Posts Tagged ‘suma gauss’

Exerciții rezolvate la Adunarea și Scăderea Fracțiilor

“Învată tot ce poți, în orice moment disponibil, de la oricine și întotdeuna va veni o vreme când te vei simți recompensat pentru ceea ce ai învațat”

Sarah Caldwel

Dragul meu părinte bine te-am regăsit! Azi te invit să rezolvăm și să explicăm pas cu pas  împreună cateva exerciții la “Adunarea și Scăderea Fracțiilor”. (mai mult…)

Exercițiul 1:        Calculați:

a) \frac{7}{13}+\frac{2}{13}+\frac{5}{13}=

b) -\frac{10}{9}+\frac{11}{9}+(-\frac{7}{9})=

c) -\frac{3}{{5}}+(-\frac{5}{{6}})+(+\frac{1}{{2}})+(+\frac{4}{{15}})=

d)-\frac{13}{{18}}+(-\frac{5}{{108}})+(-\frac{14}{{5}})+(-\frac{7}{{36}})=

Rezolvare:

  • a) \frac{7}{13}+\frac{2}{13}+\frac{5}{13}=

Observăm că cele 3 fracții au acelasi numitor, în acest caz efectuez calculele între numărători și pastrez numitorul.

  • -\frac{7}{13}+\frac{2}{13}+\frac{5}{13}= \frac{7+2+5}{13}= \frac{14}{13}

 

  • b) -\frac{10}{9}+\frac{11}{9}+(-\frac{7}{9})=\frac{-10+11-7}{9}=

Avem la numărător -10+11-7 numere întregi cu semne diferite așa că vom respecta regula de adunare dacă termenii au semne diferite pastrăm semnul celui mai mare și efectuăm scădere. Noi avem -10+11   păstrăm semnul + și efectuîm 11-10

\frac{-10+11-7}{9}=\frac{+1-7}{9}=\frac{-6}{9}= \frac{-6}{9}^{(3}= \frac{-2}{3}

  • c) -\frac{3}{{5}}+(-\frac{5}{{6}})+(+\frac{1}{{2}})+(+\frac{4}{{15}})=

Observăm că în acest exercițiu fracțiile au numitor diferit așa că trebuie să determinăm numitorul comun.

Pentru a determina numitorul comun trebuie să calculăm c.m.m.m.c-ul numerelor de la numitor 5, 6, 2, 15.

Descompunem în factori primi cele 4 numere:

5=5

6=2\cdot3

2=2

15=3\cdot5

Calculăm c.m.m.m.c\left [ 5,6,2,15 \right ]=2\cdot3\cdot5=30

Deci numitorul comun este 30.

Trebuie să amplificăm fiecare fracție astfel încât să obținem  numitorul 30.

-_{{}}^{6)}\textrm{\frac{3}{{5}}}+(-_{{}}^{5)}\textrm{\frac{5}{{6}}})+ (+_{{}}^{15)}\textrm{\frac{1}{{2}}})+(+_{{}}^{2)}\textrm{\frac{4}{{15}}}) =

-\frac{18}{{30}}}+(-{\frac{25}{{30}}})+ (+{\frac{15}{{30}}})+(+{\frac{8}{{30}}})=

Știm că semnul (+) înmulțit cu semnul (-) obținem (-) , iar semnul (+) înmulțit cu semnul (+) obținem (+) . Astfel obținem:

  • -\frac{18}{{30}}}+(-{\frac{25}{{30}}})+ (+{\frac{15}{{30}}})+(+{\frac{8}{{30}}})=
  • -\frac{18}{{30}}}-{\frac{25}{{30}}}+ {\frac{15}{{30}}}+{\frac{8}{{30}}}=
  • \frac{-18-25+15+8}{{30}}}=
  •   \frac{-43+15+8}{{30}}}=
  •  \frac{- 28+8}{{30}}}=  \frac{- 20}{{30}}}^{(10} =- \frac{ 2}{{3}}}

d)      -\frac{13}{{18}}+(-\frac{5}{{108}})+(-\frac{14}{{5}})+(-\frac{7}{{36}})=

Determinăm numitorul comun:

18= 2\cdot 3^2

108= 2^2\cdot 3^3

5=5

36= 2^2\cdot 3^2

[18, 108, 5, 36]= 2^2\cdot 3^3\cdot 5=4\cdot 27\cdot 5=540

Trebuie să amplificăm fiecare fracție astfel încât să obținem  numitorul 540.

-_^{30)}\textrm{\frac{13}{{18}}}+(-_^{5)}\textrm{\frac{5}{{108}}})+(-_^{108)}\textrm{\frac{14}{{5}}})+(-_^{15)}\textrm{\frac{7}{{36}}})=

-{\frac{13\cdot30}{{18\cdot 30}}}+(-{\frac{5\cdot 5}{{108\cdot 5}}})+(-{\frac{14\cdot 108}{{5\cdot 108}}})+(-{\frac{7\cdot 15}{{36\cdot 15}}})=

-{\frac{390}{{540}}}+(-{\frac{25}{{540}}})+(-{\frac{1512}{{540}}})+(-{\frac{105}{{540}}})=

{\frac{-390-25-1512-105}{{540}}}=  {\frac{-(390+25+1512+105)}{{540}}}=  {\frac{-2032}{{540}}}^{(2}=  {\frac{-1016}{{270}}}^{(2}=  {\frac{-508}{{135}}}

 

Exercițiul 2:  Efectuați calculele:

a) [-3\frac{1}{{2}} +1\frac{1 }{{15}} ] + [-1\frac{1}{{7}}+2\frac{7 }{{3}} ]=

Introducem întregii în fracție:

(-\frac{3\cdot2+1}{{2}} +\frac{1\cdot 15+1 }{{15}} ) + (-\frac{1\cdot7+1}{{7}}+\frac{2\cdot3+7 }{{3}} )=

(-\frac{7}{{2}} +\frac{16 }{{15}} ) + (-\frac{8}{{7}}+\frac{13}{{3}} )=

Determinăm numitorul comun și aducem fracțiile la același numitor:

Știm că 2,3,7 și 5 sunt numere prime între ele. Numitorul comun este 2\cdot 3\cdot 5\cdot 7= 210

Amplificăm fracțiile și obținem:

(-_{{}}^{105)}\textrm{\frac{7}{{2}}}+_{{}}^{14)}\textrm{\frac{16}{{15}}})+(-_{{}}^{30)}\textrm{\frac{8}{{7}}}+_{{}}^{70)}\textrm{\frac{13}{{3}}})=  (-{\frac{735}{{210}}}+{\frac{224}{{210}}})+(-{\frac{240}{{210}}}+{\frac{910}{{210}}})=

{\frac{-735+224}{{210}}}+{\frac{-240+910}{{210}}}=  {\frac{-511}{{210}}}+{\frac{670}{{210}}}=  {\frac{-511+670}{{210}}}= {\frac{159}{{210}}}^{(3}= {\frac{53}{{70}}}

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții Rezolvate la Scăderea Fracțiilor (Numerelor Raționale)

“Dacă nu esti dispus sa inveți nimeni nu te poate ajuta. Dacă esti determinat să înveți, numeni nu te  poate opri.”

