Posts Tagged ‘reguli de calcul cu puteri’

Exerciții ușoare rezolvate la Adunarea și Scăderea Numerelor Întregi

“Victoriile adevărate nu sunt ale celor puternici, ci ale celor perseverenţi.”

Napoleon Bonaparte

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva Exerciții ușoare rezolvate la Adunarea și Scăderea Numerelor Întregi. (mai mult…)

Exercițiul 1: Calculați:

a)  -15 +4=

b) -12-6+8=

c) 13-20-18+6=

d) 17-(+19)=

e) -30+(-3)-(-13)=

Rezolvare: 

  • a) -15+ 4=-11

Dacă  numerele au semne diferite păstrez semnul de la numărul cel mai mare și între numere efectuez operația de scădere.

  • b) -12-6+8=

Calculez primele două numere în ordinea în care sunt scrise. Pentru că primele două numere au același semn, păstrez semnul și între numere efectuez operația de adunare. Astfel obțin :

-12-6+8=- 18+8=

Pentru că numerele au semne diferite păstrez semnul de la numărul cel mai mare și între numere efectuez operația de scădere.  Astfel obțin :

 - 18+8=-10

  • c) 13-20-18+6-4+15=

Pentru că în fața numărului 13 nu este nici un semn asta înseamnă că este  semnul +.

+13-20-18+6-4+15=

Efectuez calculele în ordinea în care sunt scrise. Pentru că primele două numere au semne diferite păstrez semnul de la numărul cel mai mare și între numere efectuez operația de scădere.  Astfel obțin :

-7-18+6-4+15=

Pentru că primele două numere obținute au același semn, păstrez semnul și între numere efectuez operația de adunare. Astfel obțin :

-25+6-4+15=

Pentru că următoarele două numere obținute au semne diferite păstrez semnul de la numărul cel mai mare și între numere efectuez operația de scădere.  Astfel obțin :

-19-4+15=

Pentru că următoarele două numere obținute au același semn, păstrez semnul și între numere efectuez operația de adunare. Astfel obțin :

-23+15=

Pentru că următoarele două numere obținute au semne diferite păstrez semnul de la numărul cel mai mare și între numere efectuez operația de scădere.  Astfel obțin :

-23+15=-8

  • d) (-30)+(-3)-(-13)=

Pentru că primele două numere obținute au același semn, păstrez semnul și între numere efectuez operația de adunare. Astfel obțin :

(-30)+(-3)-(-13)=(-33) -(-13)

Observ că în fața lui 13 am două semne  -(-13). Mai întâi reduc la un singur semn aplicând regula : (-)\cdot (-)=+.  Astfel obțin:

(-33)-(-13)=(-33)+13=

Pentru că următoarele două numere obținute au semne diferite păstrez semnul de la numărul cel mai mare și între numere efectuez operația de scădere.  Astfel obțin :

(-33)+13=-20.

Exercițiul 2: Să se efectueze:

a) 7-[3-(10-15)]=

b) -36 + \left \{ -2+[6+(-18-16)] \right \}=

Rezolvare: 

  • a) 7-[3-(10-15)]=

Mai întâi rezolvăm paranteza rotundă. Astfel obținem:

7-[3- (-5)]=

Pentru că în paranteza pătrată avem două semne succesive mai întâi stabilim semnul în paranteza pătrată. Știm că (-)\cdot (-) =+   și transform paranteza pătrată în paranteză rotundă astfel obținem:

7-[3- (-5)]=7-(3+5)=7-8=-1

  • b)   -36 + \left \{ -2+[6+(-18-16)] \right \}=

Efectuăm calculele din paranteza rotundă. Astfel obținem:

-36 + \left \{ -2+[6+(-34)] \right \}=

Stabilim semnul în paranteza pătrată tinând cont de regula  (-)\cdot (+)= (-). În același timp transform paranteza pătrată în rotundă și acolada în pătrată. Astfel obținem:

-36+\left [ -2+(6-34) \right ]=

Efectuăm calculele din paranteza rotundă. Astfel obținem:

-36+\left [ -2+(-28) \right ]=

Stabilim semnul în paranteza pătrată tinând cont de regula  (-)\cdot (+)= (-). În același timp transform paranteza pătrată în rotundă. Astfel obținem:

-36+( -2-28 )= -36+( -2-28 )= -36+ (-30)=-36-30=-66

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții Ușoare la Adunarea și Scăderea Numerelor Intregi  pentru copilul tău, pe care o gasești aici: Fisa de lucru Adunarea numerelor intregi

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Legătura dintre C.M.M.D.C și C.M.M.M.C

”Trebuie să încerci necontenit să urci foarte sus, dacă vrei să poți să vezi foarte departe.”

