„Sclavul are doar un stăpân. Ambiţiosul are atâţia stăpâni câţi oameni îi pot fi de folos carierei sale.”                                                  Jean de la Bruyere

Bine te-am regăsit!
Azi îți propun să rezolvăm și să explicăm pas cu pas câteva exerciții  la "Înmulțirea și Împărțirea Numerelor Raționale (Fracțiilor)"
https://youtu.be/HGvdqfFaMow

Exercițiul 1:  Efectuați următoarele înmulțiri și împărțiri:

a)  \frac{5}{34} \cdot \frac{17}{49} \cdot \frac{7}{25}

b)  2\cdot \frac{7}{4} \cdot \frac{9}{14}

c) \frac{7}{11} \ \ \ : \ \ \ \frac{14}{33}

d) 1,5 \cdot \frac{2}{3}\cdot 2,5

e) 3,5 \cdot 9\frac{1}{5}

f) 4,5 \ \ \ \ :\ \ \ \ 3\frac{1}{9}

Rezolvare:

  • a) \frac{5}{34} \cdot \frac{17}{49} \cdot \frac{7}{25}

La înmulțirea a două sau mai multe fracții înmulțim numărătorii între ei și numitorii între ei după care simplificăm fractia până obținem o fracție ireductibilă.

Astfel obținem:

\frac{5}{34} \cdot \frac{17}{49} \cdot \frac{7}{25}=\frac{5\cdot 17\cdot 7 }{34\cdot 49\cdot 25}  =\frac{595 }{41650} ^{(5}=\frac{119 }{8330} ^{(7}=\frac{17 }{1190} ^{(17}=\frac{1 }{70}

  • b)  2\cdot \frac{7}{4} \cdot \frac{9}{14}

Observăm că primul număr este un număr natural.

La înmulțirea  unui număr natural cu o fracție înmulțim numărul natural cu numărătorul și păstrăm numitorul. (Sau transformăm numărul natural în număr rațional cu numitorul 1)

Astfel obținem:

2\cdot \frac{7}{4} \cdot \frac{9}{14}=\frac{2\cdot 7}{4} \cdot \frac{9}{14}=\frac{14}{4} \cdot \frac{9}{14}=\frac{14\cdot 9}{4\cdot 14}=\frac{126}{56} ^{(2}=\frac{63}{28} ^{(7}=\frac{9}{4}

(Sau putem să mai efectuăm calculele astfel:

2\cdot \frac{7}{4} \cdot \frac{9}{14}=\frac{2}{1} \cdot \frac{7}{4} \cdot \frac{9}{14}=  \frac{2\cdot 7\cdot 9 }{1\cdot 4\cdot 14}=\frac{126}{56} ^{(2}=\frac{63}{28} ^{(7}=\frac{9}{4}  ).

  • c)  \frac{7}{11} \ \ \ : \ \ \ \frac{14}{33}

La împărțirea a două fracții pastrăm prima fracție intactă și o înmulțim cu inversa celei de-a doua fracții.

Inversa unei fracției  \frac{a}{b}  înseamnă fracția  \frac{b}{a}.

Astfel obținem:

 \frac{7}{11} \ \ \ : \ \ \ \frac{14}{33}=\frac{7}{11} \cdot \frac{33}{14}=\frac{7\cdot 33}{11\cdot 14}=\frac{231}{154} ^{(7}=\frac{33}{22}^{(11}=\frac{3}{2}

 

  • d) 1,5 \cdot \frac{2}{3}\cdot 2,5

Mai întâi transformăm fracțiile zecimale în fracții ordinare.

 1,5 \cdot \frac{2}{3}\cdot 2,5=\frac{15}{10} \cdot \frac{2}{3}\cdot \frac{25}{10}=\frac{15\cdot2 \cdot 25 }{10\cdot 3 \cdot 10 = \frac{750}{300}^{(10}= \frac{75}{30}^{(5}= \frac{15}{6}^{(3}= \frac{5}{2}

  • e) 3,5 \cdot 9\frac{1}{5}

Transformăm fractia zecimală în fracție ordinară și introducem întregul  în fracția ordinară. Astfel obținem:

3,5 \cdot 9\frac{1}{5}= \frac{35}{10} \cdot \frac{9 \cdot 5+1}{5}= \frac{35}{10} \cdot \frac{46}{5}= \frac{35 \cdot 46}{10 \cdot 5} = \frac{1610}{50}^{(10}=\frac{161}{5}

  • f) 4,5 \ \ \ \ :\ \ \ \ 3\frac{1}{9}

Transformăm fractia zecimală în fracție ordinară și introducem întregul  în fracția ordinară. Astfel obținem:

4,5 \ \ \ \ :\ \ \ \ 3\frac{1}{9}= \frac{45}{10} \ \ \ \ :\ \ \ \ \frac{3\cdot 9+1}{9}= \frac{45}{10} \ \ \ \ :\ \ \ \ \frac{28}{9}=   \frac{45}{10}\cdot \frac{9}{28}= \frac{45\cdot 9}{10\cdot 28}= \frac{405}{280}^{(5}=\frac{81}{56}

Exercițiul 2: Efectuați:

a)  (3\frac{3}{{4}}) \ \ \ : \ \ \ (5\frac{1}{{2}}+ 0,5) \cdot (1\frac{1}{{3}} )

b)  [(1,(5)-0,(5))]\cdot 1,(6)\ \ \ :\ \ \ 2\frac{1}{2} =

Rezolvare:

  • a)  (3\frac{3}{{4}}) \ \ \ : \ \ \ (5\frac{1}{{2}}+ 0,5) \cdot (1\frac{1}{{3}} )

Mai întâi introducem întregii în fracții și transformăm fracția zecimală în fracție ordinară.

Astfel obținem:

 (3\frac{3}{{4}}) \ \ \ : \ \ \ (5\frac{1}{{2}}+ 0,5) \cdot (1\frac{1}{{3}} )= (\frac{3\cdot 4+3}{{4}}) \ \ \ : \ \ \ (\frac{5\cdot 2+1}{{2}}+ \frac{5}{10}) \cdot (\frac{1\cdot 3+1}{{3}})  =  \frac{15}{{4}} \ \ \ : \ \ \ (\frac{11}{{2}}+ \frac{5}{10}) \cdot \frac{4}{{3}}

Mai întâi efectuăm adunarea din paranteza rotundă.

 = (\frac{15}{{4}}) \ \ \ : \ \ \ (\frac{11}{{2}}+ \frac{5}{10}^{(5} )\cdot (\frac{4}{{3}})

 = \frac{15}{{4}} \ \ \ : \ \ \ (\frac{11}{{2}}+ \frac{1}{2})\cdot \frac{4}{{3}}

 = \frac{15}{{4}}\ \ \ : \ \ \ \frac{12}{{2}}\cdot \frac{4}{{3}}

 = \frac{15}{{4}}\cdot \frac{2}{{12}}\cdot \frac{4}{{3}}

 = \frac{15\cdot 2\cdot 4}{{4\cdot 12\cdot 3}} = \frac{120}{{144}}^{(2} = \frac{60}{{72}}^{(2} = \frac{30}{{36}}^{(2} = \frac{5}{{6}}

  •  [(1,(5)-0,(5))]\cdot 1,(6)\ \ \ :\ \ \ 2\frac{1}{2} =

Mai întâi transformăm fracțiile zecimale în fracții ordinare și  introducem întregii în fracție.

Astfel obținem:

 [(1,(5)-0,(5))]\cdot 1,(6)\ \ \ :\ \ \ 2\frac{1}{2} = [(\frac{15-1}{9} -\frac{5}{9})]\cdot \frac{16-1}{9}\ \ \ :\ \ \ \frac{2\cdot2+ 1}{2} =

 (\frac{14}{9} -\frac{5}{9})\cdot \frac{15}{9}\ \ \ :\ \ \ \frac{5}{2} =  \frac{6}{9} \cdot \frac{15}{9}\ \ \ :\ \ \ \frac{5}{2} =   \frac{6 \cdot 15}{9\cdot 9}\ \ \ :\ \ \ \frac{5}{2} =

 \frac{90}{81}\ \ \ :\ \ \ \frac{5}{2} =   \frac{90}{81} \cdot \frac{2}{5} =

 \frac{90\cdot 2}{81\cdot 5} =  \frac{180}{405}^{(5} =  \frac{36}{81}^{(9} =  \frac{4}{9}

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții Ușoare la Înmulțirea și Împărțirea Numerelor Raționale   pentru copilul tău, pe care o gasești aici: Fisa de lucru Inmultirea

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

1 Comment on Înmulțirea și Împărțirea Fracțiilor

  1. Doamne ajuta,atât de frumos si înțelept explicați încât totul pare atât de ușor, mai ales pentru cei care au mai uitat dealungul anilor,va multumim din inima!Asa de folositor,mulțumim!Doamne ajută,tot binele!

Leave a Reply

Your email address will not be published.