Zig Ziglar.

Dragul meu părinte bine te-am regăsit!

Azi te invit să exersăm împreună câteva Eerciții Rzolvate la Scăderea fracțiilor (Numerelor Raționale)!

(mai mult…)

Exercițiul 1: Efectuați scăderile:

a)  \frac{9}{3}}-\frac{5}{3}}=?

b) \frac{17}{5}}-\frac{3}{5}}-\frac{7}{5}}=?

c) \frac{36}{5}}-\frac{7}{3}}=?

d)  \frac{5}{2}-\frac{2}{3}-\frac{3}{4}=?

e)  \frac{17}{15}}-\frac{3}{20}}-\frac{7}{12}}=?

Rezolvare:

a) Observăm că avem două fracții care au același numitor.

  • La scăderea a două sau mai multe fracții care au același numitor, scădem numărătorii între ei și păstrăm numitorul. Astfel obținem:
  •        \frac{9}{3}}-\frac{5}{3}}=\frac{9-5 }{3}}=\frac{4}{3}}

b)      \frac{17}{5}}-\frac{3}{5}}-\frac{7}{5}}=\frac{17-3-7}{5}}  =\frac{7}{5}}

c)   Observăm că avem două fracții care au numitori diferiți.

La scăderea a două sau mai multe fracții care au numitori diferiți mai întâi aducem fracțiile la același numitor determinăm c.m.m.m.c-ul numitorilor , amplificăm fracțiile pentru a le aduce la același numitor , apoi  scădem fracțiile folosind regula de mai sus  scădem numărătorii între ei și păstrăm numitorul. Astfel obținem:

\frac{36}{5}}-\frac{7}{3}}=?

Observăm că numitorul comun este 15; prima fracție o amplificăm cu 3 iar a doua cu 5.

 _{}^{3)}\textrm{\frac{36}{5}}-_{}^{5)}\textrm{\frac{7}{3}}= \frac{3\cdot 36}{3\cdot 5}-\frac{5\cdot 7}{5\cdot 3}= \frac{108}{15}-\frac{35}{15}= \frac{108-35}{15}= \frac{73}{15}

d)  Observăm că avem trei fracții care au numitori diferiți.

\frac{5}{2}-\frac{2}{3}-\frac{3}{4}=?

Știm că 3 și 4 sunt numere prime între ele. În acest caz numitorul comun este 12.

Prima fracție o amplificăm cu 6, a doua cu 4 iar a treia cu 3. Astfel obținem:

_{}^{6)}\textrm{\frac{5}{2}} -_{}^{4)}\textrm{\frac{2}{3}} -_{}^{3)}\textrm{\frac{3}{4}}= {\frac{6 \cdot 5}{6 \cdot 2}} - \frac{4 \cdot 2}{4\cdot 3}} -\frac{3\cdot 3}{3\cdot 4}}= {\frac{30}{12}} - \frac{8}{12}} -\frac{9}{12}}= {\frac{30- 8 - 9}{12}}= {\frac{13}{12}}

e) Observăm că avem trei fracții care au numitori diferiți.

 \frac{17}{15}}-\frac{3}{20}}-\frac{7}{12}}=?

Calculăm c.m.m.m.c-ul numerelor 15, 20, 12.Pentru a putea calcula c.m.m.m.c-ul numerelor mai întâi le descompunem în factori primi.

Asadar am obținut numitorul comun 60.Prima fracție o amplificăm cu 4, a doua fracție o amplificăm cu 3 , iar a treia fracție o amplificăm cu 5. Astfel obținem:

 _{}^{4)}\textrm{\frac{17}{15}} -_{}^{3)}\textrm{\frac{3}{20}} -_{}^{5)}\textrm{\frac{7}{12}}=  \frac{4\cdot 17}{4\cdot 15}} -\frac{3\cdot3}{3\cdot20}} -\frac{5\cdot 7}{5\cdot12}}=  \frac{68}{60}} -\frac{9}{60}} -\frac{35}{60}=  \frac{68-9-35}{60}} = \frac{24}{60}}^{(2} =  \frac{12}{30}}^{(2} =  \frac{6}{15}}^{(3} = \frac{2}{5}}

Exercițiul 2:  Efectuați calculele:

a) 5\frac{1}{4}} -3\frac{1}{3}} -\frac{5}{6}} = ?

b) 3\frac{1}{2}} -\frac{5}{3}} -1\frac{1}{9}} = ?

Rezolvare: 

Primul pas introducem întregii în fracție.

\frac{5\cdot4+1}{4}} -\frac{3\cdot3+1}{3}} -\frac{5}{6}} =  \frac{20+1}{4}} -\frac{9+1}{3}} -\frac{5}{6}} = \frac{21}{4}} -\frac{10}{3}} -\frac{5}{6}} =

Aducem fracțiile la același numitor . Mai întâi determinăm c.m.m.m.c-ul numerelor 4; 3; 6 astfel:

4= 2^2

3= 1\cdot3

6= 2\cdot3

\left [ 4; 3; 6 \right ]= 2^2 \cdot 3=4\cdot 3=12

Prima fracție o amplificăm cu 3, a doua fracție o amplificăm cu 4, iar a treia fracție o amplificăm cu 2.

_{}^{3)}\textrm{\frac{21}{{4}}}-_{}^{4)}\textrm{\frac{10}{{3}}}-_{}^{2)}\textrm{\frac{5}{{6}}}= {\frac{3\cdot 21}{{3\cdot 4}}}-{\frac{4\cdot 10}{{4\cdot 3}}}-{\frac{2\cdot 5}{{2\cdot 6}}}=  {\frac{63}{{12}}}-{\frac{40}{{12}}}-{\frac{10}{{12}}}=  {\frac{63-40-10 }{{12}}}= {\frac{13 }{{12}}}

b) 3\frac{1}{2}} -\frac{5}{3}} -1\frac{1}{9}} = ?

Primul pas introducem întregii în fracție.