Constantin Brâncuși

Dragul meu părinte bine te-am regăsit!
Azi îți propun să rezolvăm și să explicăm pas cu pas câteva exerciții  la Legătura dinte C.M.M.D.C și C.M.M.M.

(mai mult…)

Exercițiul 1:
Determinați numerele naturale a și b care verifică următoarele relații:
a)  (a,b)=6     și    a\cdot b=468
b)  (a,b)=15   și   [a,b]=540
c)  (a,b)=14  și   a + b=7
d)  [a,b]=180  și  a\cdot b=2160
Rezolvare:
  • a)   (a,b)=6     și    a\cdot b=468

Știm că Cel mai mare divizor al numerelor a și b este 6 \Rightarrow a și b sunt multipli lui 6 \Rightarrow a=6\cdot x și  b=6\cdot y , iar ( x, y )=1 .

Punem condiția ca x și y să fie primi între ei, dacă nu ar fi primi între ei nu am mai obține c.m.m.d.c-ul =6.

Înlocuim a și b și obținem:

6\cdot x\cdot 6\cdot y=468 \Rightarrow 36 \cdot xy=468 | \ \ \ \ : \ \ \ 36 \Rightarrow xy=468 \ \ \ \ : \ \ \ 36 \Rightarrow x\cdot y=13

Astfel obținem posibilitățile:

Cazul I :   x=1 \Rightarrow a=6\cdot 1=6   și    y=13 \Rightarrow b= 6\cdot 13= 78

Cazul II:   x=13 \Rightarrow a= 6\cdot 13= 78   și    y=1 \Rightarrow b= 6\cdot 1= 6

  • b)   (a,b)=15 și [a,b]=540

Știm formula: (a,b)\cdot [a,b]=a\cdot b. Înlocuim în formulă și aflăm a și b.

15 \cdot 540=a\cdot b \Rightarrow a\cdot b= 8100.

Știm că Cel mai mare divizor al numerelor a și b este 15 \Rightarrow a și b sunt multipli lui 15 \Rightarrow a= 15 \cdot x și \Rightarrow b= 15 \cdot y , iar ( x, y )=1 .

Punem condiția ca x și y să fie primi între ei, dacă nu ar fi primi între ei nu am mai obține c.m.m.d.c-ul =15.

Înlocuim a și b și obținem: 15\cdot x\cdot 15\cdot y=8100 \Rightarrow 225\cdot x\cdot y=8100| \ \ \ :\ \ \ 225\Rightarrow x\cdot y=8100 \ \ \ :\ \ \ 225\Rightarrow x\cdot y=36.

Astfel obținem următoarele perechi de numere prime între ele :

Cazul I:   x=1 \Rightarrow a= 15\cdot 1= 15 și  y=36 \Rightarrow b= 15\cdot 36= 540

Cazul II:  x=4 \Rightarrow a= 15\cdot 4= 60 și   y=9 \Rightarrow b= 15\cdot 9= 135

Cazul III:   x=9 \Rightarrow a= 15\cdot 9= 135  și   y=4 \Rightarrow b= 15\cdot 4= 60

Cazul IV:  x=36 \Rightarrow a= 15\cdot 36= 540  și  y=1 \Rightarrow b= 15\cdot 1= 15

În acest caz nu putem lua perechile de numere (2\ \ \ ;\ \ \ 18) și (18\ \ \ ;\ \ \ 2) deoarece aceste numere nu sunt numere prime între ele.

  • c) (a\ \ \ ;\ \ \ b) = 14 și  a + b=7

Știm că Cel mai mare divizor al numerelor a și b este 14 \Rightarrow a și b sunt multipli lui 14  \Rightarrow a= 14 \cdot x și  \Rightarrow b= 14 \cdot y ,   iar ( x, y )=1 .

Înlocuim în a și b și obținem:

14 \cdot x+ 14\cdot y=98\Rightarrow 14 \cdot (x+ y) =98 | \ \ \ :\ \ \ 14 \Rightarrow (x+ y) =98 \ \ \ :\ \ \ 14\Rightarrow (x+ y) =7

Astfel obținem următoarele perechi de numere prime între ele :

Cazul I:   x=1 \Rightarrow a= 14\cdot 1= 14  și  y=6 \Rightarrow a= 14\cdot 6= 84

Cazul II:  x=2 \Rightarrow a= 14\cdot 2= 28  și   y=5 \Rightarrow b= 14\cdot 5= 70

Cazul III:  x=3 \Rightarrow a= 14\cdot 3= 42 și  y=4 \Rightarrow b= 14\cdot 4= 56

Cazul IV:  x=4 \Rightarrow a= 14\cdot 4= 56 și  y=3 \Rightarrow b= 14\cdot 3= 42

Cazul IV:  x=5 \Rightarrow a= 14\cdot 5= 70 și  y=2 \Rightarrow b= 14\cdot 2= 28

Cazul V:  x=6 \Rightarrow a= 14\cdot 6= 84  și  y=1 \Rightarrow b= 14\cdot 1= 14

 

Exercițiul 2: Determinați cel mai mic număr natural de trei cifre care împărțit la 48 dă restul  42 și împărțit la 56 dă restul 50.

