea mai mare.

[24, 12, 18]=2^3\cdot 3^2=8 \cdot 9=72

  • b) 28,\ \ \ \ 147, \ \ \ 63

Descompunem numerele în factori primi și apoi le scriem ca produs de puteri.

28=2^2\cdot 7

147=3\cdot 7^2

63=3^2\cdot 7

[28, 147, 63]=2^2\cdot 3^2 \cdot 7^2=4\cdot 9\cdot 49=1764

  • c) 120,\ \ \ \ 240, \ \ \ 360

Descompunem numerele în factori primi și apoi le scriem ca produs de puteri.

120=2^3\cdot 3\cdot 5

240= 2^4\cdot 3\cdot 5

360= 2^3\cdot 3^2\cdot 5

[120, 240, 360]= 2^4\cdot 3^2\cdot 5=16 \cdot 9\cdot 5=720

  • d) 121,\ \ \ \ 330, \ \ \ 49

Descompunem numerele în factori primi și apoi le scriem ca produs de puteri.

121= 11^2

330= 2\cdot 3\cdot 5\cdot 11

49= 7^2

[121, 330, 49]= 2\cdot 3\cdot 5\cdot 7^2\cdot 11^2=2\cdot 3\cdot 5\cdot 49\cdot 121= 177870

Exercițiul 2: Aflați cel mai mic număr natural de trei cifre care împărțit pe rând la 6, 16 și 12 dă de fiecare dată restul 5.

Rezolvare:

Din enunțul problemei știm că:

x\ \ \ :\ \ \ 6=c_{{1}}\ \ \ rest \ \ \ 5 . Aplicăm teorema împărțirii cu rest și obținem: x =6\cdot c_{{1}} + 5

Mai știm: x\ \ \ :\ \ \ 16=c_{{2}}\ \ \ rest \ \ \ 5  \Rightarrow x=16\cdot c_{{2}}+ 5

x\ \ \ :\ \ \ 12=c_{{3}}\ \ \ rest \ \ \ 5  \Rightarrow x=12\cdot c_{{3}}+ 5.

Scădem din fiecare relație câte un 5 și obținem:

\Rightarrow x-5=6\cdot c_{{1}}

\Rightarrow x-5=16\cdot c_{{2}}

\Rightarrow x-5=12\cdot c_{{3}}

Calculăm c.m.m.m.c-ul numerelor 6, 16 și 12.

Mai întâi descompunem în factori primi numerele:

6=2\cdot 3

16=2^4

12=2^2 \cdot 3

\left [ 6,16,12 \right ]= 2^4 \cdot 3=16\cdot 3=48

Obținem astfel:

 x-5 = 48 | \ \ \ +5   \Rightarrow x=48+5  \Rightarrow x=53

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții Ușoare la Cel  Mai  Mic Multiplu Comun pentru copilul tău, pe care o gasești aici:Fisa de lucru CMMMC

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Cel Mai Mare Divizor Comun (c.m.m.d.c)

„Dacă oamenii ar învăța să meargă și să vorbească așa cum sunt învățați să scrie și să citească, toată lumea ar șchiopăta și s-ar bâlbâi.”
Mark Twain
Dragul meu părinte bine te-am regăsit!
Azi îți propun să rezolvăm și să explicăm pas cu pas câteva exerciții  la cel mai mare divisor comun (c.m.m.d.c).

Exercițiul 1: Aflați cel mai mare divizor comun al următoarelor numere:

a) 24,\ \ \ \ 12, \ \ \ 18

b) 28,\ \ \ \ 147, \ \ \ 63

c) 120,\ \ \ \ 240, \ \ \ 360

d) 121,\ \ \ \ 330, \ \ \ 49

Rezolvare: Pentru a putea determina c.m.m.d.c-ul numerelor mai întâi le descompunem în factori primi și apoi le scriem ca produs de puteri. 

  • a) 24,\ \ \ \ 12, \ \ \ 18

24=2^3\cdot 3

12=2^2\cdot 3

18=2\cdot 3^2

(24,12,18)=2\cdot 3=6

Cel mai mare divizor comun este produsul factorilor comuni luați o singură dată la puterea cea mai mică. 

Analizând descompunerile observăm că 2 și 3 se repeată în toate cele 3 descompuneri asa că îi considerăm factori comuni, iar cea mai mica putere este 1. 

b) 28,\ \ \ \ 147, \ \ \ 63

28=2^2 \cdot 7

147=3 \cdot 7^2

63=3^2 \cdot 7

(28, 147, 63)=7

c) 120,\ \ \ \ 240, \ \ \ 360

120=2^3\cdot 3\cdot 5

240=2^4\cdot 3\cdot 5

360=2^3\cdot 3^2\cdot 5

(120, 240, 360)= 2^3 \cdot 3\cdot 5= 8\cdot 3\cdot 5=120

d) 121,\ \ \ \ 330, \ \ \ 49

121=11^2

330=2\cdot 3\cdot 5\cdot 11

49=7^2

(121, 330, 49)= 1

  • Observăm că nu avem factori comuni așa că c.m.m.d.c-ul este 1.

Exercițiul 2: Determinați 5 numere naturale care divid simultan următoarele numere: 1260, 3780, 6300.

Rezolvare:  Descompunem în factori primi numerele.

1260= 2^2\cdot 3^2\cdot5\cdot 7

3780= 2^2\cdot 3^3\cdot5\cdot 7

6300= 2^2\cdot 3^3\cdot5^2\cdot 7

(1260, 3780, 6300)= 2^2\cdot 3^2\cdot 5\cdot 7==4\cdot 9\cdot 5\cdot 7= 36\cdot 5\cdot 7=180\cdot 7=1260

Toate numerele formate din factorii c.m.m.d.c-ului mai mici decat 1260 vor divide cele trei numere.