\frac{3\cdot 2+1}{2}} -\frac{5}{3}} -\frac{1\cdot 9+1}{9}} =  \frac{6+1}{2}} -\frac{5}{3}} -\frac{9+1}{9}} =  \frac{7}{2}} -\frac{5}{3}} -\frac{10}{9}} =

Aducem fracțiile la același numitor . Mai întâi determinăm c.m.m.m.c-ul numerelor 2; 3; 9. Știm că 9=3^2   atunci obținem c.m.m.m.c-ul numerelor:

\left [ 2; 3; 9 \right ]= 2\cdot 3^2= 2\cdot 9=18

Prima fracție o amplificăm cu 9, a doua fracție o amplificăm cu 6, iar a treia fracție o amplificăm cu 2.

_{}^{9)}\textrm{\frac{7}{2}}}-_{}^{6)}\textrm{\frac{5}{3}}}-_{}^{2)}\textrm{\frac{10}{9}}}= {\frac{9\cdot 7}{9\cdot 2}}}-{\frac{6\cdot 5}{6\cdot 3}}}-{\frac{2\cdot 10}{2\cdot 9}}}= {\frac{63}{18}}}-{\frac{30}{18}}}-{\frac{20}{18}}}= {\frac{63-30-20}{18}}}={\frac{13}{18}}}

Exercițiul 3: Calculați:

S={\frac{3}{1\cdot4}}}+{\frac{3}{4\cdot7}}}+{\frac{3}{7\cdot10}}}+............+{\frac{3}{96\cdot99}}}

Rezolvare: 

Observăm ca numărătorul reprezintă diferența numerelor de la numitor si o vom scrie chiar așa:

S={\frac{3}{1\cdot4}}}+{\frac{3}{4\cdot7}}}+{\frac{3}{7\cdot10}}}+............+{\frac{3}{96\cdot99}}}

S={\frac{4-1}{1\cdot4}}}+{\frac{7-4}{4\cdot7}}}+{\frac{10-7}{7\cdot10}}}+............+{\frac{99-96}{96\cdot99}}}

S={\frac{4}{1\cdot4}}}-{\frac{1}{1\cdot4}}}+{\frac{7}{4\cdot7}}}-{\frac{4}{4\cdot7}}}+{\frac{10}{7\cdot10}}}-{\frac{7}{7\cdot10}}}+............+{\frac{99}{96\cdot99}}}-{\frac{96}{96\cdot99}}}

Observăm că se reduc termenii și obținem:

Observăm că ne rămâne prima și ultima fracție:

S={\frac{1}{1}}}-{\frac{1}{99}}}

Aducem la același numitor și obținem:

S=_{}^{99)}\textrm{{\frac{1}{1}}}}-{\frac{1}{99}}}= {{\frac{99}{99}}}}-{\frac{1}{99}}}={\frac{98}{99}}}

Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Scăderea  fracțiilor  pentru copilul tău, pe care o gasești aici:Fisa de lucru Scaderea fractiilor

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Aducerea fracțiilor la același numitor

„Învățătorii îți deschid ușa, însă numai tu însuți poți trece dincolo de ea.”

-Proverb chinezesc

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții rezolvate  la Aducerea fracțiilor la același numitor!

(mai mult…)

Exercițiul 1: Se consider fracțiile:    \frac{3}{48}\frac{7}{72} ;  \frac{5}{56} ;  \frac{1}{45};

a) Calculați c.m.m.m.c-ul numitorilor fractiilor de mai sus;

b) Aduce-ți fracțiile la acelasi numitor.

Rezolvare:

a)  \frac{3}{48}\frac{7}{72} ;  \frac{5}{56} ;  \frac{1}{45};

Descompunem in factori primi numitorii:

Scriem numitorii ca produs de puteri:

48=2^{4} \cdot 3

72=2^{3} \cdot 3^{2}

56=2^{3} \cdot 7

45=3^{2} \cdot 5

Pentru a determina  c. m.m.m.c- ul luăm toate bazele la puterea cea mai mare.  [48; 72; 56; 45]=2^{4}\cdot 3^{2}\cdot 5^{1}\cdot 7^{1}   \Rightarrow [48; 72; 56; 45]=16 \cdot 9\cdot 5\cdot 7   \Rightarrow [48; 72; 56; 45]=5140

b) Pentru a aduce la același numitor fracțiile de mai sus trebuie sa le amplificam astfel incăt la numitor să obținem valoarea c.m.m.m.c-ului.Pentru a afla cu cat trebuie să amplificăm fiecare fracție împărțim valoarea c.m.m.m.c-ului la fiecare numitor.

5140 \ \ \ : \ \ \ 48=105 \Rightarrow Prima fracție o amplificăm cu 105.

5140 \ \ \ : \ \ \ 72=70  \Rightarrow A doua  fracție o amplificăm cu 70

5140 \ \ \ : \ \ \ 56 = 90  \Rightarrow A treia  fracție o amplificăm cu 90

5140 \ \ \ : \ \ \ 45 = 112 \Rightarrow A patra  fracție o amplificăm cu 112.

Astfel obținem:

_{}^{105)}\frac{3}{48}\ \ \ \ ; \ \ _{}^{70)}\frac{7}{72}\ \ \ \ ; \ \ _{}^{90)}\frac{5}{56}\ \ \ ; \ \ _{}^{112)}\frac{1}{45}\ \ \ \ ;     \Rightarrow \frac{105 \cdot 3}{{105 \cdot 48}}\ \ \ ; \ \ \frac{70 \cdot 7}{{70 \cdot 72}}\ \ \ ; \ \ \frac{90 \cdot 5}{{90 \cdot 56}}\ \ \ ; \ \ \frac{112 \cdot 1}{{112 \cdot 45}}

\Rightarrow \frac{315}{{5140}}\ \ \ ; \ \ \frac{490}{{5140}}\ \ \ ; \ \ \frac{450}{{5140}}\ \ \ ; \ \ \frac{112}{{5140}}

Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Aducerea fracțiilor la același numitor pentru copilul tău, pe care o gasești aici: Fisa de lucru Aducerea fractiilor la acelasi numitor

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

 

 

 

 

Compararea Fracțiilor (Numere Raționale)

„A-ţi dori să ai succes fară a munci din greu este ca şi cum ai încerca să culegi roadele pe care nu le-ai semănat vreodata.”

David Bly

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții rezolvate  la Compararea Numerelor Raționale (Fracții)! (mai mult…)

Exercițiul 1: Comparați fracțiile:

a) \frac{5}{{8}}    cu   \frac{7}{{8}}     ;          b) \frac{3}{{5}}  cu   \frac{3}{{4}}

c) 1\frac{5}{{7}}  cu 1\frac{3}{{7}}     ;          d) 2\frac{1}{{3}}  cu  1\frac{2}{{3}}

e)  4\frac{1}{{10}}  cu   \frac{41}{{10}}   ;       f) 3\frac{5}{{9}}    cu    \frac{33}{{9}}

Rezolvare: 

  • a) Pentru a compara două fracții care au același numitor comparăm numărătorii iar fracția cu numărătorul mai mare este mai mare.