Rezolvare:

Din enunțul problemei știm că:

x\ \ \ : \ \ \ 48 = c_{1}\ \ \ \ rest 42 \Rightarrow x=48 \cdot c_{1}+ 42

x\ \ \ : \ \ \ 56 = c_{2}\ \ \ \ rest 50  \Rightarrow x=56 \cdot c_{2}+ 50.

Observăm  în ambele relații  că trebuie să adunăm un 6 pentru a putea da factor comun pe 48 și pe 56.

\Rightarrow x=48 \cdot c_{1}+ 42 \ \ \ \ | \ \ \ \ +6 \Rightarrow x+6 =48 \cdot c_{1}+ 48 \Rightarrow x+6 =48 \cdot (c_{1}+ 1)

\Rightarrow x=56 \cdot c_{2}+ 50 \ \ \ \ | \ \ \ \ +6   \Rightarrow x+6 =56 \cdot c_{2}+ 56  \Rightarrow x+6 =56 \cdot (c_{2}+ 1)

Mai departe trebuie să calculăm c.m.m.m.c-ul numerelor 48 și 56 pentru a afla cât este x+6.

Descompunem în factori primi numerele 48 și 56 și obținem:

48= 2^4 \cdot 3

56= 2^3 \cdot 7

[48, 56]= 2^4\cdot 3\cdot 7= 16\cdot 3\cdot 7=336

\Rightarrow x+6 =336 | \ \ \ -6\Rightarrow x=336-6 \Rightarrow x=330

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții Ușoare la Legătura dintre c.m.m.d.c și c.m.m.m.c  pentru copilul tău, pe care o gasești aici:Fisa de lucru Legatura dintre cmmdc si cmmmc

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Cel Mai Mic Multiplu Comun (c.m.m.m.c)

„Un om educat se deosebeşte de un om needucat, asa cum un om viu se deosebeşte de un om mort.”

 Aristotel

Dragul meu părinte bine te-am regăsit!
Azi îți propun să rezolvăm și să explicăm pas cu pas câteva exerciții  la Cel  Mai  Mic Multiplu Comun (c.m.m.m.c).

(mai mult…)

Exercițiul 1: Aflați cel mai mic multiplu comun al următoarelor numere:

a) 24,\ \ \ \ 12, \ \ \ 18

b) 28,\ \ \ \ 147, \ \ \ 63

c) 120,\ \ \ \ 240, \ \ \ 360

d) 121,\ \ \ \ 330, \ \ \ 49

Rezolvare:   Pentru a putea determina c.m.m.m.c-ul numerelor mai întâi le descompunem în factori primi și apoi le scriem ca produs de puteri.

a) 24,\ \ \ \ 12, \ \ \ 18

24=2^3\cdot 3

12=2^2\cdot 3

18=2^1\cdot 3^2

Cel mai mic multiplu comun este produsul tuturor factorilor comuni și necomuni luați o singură dată la puterea cea mai mare.

[24, 12, 18]=2^3\cdot 3^2=8 \cdot 9=72

  • b) 28,\ \ \ \ 147, \ \ \ 63

Descompunem numerele în factori primi și apoi le scriem ca produs de puteri.

28=2^2\cdot 7

147=3\cdot 7^2

63=3^2\cdot 7

[28, 147, 63]=2^2\cdot 3^2 \cdot 7^2=4\cdot 9\cdot 49=1764

  • c) 120,\ \ \ \ 240, \ \ \ 360

Descompunem numerele în factori primi și apoi le scriem ca produs de puteri.

120=2^3\cdot 3\cdot 5

240= 2^4\cdot 3\cdot 5

360= 2^3\cdot 3^2\cdot 5

[120, 240, 360]= 2^4\cdot 3^2\cdot 5=16 \cdot 9\cdot 5=720

  • d) 121,\ \ \ \ 330, \ \ \ 49

Descompunem numerele în factori primi și apoi le scriem ca produs de puteri.

