Posts Tagged ‘suma lui Gauss’

Exerciții rezolvate la Divizor. Multiplu

Clasa a V-a

Dragul meu părinte, în articolul anterior am vorbit despre „Divizor. Multiplu”.

Iată şi câteva aplicaţii la lecţia „Divizor. Multiplu”, exerciţii cu grad diferit de dificultate, explicate pas cu pas, să te ajute să i le explici copilului tău.

(mai mult…)

  • EXERCIŢIUL 1:
  • Dacă „a” şi „b” sunt numere naturale şi x = 3· a + 6 · b arătaţi că x este multiplu de 3.

Rezolvare:

Dragul meu părinte, la acest exerciţiu copilul tău trebuie să-l scrie pe „x” ca un multiplu de 3.

  • x = 3 · a + 6 · b 
  • x = 3·( a + 2 · b)
  • x 3
  • EXERCIŢIUL 2:
  • Arătaţi că numărul „m + n” este divizibil cu 12, unde

m = 2 + 4 + 6 + ……. + 100, iar n = 11· (2 + 4 + 6 + ……. + 100).

Rezolvare:

Dragul meu părinte, la acest exerciţiu copilul tău trebuie să-l scrie pe „m+n” ca un multiplu de 12. Dar, ca să-l scrie pe „m + n” ca un produs de numere dintre care un număr să fie 12, copilul tău trebuie să îl calculeze mai întâi pe „m” şi pe „n”.

Dragul meu părinte, observăm va „m” şi „n” sunt reprezentate de două numere scrise cu ajutorul sumei lui Gauss a numerelor pare cuprinse între 2 şi 100.

Dragul meu părinte, copilul tău trebuie să ştie că între numărul 1 şi 100 sunt 100 de termeni dintre care 50 de termeni sunt numere pare şi 50 de termeni sunt numere impare.

  • m = 2 + 4 + 6 + ……. + 100   (m are 50 termeni)
  • Pentru a calcula Suma lui Gauss a numerelor pare cuprinse între 2 şi 100 scriem astfel:
  • m = 2 + 4 + 6 + ……. 96+98+ 100.
  • Observăm că dacă adunăm:
  • 2 + 100 = 102.
  • 4 + 98 = 102.
  • 6 + 96 = 102.
  • …………………….
  • După care, dragul meu părinte, copilul tău va trebui să grupeze termenii 2 câte 2 astfel: primul termen cu ultimul termen, al doilea termen cu penultimul şi aşa mai departe.
  • m = (2 + 100) + (4+ 96)+(6+98)+…………….      .   (“m” are 25 paranteze)
  • Obţinem astfel 25 de paranteze, iar rezultatul fiecărei paranteze este 102.
  • Putem scrie:
  • m = 25 · 102
  • Efectuând înmulţirea obţinem: m = 2550.
  • Analog îl calculăm şi pe „n” .
  • Observăm dragul meu părinte ca n = 11· (2 + 4 + 6 + ……. + 100), adică
  • n = 11· m
  • n = 11· 2550
  • n = 28 050
  • Dragul meu părinte, calculând „m + n” obţinem:
  • m + n = 2550+28050 = 30 600
  • Dragul meu părinte, la începutul rezolvării acestui exerciţiu am spus că pentru a demonstra că m+n este divizibil cu 12, copilul tău trebuie să scrie numărul „m + n” ca un produs de două nu numere dintre care unul dintre numere să fie 12.
  • În cazul acestui exerciţiu, copilul tău trebuie să-l scrie pe 30 600 ca un produs de două numere dintre care unul trebuie să fie 12.
  • Păi să vedem, dragul meu părinte, se împarte exact 30 600 la 12?
  • 30 600 : 12 = ?
  • 30 600 : 12 = 2550
  • 30 600 = 12 · 2550
  • 30 600 12
  • EXERCIŢIUL 3:
  • Scrieţi toţi multiplii lui 7 cuprinşi între 15 şi 65.

Rezolvare:

Dragul meu părinte, la acest exerciţiu copilul tău trebuie să gasească toate numerele cuprinse între 15 şi 65 care se împart exact la 7.

Stim că:

  • 2 · 7 = 14 (dar 14 este mai mic decât 15 deci nu este bun).
  • 3· 7 = 21 ( 15 < 21 < 65)( 21 este un număr bun)
  • 4· 7 = 28 ( 15 < 28 < 65)( 28 este un număr bun)
  • 5· 7 = 35 ( 15 < 35 < 65)( 35 este un număr bun)
  • 6· 7 = 42 ( 15 < 42 < 65)( 42 este un număr bun)
  • 7· 7 = 49 ( 15 < 49 < 65)( 49 este un număr bun)
  • 8· 7 = 56 ( 15 < 56 < 65)( 56 este un număr bun)
  • 9· 7 = 62 ( 15 < 63 < 65)( 63 este un număr bun)
  • 10· 7 = 70 ( 15 < 65 < 70) (70 nu este un număr bun).
  • În concluzie, avem mulţimea soluţiilor egală cu:
  • S = { 21, 28, 35, 42, 49, 56, 63}.
  • EXERCIŢIUL 4:
  • Un număr natural nenul „a” are printre divizorii săi numerele 3, 5 şi 7. Scrieţi încă 4 divizori diferiţi de aceştia ai numărului „a”.

Rezolvare:

Dragul meu părinte, copilul tău trebuie să stie că un număr natural nenul „a” care se divide în acelaşi timp cu numerele „b”, „c” şi „d” , atunci se divide şi cu produsul acestor numere.

În cazul nostru numărul „a” se divide cu numerele: 3, 5 şi 7 că numărul „a” se divide şi cu numărul 3 · 7 = 21, 3 · 5 = 15, 5· 7 = 35, 3 · 5 · 7 = 105.

În concluzie, avem mulţimea soluţiilor egală cu:

S = { 15, 21, 35, 105}.

  • EXERCIŢIUL 5:
  • Dacă a / b şi b /c , atunci arătaţi că a /c.

Rezolvare:

Dragul meu părinte, la acest exerciţiu copilul tău va lucra pe caz general ( nu stie ce valori au numerele „a”, „b” şi „c”). Aplicand definiţia divizibilităţii obţinem:

  • a / b     atunci “b” se împarte exact la „a”
  • b = a · m , m ϵ N   (relaţia 1)
  • b /c       atunci  “c” se împarte exact la „b”
  • c = b · n , n ϵ N     (relaţia  2 )

Dacă înlocuim în cea de-a doua relaţie pe numărul „b” obţinut în relaţia 1, obţinem:

  • c = a · (m· n)

În concluzie , obţinem că a /c.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:mathmoreeasy@yahoo.com

De asemenea, te invit şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy?ref=hl.