 \frac{5}{{8}} \lt \frac{7}{{8}}

  • b)  Pentru a compara două fracții care au același numărător comparam numitorii, iar fracția cu numitorul  mai mic este mai mare.

 \frac{3}{{5}} \lt \frac{3}{{4}}

  • c) Pentru a compara cele două fracții  mai întâi introducem întregii în fracție și apoi comparăm cele două fracții.

 1\frac{5}{{7}} \ \ \ \ cu \ \ \ 1 \frac{3}{{7}}    \Rightarrow \frac{1\cdot 7+5}{{7}} \ \ \ \ cu \ \ \ \frac{1\cdot 7+3}{{7}}   \Rightarrow \frac{ 7+5}{{7}} \ \ \ \ cu \ \ \ \frac{ 7+3}{{7}}  \Rightarrow \frac{12}{{7}} \ \ \ cu \ \ \ \frac{10}{{7}}

Pentru că am obținut două fracții cu același numitor comparăm numărătorii

12 \gt 10 \Rightarrow \frac{12}{{7}} \ \ \gt \ \ \frac{10}{{7}}

  • d) 2 \frac{1}{{3}} \ \ \ cu \ \ \ 1\frac{2}{{3}}    \Rightarrow \frac{2\cdot 3+1}{{3}} \ \ \ cu \ \ \ \frac{1\cdot 3+2}{{3}}   \Rightarrow \frac{7}{{3}} \gt \frac{5}{{3}}
  • e) 4 \frac{1}{{10}} \ \ \ cu \ \ \ \frac{41}{{10}}     \Rightarrow \frac{4\cdot 10+1}{{10}} \ \ \ cu \ \ \ \frac{41}{{10}}  \Rightarrow \frac{41}{{10}} = \frac{41}{{10}}
  • f) 3 \frac{5}{{9}} \ \ \ \ cu \ \ \ \frac{33}{{9}}     \Rightarrow \frac{3\cdot 9+5}{{9}} \ \ \ \ cu \ \ \ \frac{33}{{9}}  \Rightarrow \frac{27+5}{{9}} \ \ \ \ cu \ \ \ \frac{33}{{9}} \Rightarrow \frac{32}{{9}} \ \ \ \ \lt \ \ \ \frac{33}{{9}}

Exercițiul 2: Comparați fracțiile:

a)  \frac{3}{{4}} \ \ \ \ cu \ \ \ \frac{1}{{2}}

b)  1\frac{1}{{3}} \ \ \ \ cu \ \ \ 1 \frac{5}{{12}}

c)   3\frac{1}{{8}} \ \ \ \ cu \ \ \ \frac{37}{{10}}

d)   \frac{25}{{6}} \ \ \ \ cu \ \ \ 4\frac{1}{{6}}

Rezolvare: 

a)   \frac{3}{{4}} \ \ \ \ cu \ \ \ \frac{1}{{2}}}

  • Pentru a compara două fracții care au numitorii diferiti, mai întâi le aducem la același numitor și apoi le comparăm.

 \frac{3}{{4}} \ \ \ \ cu \ \ \ ^{2)}\textrm{ \frac{1}{{2}}}   \Rightarrow \frac{3}{{4}} \ \ \ \ cu \ \ \ \frac{2}{{4}}}  \Rightarrow \frac{3}{{4}} \ \ \ \ \gt \ \ \ \frac{2}{{4}}}

b) 1 \frac{1}{{3}} \ \ \ \ cu \ \ \ 1\frac{5}{{12}}}   \Rightarrow \frac{1\cdot 3+1}{{3}} \ \ \ \ cu \ \ \ \frac{1\cdot 12+5}{{12}}}  \Rightarrow \frac{4}{{3}} \ \ \ \ cu \ \ \ \frac{17}{{12}}}   \Rightarrow _{}^{4)}\textrm{\frac{4}{{3}} \ \ \ \ cu \ \ \ \frac{17}{{12}}}}

\Rightarrow \frac{16}{{12}} \ \ \ \ cu \ \ \ \frac{17}{{12}}}}   \Rightarrow \frac{16}{{12}} \ \ \ \ \lt \ \ \ \frac{17}{{12}}}}

c) 3 \frac{1}{{8}} \ \ \ \ cu \ \ \ \frac{37}{{10}}}}   \Rightarrow \frac{3\cdot 8+1}{{8}} \ \ \ \ cu \ \ \ \frac{37}{{10}}}}   \Rightarrow \frac{24+1}{{8}} \ \ \ \ cu \ \ \ \frac{37}{{10}}}}  \Rightarrow \frac{25}{{8}} \ \ \ \ cu \ \ \ \frac{37}{{10}}}}

\Rightarrow _{}^{5)}\textrm{} \frac{25}{{8}} \ \ \ \ cu \ \ \ _{}^{4)}\textrm{}\frac{37}{{10}}}}   \Rightarrow \frac{125}{{40}} \ \ \ \ cu \ \ \ \frac{148}{{40}}}}    \Rightarrow \frac{125}{{40}} \ \ \ \ \lt \ \ \ \frac{148}{{40}}}}

d)  \frac{25}{{6}} \ \ \ \ cu \ \ \ 4\frac{1}{{6}}}}  \Rightarrow \frac{25}{{6}} \ \ \ \ cu \ \ \ \frac{4\cdot 6+1}{{6}}}}    \Rightarrow \frac{25}{{6}} \ \ \ \ cu \ \ \ \frac{24+1}{{6}}}}   \Rightarrow \frac{25}{{6}} \ \ \ \ cu \ \ \ \frac{25}{{6}}}}  \Rightarrow \frac{25}{{6}} \ \ \ \ = \ \ \ \frac{25}{{6}}}}

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Compararea Fracțiilor  pentru copilul tău, pe care o gasești aici: Fisa de lucru Compararea fractiilor

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Metoda Mersului Invers

“Învingătorii nu renunță, iar cei care renunță nu ajung învingători!”

Aristotel

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții rezolvate  la Metoda Mersului Invers! (mai mult…)

Exercițiul 1:     3(x+2) - 7=14

Rezolvare:  Știm din clasele mici că într-un exerciţiu în care sunt folosite paranteze rotunde, atunci efectuăm întâi operaţiile din paranteze după care efectuam restul operaţiilor în ordinea în care sunt scrise. Analizând exercițiul nostru observăm că nu putem efectua calculele din paranteza rotunda deoarece avem o necunoscută. În acest caz pentru a-l afla pe x prima oară îl mutăm pe 7 cu semn schimbat în partea dreaptă a egalului.