Formam astfel 5 numere naturale:

2^2\cdot 5=4\cdot 5=20  \Rightarrow 20 \ \ \ \vdots \ \ \ 1260\ \ \ ;\ \ \ 20 \ \ \ \vdots \ \ \ 3780\ \ \ ; \ \ \ \ 20 \ \ \ \vdots \ \ \ 6300\ \ \

2^2\cdot 7=4\cdot 7=28 \Rightarrow 28 \ \ \ \vdots \ \ \ 1260\ \ \ ;\ \ \ 28 \ \ \ \vdots \ \ \ 3780\ \ \ ; \ \ \ \ 28 \ \ \ \vdots \ \ \ 6300\ \ \

3^2\cdot 5=9\cdot 5=45 \Rightarrow 45 \ \ \ \vdots \ \ \ 1260\ \ \ ;\ \ \ 45 \ \ \ \vdots \ \ \ 3780\ \ \ ; \ \ \ \ 45 \ \ \ \vdots \ \ \ 6300\ \ \

3^2\cdot 7= 9\cdot 7=63 \Rightarrow 63 \ \ \ \vdots \ \ \ 1260\ \ \ ;\ \ \ 63 \ \ \ \vdots \ \ \ 3780\ \ \ ; \ \ \ \ 63 \ \ \ \vdots \ \ \ 6300\ \ \

2^2\cdot 3^2\cdot 5=4\cdot 9\cdot 5=180 \Rightarrow 180 \ \ \ \vdots \ \ \ 1260\ \ \ ;\ \ \ 180 \ \ \ \vdots \ \ \ 3780\ \ \ ; \ \ \ \ 180 \ \ \ \vdots \ \ \ 6300\ \ \

Exercițiul 3:  Află două numere naturale care îndeplinesc simultan condițiile: 

(a,b)=25 și a-b=50      a; b \gt 101;    a;b\lt 199

Rezolvare: 

Dacă (a; b )=25  \Rightarrow a= 25\cdot x și  b= 25\cdot y iar (x,y)=1.

Înlocuim în cea de-a doua relație pe care trebuie să o respectăm și obținem:

25\cdot x-25\cdot y=50

Dăm factor comun pe 25 și obținem:

25\cdot (x-y)=50 \ \ \ \ | \ \ \ :\ \ \ 25

 (x-y)=50 \ \ \ :\ \ \ 25

 x-y=2

Dar exercițiul ne spune în enunț că a și b sunt cuprinse între numerele 101 și 199.

In acest caz cel mai mic număr ar fi 125 \ \ \ \vdots \ \ \ 25 ., iar cel mai mare număr este 175 \ \ \ \vdots \ \ \ 25 .

Din această informație deduce că: x=5 \Rightarrow y=3 \Rightarrow a=125\Rightarrow b=75

Pentru x=6 \Rightarrow y=4 \Rightarrow (6,4)=2 \Rightarrow această variant nu este convenabilă.

Pentru x=7 \Rightarrow y=5 \Rightarrow a=175\Rightarrow b=125

Exercițiul 4: Calculați c.m.m.d.c-ul numerelor a și b știind că:

a=2^n\cdot 3^{n+2}+5^2\cdot 2^{n+1}\cdot3^n+7\cdot 6^n și b=2\cdot 35^{n+1}+5^{n+2}\cdot 7^n+5^n\cdot 7^{n+1}

Rezolvare: 

Aplicăm Regulile de calcul cu puteri și obținem:

a=2^n\cdot 3^n\cdot3^2+5^2\cdot 2^n\cdot2^1\cdot3^n+7\cdot (2\cdot3)^n

a=2^n\cdot 3^n\cdot3^2+5^2\cdot 2^n\cdot2^1\cdot3^n+7\cdot 2^n\cdot 3^n

Observăm că 2^n\cdot 3^n se repeată în toți termenii adunării așa că îi vom da factor comun:

a=2^n\cdot 3^n\cdot(3^2+5^2\cdot2^1+7)

a=2^n\cdot 3^n\cdot(9+25\cdot2+7)

a=2^n\cdot 3^n\cdot 66

a=2^n\cdot 3^n\cdot 2\cdot 3\cdot 11

a=2^{n+1}\cdot 3^{n+1}\cdot 11

Calculăm b=2\cdot 35^{n+1}+5^{n+2}\cdot 7^n+5^n\cdot 7^{n+1}

Aplicăm regulile de calcul cu puteri si obținem:

b=2\cdot 35^n\cdot 35^1+5^n\cdot 5^2\cdot 7^n+5^n\cdot 7^n\cdot 7^1

b=2\cdot 35^n\cdot 35^1+5^n\cdot 5^2\cdot 7^n+5^n\cdot 7^n\cdot 7^1

b=2\cdot 35^n\cdot 35^1+(5\cdot 7)^n\cdot 5^2+(5\cdot 7)^n\cdot 7^1

b=2\cdot 35^n\cdot 35^1+35^n\cdot 5^2+35^n\cdot 7^1

Observăm că 35^n se repeat în toți termenii și îl dăm factor comun:

b=35^n(2\cdot 35^1+5^2+7^1)

b=35^n\cdot (70+25+7)

b=35^n\cdot 102

b=(5\cdot 7)^n\cdot 102

b=5^n \cdot 7^n \cdot 102

Calculăm c.m.m.d.c-ul celor două numere:

a=2^{n+1}\cdot 3^{n+1}\cdot 11

b=5^n \cdot 7^n \cdot 102

Descompunem 102 și obținem:

a=2^{n+1}\cdot 3^{n+1}\cdot 11

b=5^n \cdot 7^n \cdot 2\cdot 3\cdot17

(a,b)= 2\cdot 3= 6

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Cel Mai Mare Divizor Comun  pentru copilul tău, pe care o gasești aici: Fisa de lucru CMMDC

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții Rezolvate la Scăderea Fracțiilor (Numerelor Raționale)

"Dacă nu esti dispus sa inveți nimeni nu te poate ajuta. Dacă esti determinat să înveți, numeni nu te  poate opri."