121= 11^2

330= 2\cdot 3\cdot 5\cdot 11

49= 7^2

[121, 330, 49]= 2\cdot 3\cdot 5\cdot 7^2\cdot 11^2=2\cdot 3\cdot 5\cdot 49\cdot 121= 177870

Exercițiul 2: Aflați cel mai mic număr natural de trei cifre care împărțit pe rând la 6, 16 și 12 dă de fiecare dată restul 5.

Rezolvare:

Din enunțul problemei știm că:

x\ \ \ :\ \ \ 6=c_{{1}}\ \ \ rest \ \ \ 5 . Aplicăm teorema împărțirii cu rest și obținem: x =6\cdot c_{{1}} + 5

Mai știm: x\ \ \ :\ \ \ 16=c_{{2}}\ \ \ rest \ \ \ 5  \Rightarrow x=16\cdot c_{{2}}+ 5

x\ \ \ :\ \ \ 12=c_{{3}}\ \ \ rest \ \ \ 5  \Rightarrow x=12\cdot c_{{3}}+ 5.

Scădem din fiecare relație câte un 5 și obținem:

\Rightarrow x-5=6\cdot c_{{1}}

\Rightarrow x-5=16\cdot c_{{2}}

\Rightarrow x-5=12\cdot c_{{3}}

Calculăm c.m.m.m.c-ul numerelor 6, 16 și 12.

Mai întâi descompunem în factori primi numerele:

6=2\cdot 3

16=2^4

12=2^2 \cdot 3

\left [ 6,16,12 \right ]= 2^4 \cdot 3=16\cdot 3=48

Obținem astfel:

 x-5 = 48 | \ \ \ +5   \Rightarrow x=48+5  \Rightarrow x=53

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții Ușoare la Cel  Mai  Mic Multiplu Comun pentru copilul tău, pe care o gasești aici:Fisa de lucru CMMMC

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Adunarea și Scăderea Fracțiilor

“Învată tot ce poți, în orice moment disponibil, de la oricine și întotdeuna va veni o vreme când te vei simți recompensat pentru ceea ce ai învațat”

Sarah Caldwel

Dragul meu părinte bine te-am regăsit! Azi te invit să rezolvăm și să explicăm pas cu pas  împreună cateva exerciții la “Adunarea și Scăderea Fracțiilor”. (mai mult…)

Exercițiul 1:        Calculați:

a) \frac{7}{13}+\frac{2}{13}+\frac{5}{13}=

b) -\frac{10}{9}+\frac{11}{9}+(-\frac{7}{9})=

c) -\frac{3}{{5}}+(-\frac{5}{{6}})+(+\frac{1}{{2}})+(+\frac{4}{{15}})=

d)-\frac{13}{{18}}+(-\frac{5}{{108}})+(-\frac{14}{{5}})+(-\frac{7}{{36}})=

Rezolvare:

  • a) \frac{7}{13}+\frac{2}{13}+\frac{5}{13}=

Observăm că cele 3 fracții au acelasi numitor, în acest caz efectuez calculele între numărători și pastrez numitorul.

  • -\frac{7}{13}+\frac{2}{13}+\frac{5}{13}= \frac{7+2+5}{13}= \frac{14}{13}

 

  • b) -\frac{10}{9}+\frac{11}{9}+(-\frac{7}{9})=\frac{-10+11-7}{9}=

Avem la numărător -10+11-7 numere întregi cu semne diferite așa că vom respecta regula de adunare dacă termenii au semne diferite pastrăm semnul celui mai mare și efectuăm scădere. Noi avem -10+11   păstrăm semnul + și efectuîm 11-10

\frac{-10+11-7}{9}=\frac{+1-7}{9}=\frac{-6}{9}= \frac{-6}{9}^{(3}= \frac{-2}{3}

  • c) -\frac{3}{{5}}+(-\frac{5}{{6}})+(+\frac{1}{{2}})+(+\frac{4}{{15}})=

Observăm că în acest exercițiu fracțiile au numitor diferit așa că trebuie să determinăm numitorul comun.

Pentru a determina numitorul comun trebuie să calculăm c.m.m.m.c-ul numerelor de la numitor 5, 6, 2, 15.

Descompunem în factori primi cele 4 numere:

5=5

6=2\cdot3

2=2

15=3\cdot5

Calculăm c.m.m.m.c\left [ 5,6,2,15 \right ]=2\cdot3\cdot5=30

Deci numitorul comun este 30.

Trebuie să amplificăm fiecare fracție astfel încât să obținem  numitorul 30.