3(x+2) - 7=14   / +7  \Rightarrow   3(x+2)=14+7 \Rightarrow

3(x+2)=21/ :\ \ \ \ 3  \Rightarrow   x+2=21 \ \ \ :\ \ \ 7  \Rightarrow

x+2=3/ -2  \Rightarrow   x=3-2   \Rightarrow   x=1

Exercițiul 2:    100\cdot [25-6\cdot (x-3)+2]\ \ \ : \ \ \ 3=300

Rezolvare: 

100\cdot[25-6\cdot (x-3)+3] \ \ \ : \ \ \ 3=300   / \ \ \ \cdot 3

100\cdot[25-6\cdot (x-3)+3] = 300 \cdot 3

100\cdot[25-6\cdot (x-3)+3] = 900 / \ \ \ : \ \ \ 100

25-6\cdot (x-3)+3 = 900\ \ \ : \ \ \ 100

25-6\cdot (x-3)+3 = 9   / - 3

25- 6\cdot (x-3) = 9 - 3

25- 6\cdot (x-3) = 6

Deoarece necunoscuta mea este în pozitia scăzătorului atunci vom scrie:

 6\cdot (x-3) =25 - 6  \Rightarrow    6\cdot (x-3) =18     / \ \ \ :\ \ \ 6  \Rightarrow

x-3 =18\ \ \ :\ \ \ 6  \Rightarrow   x-3 =3   /+3  \Rightarrow   x =3+3  \Rightarrow   x =6

Exercițiul 3:  90+[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=212

Rezolvare: De data aceasta primul termen mutat cu semn schimbat este 90 cu semnul –

90+[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=212    /-90

[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=212-90

[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=122    /\cdot 4

[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] =122 \cdot 4

(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18 =488 / - 18

(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2=488-18

(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2=470   / \ \ \ :\ \ \ 2

(420\ \ \ :\ \ \ 4 +5\cdot a)=470 \ \ \ :\ \ \ 2   \Rightarrow (420\ \ \ :\ \ \ 4 +5\cdot a)=235

\Rightarrow (205+5\cdot a)=235   / - 205

\Rightarrow 5\cdot a=235 -205   \Rightarrow 5\cdot a=30  / \ \ \ : \ \ \ 5

\Rightarrow a=30 \ \ \ :\ \ \ 5   \Rightarrow a=6

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Metoda Mersului  Invers  pentru copilul tău, pe care o gasești aici: Fisa de lucru Metoda Mersului Invers

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.” 

Exerciții Rezolvate la Graficul Funcției

“Nu îmi învăț niciodată studenții; tot ce fac este să le creez condițiile pentru ca ei să învețe.”
Albert Einstein

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții la Graficul unei Funcții! (mai mult…)

Exercițiul 1:

Fie funcția f \ \ \ : \ \ \ R \rightarrow R , f (x)=-2x+1.

a) Reprezentați grafic funcția.

b)Determinați numărul real a \in R, știind că punctul A(2a-1,\ \ \ a-2) este situate pe graficul funcției f(x).

c) Calculați suma S=f(0)+f(1)+f(2)+..........+f(2011)

Rezolvare:

a) Pentru a obține punctul în care graficul funcției intersectează axa OX punem condiția ca  y=0 \Rightarrow f(x)=0 .

  •  \cap OX :   y=0 \Rightarrow f(x)=0 \Rightarrow -2\cdot x+ 1=0

\Rightarrow  -2\cdot x=-1    \Rightarrow x=\frac{-1}{{-2}}

\Rightarrow   x=\frac{1}{{2}}   \Rightarrow A( \frac{1}{{2}} \ ; 0)

  • Pentru a obține punctul în care graficul funcției intersectează axa OX punem condiția ca  x=0
  • \cap OY:  x=0  \Rightarrow  f(0)= -2\cdot 0+ 1 = 1
  •                        B(0\ \ ;\ \ \ 1)

b) Pentru a arăta că punctul A(2a-1,\ \ \ a-2) aparține graficului funcției f(x) punem condiția ca : f(2a-1)= a-2 adică în forma funcției f(x)  înlocuim x cu 2a-1 și obținem:

f(2a-1)= a-2 \Rightarrow -2\cdot (2a-1) + 1 = a-2 \Rightarrow -4\cdot a+2 + 1 = a-2

\Rightarrow -4a+3 = a-2

Trecem toți termenii cu a într-o parte și toți termenii fară a în cealaltă parte.

\Rightarrow -4a-a=-2-3  \Rightarrow -5a=- 5 \ \ \ \ /:(-5)   \Rightarrow a= 1

c)  S=f(0)+f(1)+f(2)+... . . . . + f(2011)

Calculăm f(0), f(1), f(2), . . . . . , f(2011) și observăm că obținem Suma Gauss.

f(0)= -2 \cdot 0 + 1= 0+1=1

f(1)= -2 \cdot 1 + 1= - 2 +1= -1

f(2)= -2 \cdot 2 + 1= - 4 +1= -3

. . . . . . ..  .. . . . . . . .. . .. . . . .. . . . . . . .. . . . .

 f(2011)= -2 \cdot 2011 + 1= - 4 022+1= -4021

Obținem :

S= 1-1-3-5-. . .. . . . -4021  \Rightarrow S= -(3+5+. . .. . . . +4021)

Aplicăm Suma Gauss a numerelor impare :

n= (4021-3) \ \ \ : \ \ \ 2 +1  \Rightarrow n= 4018 \ \ \ : \ \ \ 2 +1  \Rightarrow n= 2009 +1 = 2010 (termeni)

S=-[2010\cdot (4021+3) \ \ \ : \ \ \ 2]

S=-[2010\cdot 4024 \ \ \ : \ \ \ 2]

S=-[2010\cdot 2012]

S=- 4 044 120

Exercițiul 2:

Se consideră funcția    f : R\rightarrow R  , f(x)= -\sqrt{3}x+2\sqrt{3}

a) Reprezentați grafic funcția

b) Determinați aria triunghiului format de graficul funcției și axele de coordinate.c

c) Determinați distanța de la punctul  O(0,0)   la graficul funcției f(x).