Zig Ziglar.

Dragul meu părinte bine te-am regăsit!

Azi te invit să exersăm împreună câteva Eerciții Rzolvate la Scăderea fracțiilor (Numerelor Raționale)!

Exercițiul 1: Efectuați scăderile:

a)  \frac{9}{3}}-\frac{5}{3}}=?

b) \frac{17}{5}}-\frac{3}{5}}-\frac{7}{5}}=?

c) \frac{36}{5}}-\frac{7}{3}}=?

d)  \frac{5}{2}-\frac{2}{3}-\frac{3}{4}=?

e)  \frac{17}{15}}-\frac{3}{20}}-\frac{7}{12}}=?

Rezolvare:

a) Observăm că avem două fracții care au același numitor.

  • La scăderea a două sau mai multe fracții care au același numitor, scădem numărătorii între ei și păstrăm numitorul. Astfel obținem:
  •        \frac{9}{3}}-\frac{5}{3}}=\frac{9-5 }{3}}=\frac{4}{3}}

b)      \frac{17}{5}}-\frac{3}{5}}-\frac{7}{5}}=\frac{17-3-7}{5}}  =\frac{7}{5}}

c)   Observăm că avem două fracții care au numitori diferiți.

La scăderea a două sau mai multe fracții care au numitori diferiți mai întâi aducem fracțiile la același numitor determinăm c.m.m.m.c-ul numitorilor , amplificăm fracțiile pentru a le aduce la același numitor , apoi  scădem fracțiile folosind regula de mai sus  scădem numărătorii între ei și păstrăm numitorul. Astfel obținem:

\frac{36}{5}}-\frac{7}{3}}=?

Observăm că numitorul comun este 15; prima fracție o amplificăm cu 3 iar a doua cu 5.

 _{}^{3)}\textrm{\frac{36}{5}}-_{}^{5)}\textrm{\frac{7}{3}}= \frac{3\cdot 36}{3\cdot 5}-\frac{5\cdot 7}{5\cdot 3}= \frac{108}{15}-\frac{35}{15}= \frac{108-35}{15}= \frac{73}{15}

d)  Observăm că avem trei fracții care au numitori diferiți.

\frac{5}{2}-\frac{2}{3}-\frac{3}{4}=?

Știm că 3 și 4 sunt numere prime între ele. În acest caz numitorul comun este 12.

Prima fracție o amplificăm cu 6, a doua cu 4 iar a treia cu 3. Astfel obținem:

_{}^{6)}\textrm{\frac{5}{2}} -_{}^{4)}\textrm{\frac{2}{3}} -_{}^{3)}\textrm{\frac{3}{4}}= {\frac{6 \cdot 5}{6 \cdot 2}} - \frac{4 \cdot 2}{4\cdot 3}} -\frac{3\cdot 3}{3\cdot 4}}= {\frac{30}{12}} - \frac{8}{12}} -\frac{9}{12}}= {\frac{30- 8 - 9}{12}}= {\frac{13}{12}}

e) Observăm că avem trei fracții care au numitori diferiți.

 \frac{17}{15}}-\frac{3}{20}}-\frac{7}{12}}=?

Calculăm c.m.m.m.c-ul numerelor 15, 20, 12.Pentru a putea calcula c.m.m.m.c-ul numerelor mai întâi le descompunem în factori primi.

Asadar am obținut numitorul comun 60.Prima fracție o amplificăm cu 4, a doua fracție o amplificăm cu 3 , iar a treia fracție o amplificăm cu 5. Astfel obținem:

 _{}^{4)}\textrm{\frac{17}{15}} -_{}^{3)}\textrm{\frac{3}{20}} -_{}^{5)}\textrm{\frac{7}{12}}=  \frac{4\cdot 17}{4\cdot 15}} -\frac{3\cdot3}{3\cdot20}} -\frac{5\cdot 7}{5\cdot12}}=  \frac{68}{60}} -\frac{9}{60}} -\frac{35}{60}=  \frac{68-9-35}{60}} = \frac{24}{60}}^{(2} =  \frac{12}{30}}^{(2} =  \frac{6}{15}}^{(3} = \frac{2}{5}}

Exercițiul 2:  Efectuați calculele:

a) 5\frac{1}{4}} -3\frac{1}{3}} -\frac{5}{6}} = ?

b) 3\frac{1}{2}} -\frac{5}{3}} -1\frac{1}{9}} = ?

Rezolvare: 

Primul pas introducem întregii în fracție.

\frac{5\cdot4+1}{4}} -\frac{3\cdot3+1}{3}} -\frac{5}{6}} =  \frac{20+1}{4}} -\frac{9+1}{3}} -\frac{5}{6}} = \frac{21}{4}} -\frac{10}{3}} -\frac{5}{6}} =

Aducem fracțiile la același numitor . Mai întâi determinăm c.m.m.m.c-ul numerelor 4; 3; 6 astfel:

4= 2^2

3= 1\cdot3

6= 2\cdot3

\left [ 4; 3; 6 \right ]= 2^2 \cdot 3=4\cdot 3=12

Prima fracție o amplificăm cu 3, a doua fracție o amplificăm cu 4, iar a treia fracție o amplificăm cu 2.