-_{{}}^{6)}\textrm{\frac{3}{{5}}}+(-_{{}}^{5)}\textrm{\frac{5}{{6}}})+ (+_{{}}^{15)}\textrm{\frac{1}{{2}}})+(+_{{}}^{2)}\textrm{\frac{4}{{15}}}) =

-\frac{18}{{30}}}+(-{\frac{25}{{30}}})+ (+{\frac{15}{{30}}})+(+{\frac{8}{{30}}})=

Știm că semnul (+) înmulțit cu semnul (-) obținem (-) , iar semnul (+) înmulțit cu semnul (+) obținem (+) . Astfel obținem:

  • -\frac{18}{{30}}}+(-{\frac{25}{{30}}})+ (+{\frac{15}{{30}}})+(+{\frac{8}{{30}}})=
  • -\frac{18}{{30}}}-{\frac{25}{{30}}}+ {\frac{15}{{30}}}+{\frac{8}{{30}}}=
  • \frac{-18-25+15+8}{{30}}}=
  •   \frac{-43+15+8}{{30}}}=
  •  \frac{- 28+8}{{30}}}=  \frac{- 20}{{30}}}^{(10} =- \frac{ 2}{{3}}}

d)      -\frac{13}{{18}}+(-\frac{5}{{108}})+(-\frac{14}{{5}})+(-\frac{7}{{36}})=

Determinăm numitorul comun:

18= 2\cdot 3^2

108= 2^2\cdot 3^3

5=5

36= 2^2\cdot 3^2

[18, 108, 5, 36]= 2^2\cdot 3^3\cdot 5=4\cdot 27\cdot 5=540

Trebuie să amplificăm fiecare fracție astfel încât să obținem  numitorul 540.

-_^{30)}\textrm{\frac{13}{{18}}}+(-_^{5)}\textrm{\frac{5}{{108}}})+(-_^{108)}\textrm{\frac{14}{{5}}})+(-_^{15)}\textrm{\frac{7}{{36}}})=

-{\frac{13\cdot30}{{18\cdot 30}}}+(-{\frac{5\cdot 5}{{108\cdot 5}}})+(-{\frac{14\cdot 108}{{5\cdot 108}}})+(-{\frac{7\cdot 15}{{36\cdot 15}}})=

-{\frac{390}{{540}}}+(-{\frac{25}{{540}}})+(-{\frac{1512}{{540}}})+(-{\frac{105}{{540}}})=

{\frac{-390-25-1512-105}{{540}}}=  {\frac{-(390+25+1512+105)}{{540}}}=  {\frac{-2032}{{540}}}^{(2}=  {\frac{-1016}{{270}}}^{(2}=  {\frac{-508}{{135}}}

 

Exercițiul 2:  Efectuați calculele:

a) [-3\frac{1}{{2}} +1\frac{1 }{{15}} ] + [-1\frac{1}{{7}}+2\frac{7 }{{3}} ]=

Introducem întregii în fracție:

(-\frac{3\cdot2+1}{{2}} +\frac{1\cdot 15+1 }{{15}} ) + (-\frac{1\cdot7+1}{{7}}+\frac{2\cdot3+7 }{{3}} )=

(-\frac{7}{{2}} +\frac{16 }{{15}} ) + (-\frac{8}{{7}}+\frac{13}{{3}} )=

Determinăm numitorul comun și aducem fracțiile la același numitor:

Știm că 2,3,7 și 5 sunt numere prime între ele. Numitorul comun este 2\cdot 3\cdot 5\cdot 7= 210

Amplificăm fracțiile și obținem:

(-_{{}}^{105)}\textrm{\frac{7}{{2}}}+_{{}}^{14)}\textrm{\frac{16}{{15}}})+(-_{{}}^{30)}\textrm{\frac{8}{{7}}}+_{{}}^{70)}\textrm{\frac{13}{{3}}})=  (-{\frac{735}{{210}}}+{\frac{224}{{210}}})+(-{\frac{240}{{210}}}+{\frac{910}{{210}}})=

{\frac{-735+224}{{210}}}+{\frac{-240+910}{{210}}}=  {\frac{-511}{{210}}}+{\frac{670}{{210}}}=  {\frac{-511+670}{{210}}}= {\frac{159}{{210}}}^{(3}= {\frac{53}{{70}}}

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Transformarea unei fracții ordinare într-o fracție periodică

„Trebuie să încerci necontenit să urci foarte sus, dacă vrei să poți să vezi foarte departe.”

Constantin Brâncusi

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva exerciții la transformarea unei fracții ordinare în fracție periodică.

(mai mult…)

Exercițiul 1: Transformați următoarele fracții ordinare în fracții zecimale periodice simple:

a) \frac{31}{9}   ;   b)  \frac{517}{99}  ;

Rezolvare:

Pentru a transforma fracțiile ordinare în fracții zecimale periodice simple trebuie să împărțim numărătorul la numitor astfel:

a) \frac{31}{9}   Împărțim 31 la 9 și obținem:

Observăm că dacă am continua împărțirea se va repeat numărul 4. În aceste cazuri spunem că rezultatul    \frac{31}{9}=3,(4) și citim trei virgulă perioadă patru.

b)   \frac{517}{99}=

Observăm că dacă am continua împărțirea se va repeat numărul 4. În aceste cazuri spunem că rezultatul    \frac{517}{99}=5,(2) .