Rezolvare:

  • a) \cap OX :   y=0 \Rightarrow f(x)=0 \Rightarrow -\sqrt{3}\cdot x+2\sqrt{3} = 0

\Rightarrow -\sqrt{3}x=-2\sqrt{3}

\Rightarrow x=\frac{2\sqrt{3}}{\sqrt{3}}

\Rightarrow   x= __{{}}^{\sqrt{3})}\textrm{\frac{2\sqrt{3}}{\sqrt{3}} }

\Rightarrow   x=2  \Rightarrow A(2\ \ \ ; \ \ \ 0 )

  • \cap OY:  x=0  \Rightarrow  f(0)= -\sqrt{3}\cdot 0+2\sqrt{3} = 2\sqrt{3}
  •                        \Rightarrow B(0 , 2\sqrt{3})

b) Calculăm  A_{\bigtriangleup AOB }. Observăm că \bigtriangleup AOB este dreptunghic în unghiul O astfel putem aplica formula:

 A_{{\bigtriangleup AOB}}= \frac{c_{1}\cdot c_{2}}{2}= \frac{OA\cdot OB}{2}= \frac{2\cdot 2\sqrt{3}}{2}=2\sqrt{3} u.m^{{2}}

c)  Știm că distanța de la un punct la o dreaptă este perpendiculara din acel punct pe dreaptă. Adică înălțimea triunghiului AOB. Pentru a afla înălțimea ne folosim de aria triunghiului pe care am calculate-o deja. Folosim formula:

 A_{\triangle AOB}= \frac{b \cdot h}{{2}}   = \frac{AB \cdot OM}{{2}}

Calculăm  AB cu formula distanței dintre punctele A(2,0) și  B(0, 2\sqrt{3}) astfel:

AB= \sqrt{(x_{{B}}-x_{{A}})^2+(y_{{B}}-y_{{A}})^2}

x_{{A}}=2   și  y_{{A}}=0 iar x_{{B}}=0 și y_{B}=2\sqrt{3} , înlocuim in formula și obținem:

AB=\sqrt{(x_{{B}}-x_{{A}})^2+(y_{{B}}-y_{{A}})^2}

AB=\sqrt{{(2-0})^2+(2\sqrt{3}-0})^2}}   \Rightarrow AB=\sqrt{{2^2+(2\sqrt{3})^2}}

\Rightarrow AB=\sqrt{{4+2^2 \cdot 3}}  \Rightarrow AB=\sqrt{{4+12}}  \Rightarrow AB=\sqrt{{16}} = 4

Înlocuim în formula ariei și aflăm OM.

2\sqrt{3}u.m^2= \frac{4 u.m \cdot OM}{2} \ \ \ \ \ / \cdot 2

2 \cdot 2\sqrt{3}u.m^2= 4 u.m \cdot OM  \Rightarrow 4\sqrt{3}u.m^2= 4 u.m \cdot OM \ \ \ \ / \ \ : \ \ 4 u.m

\Rightarrow OM = \sqrt{3} \ \ u.m

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Graficul unei funcții  pentru copilul tău o gasești aici:Fisa de lucru Graficul unei functii

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.” 

Transformarea unei fracții ordinare într-o fracție periodică

„Trebuie să încerci necontenit să urci foarte sus, dacă vrei să poți să vezi foarte departe.”

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva exerciții la transformarea unei fracții ordinare în fracție periodică.

(mai mult…)

Exercițiul 1: Transformați următoarele fracții ordinare în fracții zecimale periodice simple:

a) \frac{31}{9}   ;   b)  \frac{517}{99}  ;

Rezolvare:

Pentru a transforma fracțiile ordinare în fracții zecimale periodice simple trebuie să împărțim numărătorul la numitor astfel:

a) \frac{31}{9}   Împărțim 31 la 9 și obținem:

Observăm că dacă am continua împărțirea se va repeat numărul 4. În aceste cazuri spunem că rezultatul    \frac{31}{9}=3,(4) și citim trei virgulă perioadă patru.

b)   \frac{517}{99}=

Observăm că dacă am continua împărțirea se va repeat numărul 4. În aceste cazuri spunem că rezultatul    \frac{517}{99}=5,(2) .

Exercițiul 2 : Transformați următoarele fracții ordinare în fracții zecimale periodice mixte:

a) \frac{233}{45} ;   b) \frac{553}{60}  ;

Rezolvare:

Pentru a transforma fracțiile ordinare în fracții zecimale periodice simple trebuie să împărțim numărătorul la numitor astfel:

a)  \frac{233}{45}

Observăm că dacă am continua împărțirea se va repeat numărul 7. În aceste cazuri spunem că rezultatul    \frac{233}{45}=5,1(7) și citim cinci virgulă unu perioadă șapte.

b) \frac{553}{60}

Observăm că dacă am continua împărțirea se va repeat numărul 6. În aceste cazuri spunem că rezultatul     \frac{553}{60}=9,21(6).

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Mărimi direct proporționale

„Nu zi niciodată nu se poate, ci începe cu să vedem.”

Nicolae Iorga

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm și să explicăm pas cu pas câteva probleme Exerciții rezolvate la Marimi direct proporționale. (mai mult…)

Exercițiul 1:

Media aritmetică a două numere este egală cu 24.Aflați numerele știind că acestea sunt direct proporționale cu numerele 3 și 9.

Rezolvare:

Considerăm două numere a și b.

Scriem formula pentru media arithmetică a celor două numere.

M_{a}=\frac{a+b}{2}    \Rightarrow \frac{a+b}{2}=24 /\ \ \ \cdot 2   \Rightarrow a+ b=48

\left \{ a,b \right \} \overset{d.p}{\rightarrow} \left \{ 3,9 \right \}   \Rightarrow \frac{a}{{3}}=\frac{b}{{9}}=k

\Rightarrow \frac{a}{{3}}=k \Rightarrow a=3\cdot k

\Rightarrow \frac{b}{{9}}=k \Rightarrow b=9\cdot k

Înlocuim a și b în ecuația a+b=48 și obținem:

3 \cdot k + 9 \cdot k=48 \Rightarrow 12 \cdot k=48 / \ \ \ : \ \ 12  \Rightarrow k=48 \ \ \ : \ \ 12    \Rightarrow k=4

Înlocuim în  a și b și obținem:

 \Rightarrow a=3 \cdot k=3 \cdot 4  \Rightarrow a=12

 \Rightarrow b=9 \cdot k=9 \cdot 4   \Rightarrow b=36.

Exercițiul 2:

Suma a trei numere este 84. Aflați numerele știind că acestea sunt direct proporționale cu numerele: 1,(4)\ \ ; \ \ \ \ 1,(5) \ \ \ \ ; \ \ 1,(6)

Rezolvare:

Considerăm trei  numere a , b și c.