_{}^{3)}\textrm{\frac{21}{{4}}}-_{}^{4)}\textrm{\frac{10}{{3}}}-_{}^{2)}\textrm{\frac{5}{{6}}}= {\frac{3\cdot 21}{{3\cdot 4}}}-{\frac{4\cdot 10}{{4\cdot 3}}}-{\frac{2\cdot 5}{{2\cdot 6}}}=  {\frac{63}{{12}}}-{\frac{40}{{12}}}-{\frac{10}{{12}}}=  {\frac{63-40-10 }{{12}}}= {\frac{13 }{{12}}}

b) 3\frac{1}{2}} -\frac{5}{3}} -1\frac{1}{9}} = ?

Primul pas introducem întregii în fracție.

\frac{3\cdot 2+1}{2}} -\frac{5}{3}} -\frac{1\cdot 9+1}{9}} =  \frac{6+1}{2}} -\frac{5}{3}} -\frac{9+1}{9}} =  \frac{7}{2}} -\frac{5}{3}} -\frac{10}{9}} =

Aducem fracțiile la același numitor . Mai întâi determinăm c.m.m.m.c-ul numerelor 2; 3; 9. Știm că 9=3^2   atunci obținem c.m.m.m.c-ul numerelor:

\left [ 2; 3; 9 \right ]= 2\cdot 3^2= 2\cdot 9=18

Prima fracție o amplificăm cu 9, a doua fracție o amplificăm cu 6, iar a treia fracție o amplificăm cu 2.

_{}^{9)}\textrm{\frac{7}{2}}}-_{}^{6)}\textrm{\frac{5}{3}}}-_{}^{2)}\textrm{\frac{10}{9}}}= {\frac{9\cdot 7}{9\cdot 2}}}-{\frac{6\cdot 5}{6\cdot 3}}}-{\frac{2\cdot 10}{2\cdot 9}}}= {\frac{63}{18}}}-{\frac{30}{18}}}-{\frac{20}{18}}}= {\frac{63-30-20}{18}}}={\frac{13}{18}}}

Exercițiul 3: Calculați:

S={\frac{3}{1\cdot4}}}+{\frac{3}{4\cdot7}}}+{\frac{3}{7\cdot10}}}+............+{\frac{3}{96\cdot99}}}

Rezolvare: 

Observăm ca numărătorul reprezintă diferența numerelor de la numitor si o vom scrie chiar așa:

S={\frac{3}{1\cdot4}}}+{\frac{3}{4\cdot7}}}+{\frac{3}{7\cdot10}}}+............+{\frac{3}{96\cdot99}}}

S={\frac{4-1}{1\cdot4}}}+{\frac{7-4}{4\cdot7}}}+{\frac{10-7}{7\cdot10}}}+............+{\frac{99-96}{96\cdot99}}}

S={\frac{4}{1\cdot4}}}-{\frac{1}{1\cdot4}}}+{\frac{7}{4\cdot7}}}-{\frac{4}{4\cdot7}}}+{\frac{10}{7\cdot10}}}-{\frac{7}{7\cdot10}}}+............+{\frac{99}{96\cdot99}}}-{\frac{96}{96\cdot99}}}

Observăm că se reduc termenii și obținem:

Observăm că ne rămâne prima și ultima fracție:

S={\frac{1}{1}}}-{\frac{1}{99}}}

Aducem la același numitor și obținem:

S=_{}^{99)}\textrm{{\frac{1}{1}}}}-{\frac{1}{99}}}= {{\frac{99}{99}}}}-{\frac{1}{99}}}={\frac{98}{99}}}

Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Scăderea  fracțiilor  pentru copilul tău, pe care o gasești aici:Fisa de lucru Scaderea fractiilor

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Adunarea Fracțiilor (Numerelor Raționale)

"Diferența dintre success și eșec vine de cele mai multe ori din refuzul de a renunța".

Walt Disney

Dragul meu părinte bine te-am regăsit!

Azi te invit să exersăm împreună câteva exerciții rezolvate  la Adunarea fracțiilor (Numerelor Raționale)!

Exercițiul 1:  Efectuați adunarea următoarelor fracții:

a) \frac{2}{{5}}+ \frac{3}{{5}}=?

b) \frac{2}{{7}}+ \frac{5}{{7}}+\frac{4}{{7}}=?

c)\frac{1}{{2}}+ \frac{2}{{3}}=?

d) \frac{1}{{2}}+ \frac{2}{{3}}+\frac{3}{{4}}=?

e) \frac{7}{{36}}+ \frac{11}{{18}}+\frac{13}{{9}}=?

Rezolvare:

a) Observăm că avem două fracții care au același numitor.

  • La adunarea a două sau mai multe fracții care au același numitor, adunăm numărătorii între ei și păstrăm numitorul. Astfel obținem:
  •         \frac{2}{{5}}+ \frac{3}{{5}}=\frac{2+3}{{5}}=\frac{5}{{5}}=1

b)      \frac{2}{{7}}+ \frac{5}{{7}}+ \frac{4}{{7}}=\frac{2+5+4}{{7}}=\frac{11}{{7}}

c)   Observăm că avem două fracții care au numitori diferiți.