Exercițiul 2 : Transformați următoarele fracții ordinare în fracții zecimale periodice mixte:

a) \frac{233}{45} ;   b) \frac{553}{60}  ;

Rezolvare:

Pentru a transforma fracțiile ordinare în fracții zecimale periodice simple trebuie să împărțim numărătorul la numitor astfel:

a)  \frac{233}{45}

Observăm că dacă am continua împărțirea se va repeat numărul 7. În aceste cazuri spunem că rezultatul    \frac{233}{45}=5,1(7) și citim cinci virgulă unu perioadă șapte.

b) \frac{553}{60}

Observăm că dacă am continua împărțirea se va repeat numărul 6. În aceste cazuri spunem că rezultatul     \frac{553}{60}=9,21(6).

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Mărimi direct proporționale

„Nu zi niciodată nu se poate, ci începe cu să vedem.”

Nicolae Iorga

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm și să explicăm pas cu pas câteva probleme Exerciții rezolvate la Marimi direct proporționale. (mai mult…)

Exercițiul 1:

Media aritmetică a două numere este egală cu 24.Aflați numerele știind că acestea sunt direct proporționale cu numerele 3 și 9.

Rezolvare:

Considerăm două numere a și b.

Scriem formula pentru media arithmetică a celor două numere.

M_{a}=\frac{a+b}{2}    \Rightarrow \frac{a+b}{2}=24 /\ \ \ \cdot 2   \Rightarrow a+ b=48

\left \{ a,b \right \} \overset{d.p}{\rightarrow} \left \{ 3,9 \right \}   \Rightarrow \frac{a}{{3}}=\frac{b}{{9}}=k

\Rightarrow \frac{a}{{3}}=k \Rightarrow a=3\cdot k

\Rightarrow \frac{b}{{9}}=k \Rightarrow b=9\cdot k

Înlocuim a și b în ecuația a+b=48 și obținem:

3 \cdot k + 9 \cdot k=48 \Rightarrow 12 \cdot k=48 / \ \ \ : \ \ 12  \Rightarrow k=48 \ \ \ : \ \ 12    \Rightarrow k=4

Înlocuim în  a și b și obținem:

 \Rightarrow a=3 \cdot k=3 \cdot 4  \Rightarrow a=12

 \Rightarrow b=9 \cdot k=9 \cdot 4   \Rightarrow b=36.

Exercițiul 2:

Suma a trei numere este 84. Aflați numerele știind că acestea sunt direct proporționale cu numerele: 1,(4)\ \ ; \ \ \ \ 1,(5) \ \ \ \ ; \ \ 1,(6)

Rezolvare:

Considerăm trei  numere a , b și c.

Problema ne spune ca suma lor este 84.

a+b+c=84

\left \{ a,b,c\right \} \overset {d.p }{\rightarrow} \left \{ 1,(4): \ \ 1,(5); \ \ 1,(6)\right \}

Transformăm fracțiile periodice în fracții ordinare:

 1,(4) =\frac{14-1}{{9}}= \frac{13}{{9}}

 1,(5) =\frac{15-1}{{9}}= \frac{14}{{9}}

 1,(6) =\frac{16-1}{{9}}= \frac{15}{{9}}

Și obținem:  \left \{ a,b,c\right \} \overset {d.p }{\rightarrow} \left \{ \frac{13}{{9}}; \ \ \frac{14}{{9}}; \ \ \frac{15}{{9}}\right \}  \Rightarrow

\Rightarrow \frac{a}{{\frac{13}{{9}}}}=\frac{b}{{\frac{14}{{9}}}}=\frac{c}{{\frac{15}{{9}}}}=k

Scoatem numerele a, b ;I c ]n func’ie de valoarea lui k.