Problema ne spune ca suma lor este 84.

a+b+c=84

\left \{ a,b,c\right \} \overset {d.p }{\rightarrow} \left \{ 1,(4): \ \ 1,(5); \ \ 1,(6)\right \}

Transformăm fracțiile periodice în fracții ordinare:

 1,(4) =\frac{14-1}{{9}}= \frac{13}{{9}}

 1,(5) =\frac{15-1}{{9}}= \frac{14}{{9}}

 1,(6) =\frac{16-1}{{9}}= \frac{15}{{9}}

Și obținem:  \left \{ a,b,c\right \} \overset {d.p }{\rightarrow} \left \{ \frac{13}{{9}}; \ \ \frac{14}{{9}}; \ \ \frac{15}{{9}}\right \}  \Rightarrow

\Rightarrow \frac{a}{{\frac{13}{{9}}}}=\frac{b}{{\frac{14}{{9}}}}=\frac{c}{{\frac{15}{{9}}}}=k

Scoatem numerele a, b ;I c ]n func’ie de valoarea lui k.

\Rightarrow \frac{a}{{\frac{13}{{9}}}}=k   \Rightarrow \frac{a}{{1}} \ \ : \ \ {\frac{13}{{9}}}}=k \Rightarrow \frac{a}{{1}} \ \cdot \ \ {\frac{9}{{13}}}}=k  \Rightarrow \frac{9a}{{13}} =k  \Rightarrow a = \frac{13 \cdot k}{{9}}

\Rightarrow \frac{b}{{\frac{14}{{9}}}}=k  \Rightarrow \frac{b}{{1}} \ \ : \ \ {\frac{14}{{9}}}}=k  \Rightarrow \frac{b}{{1}} \ \cdot \ \ {\frac{9}{{14}}}}=k   \Rightarrow \frac{9\cdot b}{{14}} =k  \Rightarrow b = \frac{14 \cdot k}{{9}}

\Rightarrow \frac{c}{{\frac{15}{{9}}}}=k  \Rightarrow \frac{c}{{1}} \ \ : \ \ {\frac{15}{{9}}}}=k  \Rightarrow \frac{c}{{1}} \ \cdot \ \ {\frac{9}{{15}}}}=k  \Rightarrow \frac{9\cdot c}{{15}} =k  \Rightarrow c = \frac{15 \cdot k}{{9}}

Înlocuim a, b și c în sumă și determinăm valoarea lui k.

a+b+c=84 \Rightarrow \frac{13 \cdot k}{{9}} + \frac{14\cdot k}{{9}} + \frac{15 \cdot k}{{9}} = 84

\Rightarrow \frac{13 \cdot k+14\cdot k+15\cdot k}{{9}} = 84  \Rightarrow \frac{42 \cdot k}{{9}} = 84

\Rightarrow 42 \cdot k = 84 \cdot 9 \Rightarrow 42 \cdot k = 756 \Rightarrow 42 \cdot k = 756 / \ \ \ : \ \ \ 42

\Rightarrow k = 756 \ \ \ : \ \ \ 42

\Rightarrow k = 18

Înlocuim valoarea lui k în numerele natural și determinăm valoare lui a, b și c.

 a = \frac{13 \cdot k}{{9}}   \Rightarrow a = \frac{13 \cdot 18}{{9}}  \Rightarrow a = \frac{234}{{9}}  \Rightarrow a = 26

 b = \frac{14 \cdot k}{{9}}   \Rightarrow b = \frac{14 \cdot 18}{{9}}   \Rightarrow b = \frac{252}{{9}}   \Rightarrow b = 28

 c = \frac{15 \cdot k}{{9}}   \Rightarrow c = \frac{15 \cdot 18}{{9}}  \Rightarrow c = \frac{270}{{9}}   \Rightarrow c = 30

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Mărimi direct proporționale  pentru copilul tău o gasești aici  Fisa de lucru marimi direct proportionale 

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Probleme cu Procente Rezolvate

“Un copil inteligent nu este un copil care învață absolut tot, ci un copil căruia nu îi este frică să învețe orice”

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm și să explicăm pas cu pas câteva probleme cu procente rezolvate. Acest tip de Probleme cu Procente s-au dat de multe ori  la Examenul de Evaluare Națională. (mai mult…)

Problema 1:

O rochie costă 540 lei. Prețul rochiei se reduce cu 15%. Cât va costa rochia după reducere?

Rezolvare:

Calculăm cât reprezintă 15% din 540 lei.

15% \ \ din \ \ \ 540= \frac{15}{{100}} \cdot 540= \frac{15}{{10\emptyset}} \cdot \frac{54\emptyset}{{1}}= \frac{15\cdot 54}{{10}}= \frac{81\emptyset}{{1\emptyset}}= 81 lei

Pentru că prețul rochiei se reduce scădem din prețul initial cei 81 lei.

540\ \ lei - 81 \ \ lei=459 \ \ lei (noul preț al rochiei)

Problema 2: Un călător parcurge o distanţă în 3 zile astfel: în prima zi parcurge 20% din drum, a doua zi parcurge 50% din rest şi în a treia zi parcurge ultimii 60 km.

a) Aflaţi lungimea totală pe care călătorul a parcurs-o în cele trei zile.

b) Cât la sută din lungimea totală a parcurs călătorul a doua zi dacă tot traseul are 150km?

Rezolvare:

a) Notăm cu x lungimea inițială a drumului.

Calculăm câți km i-au rămas călătorului după prima zi.

x- 20% din x= x - \frac{20}{{100}}\cdot x= x - \frac{1}{{5}}\cdot x= ^{5)}\textrm{x - \frac{1}{{5}}\cdot x=} \frac{5\cdot x }{{5}}- \frac{1\cdot x }{{5}}= \frac{4\cdot x }{{5}}  (rest)

Calculăm câți km i-au rămas călătorului după a doua zi.

Din restul rămas după prima zi scădem 50% din acest rest!

\frac{4\cdot x }{{5}} - 50% \ \ \cdot \ \ \frac{4\cdot x }{{5}}=\frac{4\cdot x }{{5}} - (\frac{50 }{{100}} \ \ \cdot \ \ \frac{4\cdot x }{{5}} )= \frac{4\cdot x }{{5}} - (\frac{1 }{{2}} \ \ \cdot \ \ \frac{4\cdot x }{{5}} )= \frac{4\cdot x }{{5}} - \frac{4\cdot x }{{10}}= _{{}}^{2)}\textrm{\frac{4\cdot x }{{5}} - \frac{4\cdot x }{{10}}=} \frac{8\cdot x }{{10}} - \frac{4\cdot x }{{10}}=  \frac{4\cdot x }{{10}}  (al doilea rest care reprezintă ultimii km parcurși in a treia zi)

Egalăm ultimul rest cu 60km.