La adunarea a două sau mai multe fracții care au numitori diferiți mai întâi aducem fracțiile la același numitor determinăm c.m.m.m.c-ul numitorilor , amplificăm fracțiile pentru a le adduce la același numitor , apoi  adunăm fracțiile folosind regula de mai sus  adunăm numărătorii între ei și păstrăm numitorul. Astfel obținem:

\frac{1}{{2}}+ \frac{2}{{3}}=

Observăm că numitorii sunt două numere prime între ele atunci c.m.m.m.c-ul va fi

[2;3 ]=2\cdot 3=6

Așadar prima frcție o amplificăm cu 3, iar a doua fracție o amplificăm cu 2.

  • _{{}}^{3)}\frac{1}{2}}+_{{}}^{2)}\frac{2}{3}}= \frac{3\cdot 1}{3\cdot2}}\ \ +\ \ \frac{2\cdot 2}{2\cdot 3}}= \frac{3}{6}}\ \ +\ \ \frac{4}{6}}= \ \ \frac{3 +4}{6}}= \ \ \frac{7}{6}}

d)        \frac{1}{{2}}+ \frac{2}{{3}}+\frac{3}{{4}}=?

Observăm că avem trei fracții care au numitori diferiți.

Calculăm c.m.m.m.c-ul numerelor 2, 3 și 4. Știm că 4=2^2 și că 4 și 3 sunt numere prime.

\left [ 2;3;4 \right ]=4\cdot 3=12

Prima fracție  o amplificăm cu 6, a doua fracție o amplificăm cu 4 iar a treia fracție o amplificăm cu 3. Astfel obținem:

_{{}}^{6)}\frac{1}{2}}+_{{}}^{4)}\frac{2}{3}}+ _{{}}^{3)}\frac{3}{4}}=  \frac{6\cdot 1}{6\cdot 2}}+\frac{4\cdot 2}{4\cdot 3}}+ \frac{3\cdot 3}{3\cdot4}}= \frac{6}{12}}+\frac{8}{12}}+ \frac{9}{12}} =  \frac{6+8+9}{12}} =  \frac{23}{12}}

e)           \ \ \frac{7}{36}}+\ \ \frac{11}{18}}+\ \ \frac{13}{9}}=?

Observăm că avem trei fracții care au numitori diferiți.

Calculăm c.m.m.m.c-ul numerelor 36, 18, 9.Pentru a putea calcula c.m.m.m.c-ul numerelor mai întâi le descompunem în factori primi.

Numitorul comun al celor trei fracții este 36. Prima fracție nu o amplificăm, a doua fracție o amplificăm cu 2 iar a treia fracție o amplificăm cu 4. Astfel obținem:

\frac{7}{36}}+_{{}}^{2)}\frac{11}{18}}+_{{}}^{4)}\frac{13}{9}}=  \frac{7}{36}}+\frac{2\cdot 11}{2\cdot 18}}+\frac{4\cdot 13}{4\cdot 9}}=  \frac{7}{36}}+\frac{22}{36}}+\frac{52}{36}}=  \frac{7+22+52}{36}} =  \frac{84}{36}} =

Simplificăm fracția obținută până obținem o fracție ireductibilă.

 \frac{84}{36}} ^{{(2}}= \frac{42}{18}} ^{{(2}}= \frac{21}{9}} ^{{(3}}= \frac{7}{3}}

 

Exercițiul 2:  Efectuați calculele:

a) 2\frac{1}{4}} + 3\frac{1}{3}} +\frac{5}{6}} =?

b) 3\frac{1}{2}} + \frac{5}{3}} +1\frac{1}{9}} =?

Rezolvare:

a) 2\frac{1}{4}} + 3\frac{1}{3}} +\frac{5}{6}} =?

Primul pas introducem întregii în fracție.

\frac{2\cdot 4+1}{4}} + \frac{3\cdot 3+1}{3}} +\frac{5}{6}} =  \frac{8+1}{4}} + \frac{9+1}{3}} +\frac{5}{6}} =  \frac{9}{4}} + \frac{10}{3}} +\frac{5}{6}} =

Aducem fracțiile la același numitor . Mai întâi determinăm c.m.m.m.c-ul numerelor 4; 3; 6 astfel:

4= 2^2

3= 1\cdot3

6= 2\cdot3

\left [ 4; 3; 6 \right ]= 2^2 \cdot 3=4\cdot 3=12

Prima fracție o amplificăm cu 3, a doua fracție o amplificăm cu 4, iar a treia fracție o amplificăm cu 2.

_{{}}^{3)}\frac{9}{4}}+_{{}}^{4)}\frac{10}{3}}+_{{}}^{2)}\frac{5}{6}}=  \frac{3 \cdot 9}{3\cdot 4}}+\frac{4\cdot 10}{4\cdot 3}}+\frac{2\cdot 5}{2\cdot 6}}=  \frac{27}{12}}+\frac{40}{12}}+\frac{10}{12}}=  \frac{77}{12}}

b)       3\frac{1}{2}} + \frac{5}{3}} +1\frac{1}{9}} =?

Primul pas introducem întregii în fracție.

\frac{3\cdot 2+1}{2}} + \frac{5}{3}} +\frac{1\cdot 9+1}{9}} = \frac{6+1}{2}} + \frac{5}{3}} +\frac{9+1}{9}} =  \frac{7}{2}} + \frac{5}{3}} +\frac{10}{9}} =

Aducem fracțiile la același numitor . Mai întâi determinăm c.m.m.m.c-ul numerelor 2; 3; 9. Știm că 9=3^2   atunci obținem c.m.m.m.c-ul numerelor:

\left [ 2; 3; 9 \right ]= 2\cdot 3^2= 2\cdot 9=18

Prima fracție o amplificăm cu 9, a doua fracție o amplificăm cu 6, iar a treia fracție o amplificăm cu 2.