\Rightarrow \frac{a}{{\frac{13}{{9}}}}=k   \Rightarrow \frac{a}{{1}} \ \ : \ \ {\frac{13}{{9}}}}=k \Rightarrow \frac{a}{{1}} \ \cdot \ \ {\frac{9}{{13}}}}=k  \Rightarrow \frac{9a}{{13}} =k  \Rightarrow a = \frac{13 \cdot k}{{9}}

\Rightarrow \frac{b}{{\frac{14}{{9}}}}=k  \Rightarrow \frac{b}{{1}} \ \ : \ \ {\frac{14}{{9}}}}=k  \Rightarrow \frac{b}{{1}} \ \cdot \ \ {\frac{9}{{14}}}}=k   \Rightarrow \frac{9\cdot b}{{14}} =k  \Rightarrow b = \frac{14 \cdot k}{{9}}

\Rightarrow \frac{c}{{\frac{15}{{9}}}}=k  \Rightarrow \frac{c}{{1}} \ \ : \ \ {\frac{15}{{9}}}}=k  \Rightarrow \frac{c}{{1}} \ \cdot \ \ {\frac{9}{{15}}}}=k  \Rightarrow \frac{9\cdot c}{{15}} =k  \Rightarrow c = \frac{15 \cdot k}{{9}}

Înlocuim a, b și c în sumă și determinăm valoarea lui k.

a+b+c=84 \Rightarrow \frac{13 \cdot k}{{9}} + \frac{14\cdot k}{{9}} + \frac{15 \cdot k}{{9}} = 84

\Rightarrow \frac{13 \cdot k+14\cdot k+15\cdot k}{{9}} = 84  \Rightarrow \frac{42 \cdot k}{{9}} = 84

\Rightarrow 42 \cdot k = 84 \cdot 9 \Rightarrow 42 \cdot k = 756 \Rightarrow 42 \cdot k = 756 / \ \ \ : \ \ \ 42

\Rightarrow k = 756 \ \ \ : \ \ \ 42

\Rightarrow k = 18

Înlocuim valoarea lui k în numerele natural și determinăm valoare lui a, b și c.

 a = \frac{13 \cdot k}{{9}}   \Rightarrow a = \frac{13 \cdot 18}{{9}}  \Rightarrow a = \frac{234}{{9}}  \Rightarrow a = 26

 b = \frac{14 \cdot k}{{9}}   \Rightarrow b = \frac{14 \cdot 18}{{9}}   \Rightarrow b = \frac{252}{{9}}   \Rightarrow b = 28

 c = \frac{15 \cdot k}{{9}}   \Rightarrow c = \frac{15 \cdot 18}{{9}}  \Rightarrow c = \frac{270}{{9}}   \Rightarrow c = 30

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Mărimi direct proporționale  pentru copilul tău o gasești aici  Fisa de lucru marimi direct proportionale 

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Procente.

” Tăria minții vine prin exercițiu nu prin repaos”.

Alexander Pope

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas câteva Exerciții  rezolvate la Procente. (mai mult…)

Exercițiul 1:  Calculați:

a) 75 % din 1600

b) 1,25 % din 2000

c) 25 % din 16 % din 750

d) 4,(2) % din 7200 .

Rezolvare:

a)  75 % din 1600 =  \frac{75}{{100}} \cdot 1600=  \frac{75\cdot 16\emptyset\emptyset}{{1\emptyset\emptyset}}=  75\cdot 16=  1200

b) 1,25 % din 2000 = \frac{1,25}{100} \cdot 2000=  \frac{1,25\cdot 20\emptyset\emptyset}{1\emptyset\emptyset}= 1,25\cdot 20=25

c) 25 % din 16 % din 750 =  25% \cdot (\frac{16}{{100}} \cdot 750)= \frac{25}{{100}} \cdot (\frac{16 \cdot 75\emptyset}{{10\emptyset}})= \frac{25}{{100}} \cdot (\frac{16 \cdot 75}{{10}})= \frac{25}{{100}} \cdot (\frac{1200}{{10}})= \frac{25}{{100}} \cdot (\frac{120\emptyset}{{1\emptyset}})= \frac{25}{{100}} \cdot 120= \frac{25}{{10\emptyset}} \cdot 12\emptyset= \frac{25\cdot 12}{{10}}= \frac{300}{{10}}= \frac{30\emptyset}{{1\emptyset}}= \frac{30}{{1}}=30

d) 4,(2) % din 7200 =  \frac{4,(2)}{{100}} \cdot 7200 =  \frac{4,(2)\cdot 72\emptyset\emptyset}{{1\emptyset\emptyset}} =  4,(2)\cdot 72 =   \frac{42-4}{{9}} \cdot 72=  \frac{38}{{9}} \cdot 72= \frac{38 \cdot 72}{{9}} = \frac{2736}{{9}} =304

Exercițiul 2:   Aflați un număr x știind că :

a)  20% din el este 80;

b) 2,75 % din el este 3,30;

c) 3,(6)% din el este 36,3.