 \frac{4\cdot x }{{10}} = 60 km \Rightarrow \frac{4\cdot x }{{10}} = 60 km / \cdot 10  \Rightarrow 4\cdot x = 600 km / \ \ : \ \ 4

 \Rightarrow x = 600\ \ km \ \ : \ \ 4  \Rightarrow x = 150\ \ km

b)  \frac{4}{10} \cdot 150 \ \ km =   \frac{4}{1\emptyset} \cdot 15\emptyset \ \ km =  60\ \ km  

Problema 3:

Un aparat  costă 960 lei . Prețul se majorează cu 40%  apoi scade cu 25%.

a) Care este noul preț al aparatului ?

b) Care este procentul final de majorare ?

Rezolvare:

a)  Calculăm prețul după prima majorare.

960 + 40% din 960 = 960 + \frac{40}{{100}}\cdot 960= 960 + \frac{4\emptyset}{{1\emptyset\emptyset}}\cdot 96\emptyset=960 + 4 \cdot 96=

960 + 384=  1344 (prețul după prima majorare)

Calculăm prețul după scăderea cu 25%.

1344- (25% din 1344)=   1344 - \frac{25}{{100}}\cdot 1344=  1344 - \frac{25\cdot 1344}{{100}}=  1344 - \frac{33600}{{100}}= 1344 - \frac{336\emptyset\emptyset}{{1\emptyset\emptyset}}=  1344 - 336=1008  (preț final)

b) Trebuie să aflăm p%.

960 + p% din 960 = 1008\Rightarrow 960 + p% din 960 = 1008 / -960

\Rightarrow p% din 960 = 1008 -960

\Rightarrow p% din \ \ 960 = 48\Rightarrow \frac{p}{{100}}\cdot 960 = 48

\Rightarrow \frac{p}{{10\emptyset}}\cdot 96\emptyset = 48 \Rightarrow \frac{p}{{10}}\cdot 96= 48 / \cdot 10

 \Rightarrow p\cdot 96= 480   \Rightarrow p\cdot 96= 480 / \ \ : \ \ 96

 \Rightarrow p= 480 \ \ : \ \ 96  \Rightarrow p= 5 %

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Probleme cu Procente pentru copilul tău o gasești aici:Fisa de lucru probleme cu Procente

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Procente.

” Tăria minții vine prin exercițiu nu prin repaos”.

Alexander Pope

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas câteva Exerciții  rezolvate la Procente. (mai mult…)

Exercițiul 1:  Calculați:

a) 75 % din 1600

b) 1,25 % din 2000

c) 25 % din 16 % din 750

d) 4,(2) % din 7200 .

Rezolvare:

a)  75 % din 1600 =  \frac{75}{{100}} \cdot 1600=  \frac{75\cdot 16\emptyset\emptyset}{{1\emptyset\emptyset}}=  75\cdot 16=  1200

b) 1,25 % din 2000 = \frac{1,25}{100} \cdot 2000=  \frac{1,25\cdot 20\emptyset\emptyset}{1\emptyset\emptyset}= 1,25\cdot 20=25

c) 25 % din 16 % din 750 =  25% \cdot (\frac{16}{{100}} \cdot 750)= \frac{25}{{100}} \cdot (\frac{16 \cdot 75\emptyset}{{10\emptyset}})= \frac{25}{{100}} \cdot (\frac{16 \cdot 75}{{10}})= \frac{25}{{100}} \cdot (\frac{1200}{{10}})= \frac{25}{{100}} \cdot (\frac{120\emptyset}{{1\emptyset}})= \frac{25}{{100}} \cdot 120= \frac{25}{{10\emptyset}} \cdot 12\emptyset= \frac{25\cdot 12}{{10}}= \frac{300}{{10}}= \frac{30\emptyset}{{1\emptyset}}= \frac{30}{{1}}=30

d) 4,(2) % din 7200 =  \frac{4,(2)}{{100}} \cdot 7200 =  \frac{4,(2)\cdot 72\emptyset\emptyset}{{1\emptyset\emptyset}} =  4,(2)\cdot 72 =   \frac{42-4}{{9}} \cdot 72=  \frac{38}{{9}} \cdot 72= \frac{38 \cdot 72}{{9}} = \frac{2736}{{9}} =304

Exercițiul 2:   Aflați un număr x știind că :

a)  20% din el este 80;

b) 2,75 % din el este 3,30;

c) 3,(6)% din el este 36,3.

Rezolvare:

a)  20% din x este 80  \Rightarrow \frac{20}{{100}} \cdot x = 80 \Rightarrow \frac{20}{{100}} \cdot x = 80 / \ \ \ \cdot 100 \Rightarrow 20 \cdot x = 80 \cdot 100 \Rightarrow 20 \cdot x = 8000 / \ \ \ :\ \ 20 \Rightarrow x = 8000 \ \ :\ \ 20 \Rightarrow x = 400

b) 2,75 % din el este 3,30 \Rightarrow \frac{2,75}{{100}} \cdot x = 3,30  \Rightarrow \frac{2,75}{{100}} \cdot x = 3,30 / \cdot100  \Rightarrow 2,75 \cdot x = 3,30 \cdot100  \Rightarrow 2,75 \cdot x = 330

\Rightarrow \frac{275}{{100}} \cdot x = 330 \Rightarrow \frac{275}{{100}} \cdot x = 330 /\cdot 100 \Rightarrow {275}\cdot x = 330 \cdot 100

\Rightarrow {275}\cdot x = 33000 \Rightarrow {275}\cdot x = 33000 / \ \ \ : \ \ 275\Rightarrow x = 33000 \ \ : \ \ 275

\Rightarrow x = 120

c) 3,(6)% din x este 36,3 \Rightarrow \frac{3,(6)}{{100}} \cdot x = 36,3 \Rightarrow \frac{3,(6)}{{100}} \cdot x = 36,3 / \cdot 100 \Rightarrow 3,(6) \cdot x = 36,3 \cdot 100

\Rightarrow \frac{36-3}{{9}} \cdot x = 3630

\Rightarrow \frac{33}{{9}} \cdot x = 3630 / \cdot 9 \Rightarrow 33\cdot x = 3630 \cdot 9

\Rightarrow 33\cdot x = 32670 / \ \ \ : \ \ \ 33 \Rightarrow x = 32670 \ \ \ : \ \ \ 33

\Rightarrow x = 990

PS: Dragul meu părinte am pregătit si o fișă de lucru pentru copilul tău o gasești aici:Fișă de lucru Procente

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

1 2 3 5