"Inteligența nu înseamnă să nu faci greșeli, ci să vezi repede cum poți să le îndrepți"

Brelot Breckt

Dragul meu părinte bine te-am regăsit! Azi te invit să rezolvăm și să explicăm pas cu pas  împreună cateva exerciții la “Modulul unui număr intreg”.

Exercițiul 1: Completați pentru a obține propoziții adevarate:

a) \left \ | -11 \right \ |=?

b) \left \ | 13 \right \ |=?

c) \left \ | 0 \right \ |=?

d) \left \ | (-2)^2 \right \ |=?

e) \left \ | -3^4 \right \ |=?

f) \left \ | -7 +11 \right \ |=?

g) \left \ | -15 -6 \right \ |=?

h) \left \ | -2^2+3^2 \right \ |=?

i) \left \ | 2^{164}-3^{123} \right \ |=?

Rezolvare: 

Știm că modulul sau valoarea absolută  a unui număr întreg este valoarea pozitivă a acelui număr.

a) \left \| -11 \right \ |=11   ;     b) \left \ | 13 \right \ |=13   ;    c) \left \ | 0 \right \ |=0    ;        

d) \left \ | (-2)^2 \right \ |=?

Știm că semnul minus la putere pară obținem semnul + , astfel  (-2)^2=+ 4. Astfel obținem:

\left \ | (-2)^2 \right \ |=\left \ | 4 \right \ |=4

e)  \left \ | -3^4 \right \ |=?

Știm că semnul minus la putere impară obținem semnul - , astfel   -3^4=-81. Astfel obținem:

\left \ | -3^4 \right \ |=\left \ | -81 \right \ |=81

f) \left \ | -7 +11 \right \ |=?

Efectuăm calculele din modul după care explicităm modulul.

Știm că la adunarea a două numere întregi păstrăm semnul celui mai mare și efectuăm scădere între termini. Astfel obținem:

\left \ | -7 +11 \right \ |= \left \ | +4 \right \ |= 4

g) \left \ | -15 -6 \right \ |= ?

Efectuăm calculele din modul după care explicităm modulul.

Știm că la scăderea a două numere întregi negative păstrăm semnul  și efectuăm adunare între termini. Astfel obținem:

\left \ | -15 -6 \right \ |= \left \ | - 21 \right \ | = 21

h) \left \ | -2^2+3^2 \right \ |= ?

Mai întâi ridicăm numerele întregi la putere, apoi facem calculele după care explicităm modulul. Astfel obținem:

\left \ | -2^2+3^2 \right \ |= \left \ | - 4+9\right \ | = \left \ | +5\right \ | = 5

i) \left \ | 2^{164}-3^{123} \right \ |= ?

Pentru a putea explicita modului trebuie mai întâi să comparăm puterile:

Comparăm 2^{164}   cu  3^{123} .

Observăm că 164=4 \cdot 41 ,  iar  123= 3\cdot 41. Astfel obținem:

2^{4\cdot 41}   comparat cu 3^{3\cdot 41}. Aplicăm regulile de calcul cu puteri și obținem:

(2^{4})^{41} comparat cu  (3^{3})^{41}  \Rightarrow 16^{41} comparat cu  \Rightarrow 27^{41} .

Pentru că am obținut același exponent, comparăm bazele iar numărul cu baza mai mare va fii mai mare. Obținem astfel că : 2^{164} \lt 3^{123} \Rightarrow semnul rezultatului din modul va fii negative. În acest caz vom scoate termenii de sub modul cu semen schimbate.

\left \ | 2^{164}-3^{123} \right \ |= - 2^{164}+3^{123}

Pentru că avem puteri foarte mari lăsăm așa răspunsul final.

Exercițiul 2:  Rezolvați în Z ecuațiile:

a)   \left \| x \right \|=5

b) \left \| 2x-17 \right \|=21

c) 29-3\cdot \left \ | 2x-7 \right \ | \geq -4

d) 3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]-8=7

Rezolvare: 

a)  \left \| x \right \|=5 \Rightarrow x= \pm 5

b)  \left \| 2x-17 \right \|=21

Egalăm pe rând valoarea din modul cu 21 și cu -21.

  • \left \| 2\cdot x-17 \right \|=21 \Rightarrow 2\cdot x-17=21  \Rightarrow 2\cdot x=21+17 \Rightarrow 2\cdot x=38 \Rightarrow x=38 \ \ \ : \ \ \ 2 \Rightarrow x=19
  • \left \| 2x-17 \right \|=21\Rightarrow 2x-17=-21 \Rightarrow 2\cdot x=- 21+17 \Rightarrow 2\cdot x=- 4 \Rightarrow x=-4 \ \ \ : \ \ \ 2 \Rightarrow x=-2

x\in \left \{-2 \ \ ; \ \ 19 \right \}

d) 3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]-8=7

Aplicăm metoda mersului invers.

