Etichetă: submultime

Relații între mulțimi de numere


Dragul meu părinte bine te-am regăsit. În articolul de data trecută am discutat despre Operații cu mulțimi. Am invățat ce operații putem face intre mulțimi, despre reuniunea a două mulțimi, despre intersecția a două mulțimi și diferența a două mulțimi dar și diferența simetrică a  două mulțimi. Azi te invit să studiem împreună lecția Relații între Mulțimi, să vedem ce sunt mulțimile egale și mulțimile disjuncte dar și mulțimile finite și mulțimile infinite.

(mai mult…)

Două mulțimi A și B sunt egale, dacă sunt formate din același elemente. Se notează A=B.

  • Observație: Orice element care aparține mulțimii A este și element al mulțimii B și reciproc orice element care aparține mulțimii B este și element al mulțimii A.
  • Dacă cel puțin un element al mulțimii A nu aparține mulțimii B sau invers, se spune ca mulțimile A și B sunt diferite și se notează: A \neq B .

Dacă intersecția a două mulțimi A și B este mulțimea vidă (cele două mulțimi A și B nu au nici un element comun) atunci mulțimile A și B sunt disjuncte.

  • Incluziunea: Mulțimea A este inclusă în mulțimea B și se notează : A\subset B , dacă orice element al mulțimii A aparține mulțimii B.

  • Dacă mulțimea B include mulțimea se notează: B \supset A
  • Dacă cel puțin un element al mulțimii A nu aparține și mulțimii B spunem că mulțimea A nu este inclusă în mulțimea B și notăm: A \not \subseteq B  sau spunem că B nu include mulțimea A și notăm: B \not \supset \ A .

  • Observații:
  • Mulțimea vidă este inclusă în orice mulțime       \not \bigcirc\subset A
  • Orice mulțime este inclusă în ea însăși         A \subset A .
  • Dacă A și B sunt două mulțimi, astfel încât A \subset B  și B \subset A  atunci  A=B .
  • Dacă A, B și C sunt trei mulțimi, astfel încât A \subset B  și B \subset C ,  atunci A \subset C .

Submulțimi:

  • Dacă mulțimea A este inclusă în mulțimea B, adică A \subset B  se spune că mulțimea A este o submulțime a mulțimii B.

  • Observații:
  • Mulțimea vidă este submulțime a oricărei mulțimi.
  • Numărul submulțimilor unei mulțimi A este egal cu  2^{{card A}}
  • Mulțimea submulțimilor (părților) lui A se notează cu P(A).

Exemplu:  Fie mulțimea M=\left \{ 1,3,5 \right \}. CArdinalul mulțimii M Card M =3 . Mulțimea M are  2^{3}=8 submulțimi.

\not\bigcirc, \left \{ 1 \right \}, \left \{ 3 \right \}, \left \{ 5 \right \}, \left \{ 1,3 \right \}, \left \{ 1,5 \right \}, \left \{ 3,5 \right \}, M.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operații cu mulțimi

Dragul meu părinte bine te-am regăsit. În articolul de data trecută am discutat despre Mulțimi de Numere. Am invățat ce este o mulțime, despre mulțimea vidă, despre mulțimi finite și mulțimi infinite dar și depre cardinalul unei mulțimi. Azi te invit să studiem împreună lecția Operații cu Mulțimi, să vedem ce operații putem efectua între 2 sau mai multe mulțimi de numere.

(mai mult…)

Reuniunea:  a două mulțimi A și B este mulțimea notată A \cup B, formată din toate elementele celor două mulțimi comune și necomune, luate o singură dată.

 A \cup B=\left \{ x | x \in A sau x \in B \right \}

 

  • Exemplu:A=\left \{ 1,3,5,7,9 \right \}
  • B=\left \{ 1,2,3,4,5 \right \}
  • A\cup B=\left \{ 1,2,3,4,5,7,9 \right \}

 

Intersecția: a două mulțimi A și B este mulțimea notată A\cap B , formată din toate elementele comune celor două mulțimi, luate o singură dată

 A\cap B=\left \{ x| x \in A si x \in B \right \}

  • Exemplu:A=\left \{ 1,3,5,7,9 \right \}
  • B=\left \{ 1,2,3,4,5 \right \}
  •  A\cap B=\left \{ 1,3,5 \right \}

 

Diferența: a două mulțimi A și B este mulțimea notată A \setminus B  , formată din elementele mulțimii A care nu aparțin mulțimii B.

A \setminus B=\left \{ x| x\in A si x\notin B \right \}

  • Exemplu:A=\left \{ 1,3,5,7,9 \right \}
  • B=\left \{ 1,2,3,4,5 \right \}
  • A \setminus B=\left \{7,9 \right \}

 

Produsul Cartezian: a două mulțimi A și B este mulțimea notată  A X B , formată cu toate perechile ordonate cu primul element din A și al doilea element din B.

 A X B =\left \{ (x,y)|x\in A si y\in B \right \}

Diferența simetrică:  a mulțimilor A și B:

A \bigtriangleup B = (A\setminus B) \cup (B\setminus A)

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!