_{{}}^{9)}\frac{7}{2}}+_{{}}^{6)}\frac{5}{3}}+_{{}}^{2)}\frac{10}{9}}=  \frac{9\cdot7}{9\cdot 2}}+\frac{6\cdot 5}{6\cdot 3}}+\frac{2\cdot 10}{2\cdot 9}}=  \frac{63}{18}}+\frac{30}{18}}+\frac{20}{18}}=  \frac{63+30+20}{18}}= \frac{103}{18}}

Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Adunarea  fracțiilor  pentru copilul tău, pe care o gasești aici:Fisa de lucru Adunarea fractiilor

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Aducerea fracțiilor la același numitor

„Învățătorii îți deschid ușa, însă numai tu însuți poți trece dincolo de ea.”

-Proverb chinezesc

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții rezolvate  la Aducerea fracțiilor la același numitor!

(more…)

Exercițiul 1: Se consider fracțiile:    \frac{3}{48}\frac{7}{72} ;  \frac{5}{56} ;  \frac{1}{45};

a) Calculați c.m.m.m.c-ul numitorilor fractiilor de mai sus;

b) Aduce-ți fracțiile la acelasi numitor.

Rezolvare:

a)  \frac{3}{48}\frac{7}{72} ;  \frac{5}{56} ;  \frac{1}{45};

Descompunem in factori primi numitorii:

Scriem numitorii ca produs de puteri:

48=2^{4} \cdot 3

72=2^{3} \cdot 3^{2}

56=2^{3} \cdot 7

45=3^{2} \cdot 5

Pentru a determina  c. m.m.m.c- ul luăm toate bazele la puterea cea mai mare.  [48; 72; 56; 45]=2^{4}\cdot 3^{2}\cdot 5^{1}\cdot 7^{1}   \Rightarrow [48; 72; 56; 45]=16 \cdot 9\cdot 5\cdot 7   \Rightarrow [48; 72; 56; 45]=5140

b) Pentru a aduce la același numitor fracțiile de mai sus trebuie sa le amplificam astfel incăt la numitor să obținem valoarea c.m.m.m.c-ului.Pentru a afla cu cat trebuie să amplificăm fiecare fracție împărțim valoarea c.m.m.m.c-ului la fiecare numitor.

5140 \ \ \ : \ \ \ 48=105 \Rightarrow Prima fracție o amplificăm cu 105.

5140 \ \ \ : \ \ \ 72=70  \Rightarrow A doua  fracție o amplificăm cu 70

5140 \ \ \ : \ \ \ 56 = 90  \Rightarrow A treia  fracție o amplificăm cu 90

5140 \ \ \ : \ \ \ 45 = 112 \Rightarrow A patra  fracție o amplificăm cu 112.

Astfel obținem:

_{}^{105)}\frac{3}{48}\ \ \ \ ; \ \ _{}^{70)}\frac{7}{72}\ \ \ \ ; \ \ _{}^{90)}\frac{5}{56}\ \ \ ; \ \ _{}^{112)}\frac{1}{45}\ \ \ \ ;     \Rightarrow \frac{105 \cdot 3}{{105 \cdot 48}}\ \ \ ; \ \ \frac{70 \cdot 7}{{70 \cdot 72}}\ \ \ ; \ \ \frac{90 \cdot 5}{{90 \cdot 56}}\ \ \ ; \ \ \frac{112 \cdot 1}{{112 \cdot 45}}

\Rightarrow \frac{315}{{5140}}\ \ \ ; \ \ \frac{490}{{5140}}\ \ \ ; \ \ \frac{450}{{5140}}\ \ \ ; \ \ \frac{112}{{5140}}

Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Aducerea fracțiilor la același numitor pentru copilul tău, pe care o gasești aici: Fisa de lucru Aducerea fractiilor la acelasi numitor

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

 

 

 

 

Exerciții Rezolvate la Descompunerea În Factori Primi

"Descurajarea și înfrângerile sunt unele dintre cele mai sigure căi către succes."

Dale Carnegie

Dragul meu părinte bine te-am regăsit! Azi îți propun să lucrăm câteva exerciții la o lecție  extrem de importanta Descompunerea în Factori Primi a unui Număr Natural.

Exercițiul 1 :

Descompuneți în produs de factori primi următoarele numere naturale:

a) 120

b) 3528;

c)36000

Rezolvare: 

  • a) Pentru că 120 se divide cu 10 (numărul 120 se termină in 0), iar 10 nu este număr prim vom împărți mai întâi prin 2\cdot 5
  • Rămâne 12 care este un număr par și se divide cu 2.
  • Deci 120 descompus în factori primi este: 120=2^3 \cdot 3^1 \cdot 5^1
  • b) 3528

  • Pentru că 3528 este un număr par de divide cu 2.
  • Pentru că 441 este un număr impar și  nu se mai divide cu 2, verificăm criteriul de divizibilitate cu 3.
  • 4+4+1=9\ \ \ \vdots\ \ \ 3
  • Mai departe împărțim prin 3.
  • Pentru că 49 nu se mai divide cu 3 și nu se divide nici cu 5 încercăm cu următorul număr prim cu 7.
  • Astfel obținem 3528 descompus în factori primi: 3528=2^3 \cdot 3^2 \cdot7^2
  • c) 36000
  • Pentru că 36000 se termină în trei cifre de 0 înseamnă că de divide cu  1000=10^3=(2\cdot5)^3=2^3 \cdot 5^3
  • Deci obținem:
  • Astfel putem scrie 36000=2^5 \cdot 3^2 \cdot 5^3