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]-8=7 \ \ \ \ \ \ | \ \ +8

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]=7+8

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]=15

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]=15\ \ \ \ \ \ | \ \ : \ \ 3

 2 \cdot \left \ | 2x- 3 \right \ | -9=15 \ \ : \ \ 3

 2 \cdot \left \ | 2x- 3 \right \ | -9=5 \ \ \ \ \ \ | \ \ +9

 2 \cdot \left \ | 2x- 3 \right \ | =5 +9

 2 \cdot \left \ | 2x- 3 \right \ | =14 \ \ \ \ \ \ | \ \ :2

 \left \ | 2x- 3 \right \ | =14 \ \ \ :\ \ \ 2

 \left \ | 2x- 3 \right \ | = 7

Egalăm pe rând valoarea din modul cu 7 și cu -7.

 \left \ | 2x- 3 \right \ | = 7\Rightarrow 2\cdot x-3=-7 \ \ \ | \ \ \ +3\Rightarrow 2\cdot x=-4 \ \ \ | \ \ \ : \ \ \ \ 2 \Rightarrow x=-2

 \left \ | 2x- 3 \right \ | = 7\Rightarrow 2\cdot x-3=7 \ \ \ | \ \ \ +3  \Rightarrow 2\cdot x=10 \ \ \ | \ \ \ : \ \ \ \ 2 \Rightarrow x=5

x\in \left \{ -2\ \ \ ;\ \ \ 5 \right \}

Exercițiul 3 :  Rezolvați în mulțimea numerelor întregi inecuațiile:

a) \left \| x \right \|\leq 5

b) \left \| x-6 \right \|\ \ \ \lt \ \ \ 3

c) 29- 3\cdot \left \| 2x-7 \right \| \geq -4

Rezolvare: 

a) \left \| x \right \|\leq 5 \Rightarrow -5 \leq x\leq 5 \Rightarrow x\in \left \{ -5\ ;\ \ \ -4\ ; \ \ \ -3;\ -2;\ -1;\ \ \ \ 0;\ \ \ \ 1;\ \ \ \ 2;\ \ \ 3;\ \ \ \ 4;\ \ \ \ 5 \right \}

b) \left \| x-6 \right \|\ \ \ \lt \ \ \ 3 \Rightarrow -3\ \ \ \ \lt \ \ \ \ x-6\ \ \ \ \lt \ \ \ \3\ \ \ \ | \ \ \ +6\Rightarrow -3+6\ \ \ \ \lt \ \ \ \ x\ \ \ \ \lt \ \ \ \3+6\ \  \Rightarrow 3\ \ \ \ \lt \ \ \ \ x\ \ \ \ \lt \ \ \ \9\ \\Rightarrow x\in \left \{ 4 \ ;\ \ \ \5\ ;\ \ \ \6\ ;\ \ \ \7\ ;\ \ \ \8 \right \}

c) 29-3\cdot \left \ | 2x-7 \right \ | \geq -4\ \ \ | \ \ \ -29

-3\cdot \left \ | 2x-7 \right \ | \geq -4-29

În momentul în care înmulțim o inecuație cu un număr negativ se schimbă semnul. Astfel obținem:

\left \ | 2x-7 \right \ | \leq -33 \ \ \ \ :\ \ \ (-3)

\left \ | 2x-7 \right \ | \leq 11  \Rightarrow -11\leq 2x-7 \leq 11 \ \ \ | \ \ \ +7 \Rightarrow -11+7 \leq \ \ \ 2x \leq \ \ \ \ 11+7  \Rightarrow -4 \leq \ \ \ 2x \leq \ \ \ \ 18 \ \ \ | \ \ \ :\ \ 2  \Rightarrow -4\ \ \ :\ \ \ 2 \leq \ \ \ x \leq \ \ \ \ 18 \ \ \ :\ \ 2\Rightarrow - 2 \leq \ \ \ x \leq \ \ \ \ 9

\Rightarrow x\in \left \{ -2 \ ;\ \ \ \ -1\ ;\ \ \ \ 0 \ ;\ \ \ \ 1 \ ;\ \ 2 \ \ ;\ \ \ 3 \ ;\ \ \ \ 4\ ;\ \ \ \ 5\ ;\ \ \ \ 6\ ;\ \ \ \ 7\ ;\ \ \ \ 8\ ;\ \ \ \ 9\ \right \}

PS: Nu uita să te abonezi pentru a afla când postez lectii video și dă un share să afle și prietenii tăi  !

Math More Easy - YouTubehttps:/

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor