Posts Tagged ‘ridicarea la putere’

Rădăcina pătrată a unui număr natural pătrat perfect

clasa a VII-aDragul meu părinte, bine te-am regăsit!Până în clasa a VII-a copilul tău a studiat următoarele Mulţimi de Numere: Mulţimea Numerelor Naturale, Mulţimea Numerelor Întregi şi Mulţimea Numerelor Raţionale.Capitolul II din programa de matematica pentru clasa a VII-a prevede studierea Numerelor Reale. Prima lecţie din acest capitol este Rădăcina pătrată a unui număr natural pătrat perfect. (more…)

  • Definiţie:Un număr natural “a” se numeşte pătrat perfect dacă există un număr natural “n” astfel încât : n ^{2}=a
  • Rădăcina Pătrată:

    Fie “a” un număr natural pătrat perfect. Numărul natural “n” cu proprietatea: n ^{2}=a se numeşte rădăcină pătrată a numărului “a” şi se notează: n=\sqrt{a}

  • Exemple:   \sqrt{25}=\sqrt{5^{2}}=5
  •  \sqrt{100}=\sqrt{10^{2}}=10
  •  \sqrt{0}=\sqrt{0^{2}}=0

Observaţie:

 

Evident numai unul este număr natural : \sqrt{n}=n

 

 

 

 

 

 \sqrt{ 25\cdot a^{4}\cdot b^{2}}=\sqrt{ (5\cdot a^{2}\cdot b)^{2}}=\left \| 5\cdot a^{2}\cdot b \right \|=5\cdot a^{2}\cdot \left \| b \right \|

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

 

 

 

 

Pătratul unui număr natural

Clasa a V-aDragul meu părinte bine te-am regăsit! In articolul de azi vreau să îţi vorbesc despre “Pătratul unui număr natural”. În articolele anterioare am vorbit despre “Ridicarea la putere a unui număr natural” şi “ Regulile de calcul cu puteri”. Azi vom studia “Pătratele perfecte” .

(more…)

Să analizăm următorul sir de pătrate:

patrate-perfecte

  • Definiţie: Un număr obţinut prin ridicarea la puterea a doua aunui număr natural se numeşte pătrat perfect.

Exemple:     81=9 ^{2} putem spune că 81 este pătrat perfect

  • Observaţie: Pentru a arăta că un număr nu este pătrat perfect este suficient să arătăm că numărul este cuprin între două pătrate perfecte.

Exemplu: 115 nu este pătrat perfect pentru că 10 ^{2}=100 \lt 115 \lt121=11 ^{2}

Să analizăm următorul tabel:

patrat-perfect

  • Observăm că ultima cifră a unui pătrat perfect poate fi: 0,1, 4,5,  6 sau 9.
  • Numerele care au ultima cifră 2, 3, 7 sau 8 nu pot fi pătrate perfecte.
  • Observaţie: Nu întotdeauna numerele care au ultima cifră 0; 1; 4; 5; 6 sau 9  sunt pătrate perfecte
  • Exemplu: 10, 11, 15, 26 sau 39 nu sunt pătrate perfecte.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

REGULI DE CALCUL CU PUTERI

clasa a VI-aDragul meu părinte, copilul tău a învăţat prima oară această lecţie: „ Reguli de calcul cu puteri” în anul anterior, în clasa a V-a.

În acest an, în clasa a VI-a această lecţie este reamintită, deoarece noţiunile învăţate în această lecţie îi sunt utile copilului tău la următoarea lecţie: „ Criterii de diviozibilitate”.

(more…)

Dar să vedem, dragul meu părinte, ce ar trebui să reţină copilul tău la această lecţie: „Reguli de calcul cu puteri”:

  • Definiţie:

    Fie „a” şi „n” , două numere naturale, cu n ≥ 2.Produsul a „n” factori egali cu „a” se numeşte puterea a n-a a numărului „a” şi se notează :

  • Se scrie:      a^{n}

  • Se citeşte: „ a la puterea n”.

  • a” se numeşte bază.

  • n” se numeşte exponent.

  • Exemplu:

                    a · a = a²

a · a · a= a³

a · a· a· …………….· a =   a^{n}

  • Excepţie:   a^{1}= a şi  a^{0} = 1
  • Orice număr la puterea 1 este egal cu el însuşi.
  • Orice număr la puterea 0 este egal cu 1.

Dar să vedem, dragul meu părinte, care sunt regulile cu puteri:

  • Înmulţirea puterilor cu aceeaşi bază:

  •  a^{m}\cdot a ^{n}=a^{m+n}
  • – se scrie baza şi se adună exponenţii

  • Împărţirea puterilor cu aceeaşi bază:

  •  a^{m}\div a ^{n}=a^{m-n}
  • se scrie baza şi se scad exponenţii
  • Puterea unei puteri:

  • <br /><br /><br /><br />
(a^{m}) ^{n}=a^{m\cdot n}
  • -se scrie baza şi se înmulţesc exponenţii
  • Puterea unui produs:

  • <br /><br /><br /><br />
(a\cdot b) ^{n}=a^{n}\cdot b^{n}
  • Puterea unui cât:

  • 
(a\div b) ^{n}=a^{n}\div b^{n}

Dragul meu părinte, la această lecţie, copilul tău trebuie să reţină şi prioritatea pe care o are ridicarea la putere în calcul.

  • Ridicarea la putere este o înmulţire repetată.

  • Exponentul arată de câte ori se repetă produsul prin care se calculează puterea.

  • Ridicarea la putere este o operaţie de ordinul III.

  • Dacă într-un exerciţiu nu există paranteze, atunci se efectuează întâi redicările la putere, apoi înmulţirile şi împărţirile, iar la final, adunările li scăderile.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

Ridicarea la putere a unui număr natural

Clasa a V-aDragul meu părinte, bine te-am regăsit! Până acum copilul tău a învăţat adunarea, scăderea, înmulţirea şi împărţirea numerelor naturale. În clasele primare a învăţat că înmulţirea este o adunare repetată.

Iată că a sosit timpul să înveţe şi noţiuni noi cum ar fi ridicarea la putere a unui număr natural.

(more…)

Să observăm:

ridicarea-la-putere-foto-1

  • Definiţie:Puterea “n” a unui număr natural “a” este produsul a n-factori egali cu numărul “a”  ridicarea-la-putere-foto-2
  • Convenţie matematică: a ^{1}=a
  •                                     a ^{0}=1       ; pentru orice    a\neq 0

ridicarea-la-putere-foto-3

  • Citim “a la puterea n”

ridicarea-la-putere-foto-4

  •  Putem reprezenta 16=4^{2}=4\cdot 4 printr-un pătrat cu 4 linii şi 4 coloane.reprezentare-16
  • O importanţă deosebită au puterile lui 10. Acestea se folosesc pentru a compara numerele foarte mari:

puterile-lui-10

  • Ce priorităţi au puterile în calcul?

rezolvare-corectarezolvare-corecta-2

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!