 

Exercițiul 2 :

Determinați  numerele naturale "m", "n" și "p"astfel încât să obțineți propoziții adevărate:

a) 36=2^n \cdot 3^p

b) 360=2^n \cdot 3^p\cdot 5^m

c) 720=2^n \cdot 3^p\cdot 5^m

Rezolvare:

Descompunem în factori primi numerele 36, 360 și 720.

descompunere in factori primi
  • Obținem astfel:
  • a) 36=2^n \cdot 3^p
  •  36=2^2\cdot 3^2 \Rightarrow n=2 și  p=2
  • b) 360=2^n \cdot 3^p\cdot 5^m
  •  360=2^3 \cdot 3^2\cdot 5^1 \Rightarrow n=3 \ \ \ ; \ \ \ p=2 și m=1
  • c) 720=2^n \cdot 3^p\cdot 5^m
  •  720=2^4 \cdot 3^2\cdot 5^1\Rightarrow n=4 \ ; \ \ \ p=2 și m=1

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în "Clubul de Matematică Math More Easy".  

Propunere Model Teza Semestriala (I) clasa a VI-a

clasa a VI-a"Succesul înseamnă a fi în stare să mergi din eșec în eșec, fără să-ți pierzi entuziasmul" spunea Winston Churchill.

Dragul meu părinte, bine te-am regăsit!Pentru că a început perioada tezelor semestriale, iar copilul tău trebuie să repete toate noţiunile învăţate în acest semestru m-am gândit să vă ajut cu un model de teză care îl va ajuta să parcurgă materia studiată pâna în acest moment.

(more…)

  • Toate subiectele sunt obligatorii.
  • Se acordă 10 puncte din oficiu.
  • Timp de lucru 50 minute.

Subiectul I. Pe foaia de test se trec numai rezultatele (30p):

5p     1 . Mulțimea divizorilor lui 30 este............................................................

5p     2.Rezultatul calculului \left [ 2\frac{1}{5}-0,(4)+\frac{1}{45} \right ]:(1\frac{1}{3}) ^{2} este: ..............................

5p   3. Număr mai mare decât 30 care are exact 2 divizori este:…………………..

5p   4. Suplementul unghiului de masura  115^{{\circ}}  este ………………………………

5p    5. Complementul unui unghi cu măsura de  31^{{\circ}} are măsura de         ............................................................

  • Subiectul II. Pe foaia de teză se alege răspunsul corect prin încercuire (20p):

 5p      1.   Aflați c.m.m.m.c al numerelor 12, 20.

10p     2. Dacă punctele A , B , C sunt coliniare (în această ordine); AB=12cm; AC=22cm atunci

a) BC=.....................................................................................

b)Distanța dintre mijloacele segmentelor AB și BC este........................

5P     3. Determinți x dacă

59x2

  • Subiectul III. Pe foaia de test se trec rezolvările complete(30p):

10p       1.  Arătaţi că numărul : A=1+3+5+7+.................+2015 se divide cu 7.

8 p       2.   Determinați măsurile unghiurilor formate de două drepte concurente știind că unul din unghiurile formate este cu  30^{{\circ}} mai mare decât alt unghi format.

10p         3.   Determinaţi valorile naturale ale lui x pentru care \frac{9}{2x-1}} este număr natural.

12p.        4.  Fie unghiurile AOB şi BOC adiacente suplementare  cu m(\widehat{AOB})=70 ^{\circ}   iar [OE   bisectoarea  \widehat{AOB} si [OF bisectoarea  \widehat{BOC} . Calculati:

a) m(\widehat{BOC})=?

b) m(\widehat{EOF})=?

c) m(\widehat{AOF})=?

Ps: Dragul meu părinte, dacă copilultău nu a înteles foarte bine Suma lui Gauss poţi descărca acest PDF gratuit  pe care l-am conceput special pentru copii care au dificultăţi la aceste noţiuni  şi care  vă va ajuta să stăpâniţi la perfecţie aceste noţiuni matematice dificile .

Mult succes la rezolvarea acestei teze  dar mai ales mult succes la teza de la şcoală! 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Poţi descărca teza în format pdf de aici: teza-de-evaluare-vi-semestriala-la-matematica

Exerciții rezolvate la numere reale!

Clasa a VIII-aBine te-am regăsit dragul meu părinte! În articolul pe care l-am publicat luni pe blog am rezolvat trei exerciţii la lecţia mulţimea numerelor reale. Astăzi revin cu un nou articol în care mai explic pas cu pas doua exemple de exerciţii cu un grad de dificultate mai ridicat pentru a veni în ajutorul tău şi al copilului tău.

 EXERCIŢIUL 1: Determinaţi elementele mulţimilor:

A=\left \{ x\epsilon N|  \frac{15}{2x+1}\epsilon N \} şi B=\left \{ x\epsilon Z| \frac{3x+9}{2x-3}\epsilon Z \}.

Rezolvare: Să aflăm întâi mulţimea A.

A=\left \{ x\epsilon N|  \frac{15}{2x+1}\epsilon N \}

Exerciţiul îmi cere să găsesc toate valorile numere naturale care îndeplinesc condiţia: \frac{15}{2x+1}\epsilon N \Rightarrow2x+1 \epsilon D_{{15}}.

Numitorul 2x+1 trebuie să aparţină mulţimii divizorilor lui 15, deoarece împărţirea 15 la 2x+1 trebuie să fie o împărţire exactă, astfel încât rezultatul să aparţină mulţimii numerelor naturale.

 D_{{15}}=\left \{ 1,3,5,15 \right \}

2x+1=1 | -1 \Rightarrow 2x=1-1 \Rightarrow2x=0| :2 \Rightarrow x=0

2x+1=3 | -1 \Rightarrow 2x=3 -1 \Rightarrow 2x=2 | :2 \Rightarrow x=1

2x+1=5 | -1 \Rightarrow 2x=5 -1 \Rightarrow 2x=4 | :2 \Rightarrow x=2

2x+1=15 | -1 \Rightarrow 2x=15 -1 \Rightarrow 2x=14 | :2 \Rightarrow x=7

Soluţie :x \epsilon \left \{ 0, 1,2,7\right \}.

  • Determinăm şi mulţimea B=\left \{ x\epsilon Z| \frac{3x+9}{2x-3}\epsilon Z \}.

La această mulţime trebuie să prelucrăm numărătorul în funcţie de numitor, astfel încât să găsim  mulţimea divizorilor unui număr întreg.

\frac{3x+9}{2x-3}\epsilon Z \Rightarrow\frac{6x+18}{2x-3}\epsilon Z \Rightarrow\frac{6x-9+27}{2x-3}\epsilon Z \Rightarrow\frac{3(2x-3)}{2x-3}+\frac{27}{2x-3}\epsilon Z \Rightarrow3+\frac{27}{2x-3}\epsilon Z

Deoarece 3\epsilon Z ,  este suficient să demonstrez că \frac{27}{2x-3}\epsilon Z \Rightarrow{2x-3}\epsilon D_{27}

Deoarece sunt pe multimea Z, \Rightarrow D_{27}=\left \{ \pm1, \pm3,\pm9, \pm27 \right \}

2x-3=1| +3 \Rightarrow 2x=1+3 \Rightarrow 2x=4| :2 \Rightarrow x=2

2x-3=-1| +3 \Rightarrow 2x=-1+3 \Rightarrow 2x=2| :2 \Rightarrow x=1

2x-3=3| +3 \Rightarrow 2x=3+3 \Rightarrow 2x=6| :2 \Rightarrow x=3

 2x-3=-3| +3 \Rightarrow 2x=-3+3 \Rightarrow 2x=0 \Rightarrow x=0

 2x-3=9|+3 \Rightarrow 2x=9+3 \Rightarrow 2x=12| :2 \Rightarrow x=6 2x-3=-9|+3 \Rightarrow 2x=-9+3 \Rightarrow 2x=-6| :2 \Rightarrow x=-3

2x-3=27|+3 \Rightarrow 2x=27+3 \Rightarrow 2x=30| :2 \Rightarrow x=15

2x-3=-27|+3 \Rightarrow 2x=-27+3 \Rightarrow 2x=-24| :2 \Rightarrow x=-12

Soluţie : x\in \left \{ -12;-3;0;1;2;6;15 \right \}

EXERCIŢIUL 2: Determinaţi x\in Z pentru care \frac{\sqrt{7+4\sqrt{3}}+\sqrt{52-14\sqrt{3}}}{2x-1}\in Z

Rezolvare: Pentru a determina valorile pe care le poate lua x trebuie sa determinam numarătorul. Vom scrie cei doi radicali de la numărător cu ajutorul formulelor de calcul prescurtat ca un număr la puterea a doua.

Astfel vom scrie \sqrt{7+4\sqrt{3}}=\sqrt{(2+\sqrt{3})^2} , iar \sqrt{52-14\sqrt{3}}=\sqrt{(7-\sqrt{3})^2}.

Obţinem astfel: \frac{\sqrt{(2+\sqrt{3})^2}+\sqrt{(7-\sqrt{3})^2}}{2x-1}\in Z \Rightarrow\frac{\left \| 2+\sqrt{3} \right \|+\left \| 7-\sqrt{3} \right \|}{2x-1}\in Z

Considerăm \sqrt{3}\simeq 1,73 obţinem: 2+ 1,73 =3,73 şi 7-1,73 =5,27

Deoarece \left \| 2+\sqrt{3} \right \| şi \left \| 7-\sqrt{3} \right \| sunt numere pozitive, sunt mai mari decît 0,ambele numere  ies de sub modul cu sumnul +, adica 2+\sqrt{3} şi 7-\sqrt{3}.

Obţinem astfel: \frac{ 2+\sqrt{3} +7-\sqrt{3} }{2x-1}\in Z \Rightarrow\frac{ 2 +7 }{2x-1}\in Z \Rightarrow\frac{ 9 }{2x-1}\in Z \Rightarrow2x-1\in D_{9} .

D_{9} =\left \{ \pm1;\pm3;\pm9 \right \}.

 

2x-1=1| +1 \Rightarrow 2x=1 +1 \Rightarrow 2x=2| :2 \Rightarrow x=1
2x-1=-1| +1 \Rightarrow 2x=-1 +1 \Rightarrow 2x=0| :2 \Rightarrow x=0

2x-1=3| +1 \Rightarrow 2x=3 +1 \Rightarrow 2x=4| :2 \Rightarrow x=2

2x-1=-3| +1 \Rightarrow 2x=-3 +1 \Rightarrow 2x=-2| :2 \Rightarrow x=-1

2x-1=9| +1 \Rightarrow 2x=9 +1 \Rightarrow 2x=10| :2 \Rightarrow x=5 2x-1=-9| +1 \Rightarrow 2x=-9 +1 \Rightarrow 2x=-8| :2 \Rightarrow x=-4

Soluţie: x\in \left \{ -4;-1; 0; 1; 2; 5 \right \}

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăti în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!