Rezolvare:

a)  20% din x este 80  \Rightarrow \frac{20}{{100}} \cdot x = 80 \Rightarrow \frac{20}{{100}} \cdot x = 80 / \ \ \ \cdot 100 \Rightarrow 20 \cdot x = 80 \cdot 100 \Rightarrow 20 \cdot x = 8000 / \ \ \ :\ \ 20 \Rightarrow x = 8000 \ \ :\ \ 20 \Rightarrow x = 400

b) 2,75 % din el este 3,30 \Rightarrow \frac{2,75}{{100}} \cdot x = 3,30  \Rightarrow \frac{2,75}{{100}} \cdot x = 3,30 / \cdot100  \Rightarrow 2,75 \cdot x = 3,30 \cdot100  \Rightarrow 2,75 \cdot x = 330

\Rightarrow \frac{275}{{100}} \cdot x = 330 \Rightarrow \frac{275}{{100}} \cdot x = 330 /\cdot 100 \Rightarrow {275}\cdot x = 330 \cdot 100

\Rightarrow {275}\cdot x = 33000 \Rightarrow {275}\cdot x = 33000 / \ \ \ : \ \ 275\Rightarrow x = 33000 \ \ : \ \ 275

\Rightarrow x = 120

c) 3,(6)% din x este 36,3 \Rightarrow \frac{3,(6)}{{100}} \cdot x = 36,3 \Rightarrow \frac{3,(6)}{{100}} \cdot x = 36,3 / \cdot 100 \Rightarrow 3,(6) \cdot x = 36,3 \cdot 100

\Rightarrow \frac{36-3}{{9}} \cdot x = 3630

\Rightarrow \frac{33}{{9}} \cdot x = 3630 / \cdot 9 \Rightarrow 33\cdot x = 3630 \cdot 9

\Rightarrow 33\cdot x = 32670 / \ \ \ : \ \ \ 33 \Rightarrow x = 32670 \ \ \ : \ \ \ 33

\Rightarrow x = 990

PS: Dragul meu părinte am pregătit si o fișă de lucru pentru copilul tău o gasești aici:Fișă de lucru Procente

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Rapoarte.

„Nimic nu este prea dificil dacă împarți în pași mici ceea ce ai de făcut.”

Henry Ford

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas  Exerciții  rezolvate la Rapoarte! (mai mult…)

Exercițiul1: Aflați termenul necunoscut din următoarele rapoarte:

a) \frac{x}{5}=\frac{21}{3}

b) \frac{5}{x}=0,20

c) \frac{6,(4)}{x}=8

Rezolvare:

a)  \frac{x}{5}=\frac{21}{3}

Înmulțim pe diagonală și obținem :

 \Rightarrow 3 \cdot x=21\cdot5  \Rightarrow 3 \cdot x=105  \Rightarrow x=105 \ \ \ :\ \ \ 3  \Rightarrow x=35

b) \frac{5}{x}=0,20

Transformăm fracția zecimală 0,20 în fracție ordinară și obținem:

\Rightarrow \frac{5}{{x}}=\frac{20}{{10}}\Rightarrow \frac{5}{{x}}=\frac{2}{{1}} \Rightarrow 5\cdot 1=x \cdot 2 \Rightarrow 2x=5 \ \ \ \ \ /:\ \ 2\Rightarrow x=\frac{5}{{2}}

c) \frac{6,(4)}{x}=8 \Rightarrow \frac{6,(4)}{x}=\frac{8}{1}\Rightarrow 6,(4)\cdot 1=8 \cdot x

Transformăm fracția periodică  6,(4) în fracție ordinară  astfel 6,(4)=\frac{64-6}{{9}}=\frac{58}{{9}} și obținem:

\Rightarrow 6,(4)\cdot 1=8 \cdot x  \Rightarrow \frac{58}{{9}}\cdot \frac{1}{{1}}=\frac{8\cdot x}{{1}} \Rightarrow \frac{58}{{9}}=\frac{8\cdot x}{{1}} \Rightarrow 58 \cdot 1 =9 \cdot 8\cdot x \Rightarrow 58=72\cdot x \Rightarrow 58=72\cdot x \ \ \ /\ \ \ \ :\ \ 72  \Rightarrow x = \frac{58}{{72}}^{{(2}}

 \Rightarrow x = \frac{29}{{36}}

Exercițiul 2: Se consideră numerele a= 1+2+3+.........................+2018 și b = 2+4+6+.........................+4036. Calculați :

a) Raportul dintre a și b;

b) Raportul dintre suma și diferența numerelor b și a;

Rezolvare:

Calculăm mai întâi numărul a ca să îl aducem la o formă mai simplă. Recunoaștem suma Gauss a primelor 2018 numere naturale consecutive și aplicăm formula lui Gauss.

a = 1+2+3+.........................+2018

 a = 2018\cdot(2018+1) \ \ \ : \ \ \ 2

 a = 2018\cdot 2019 \ \ \ : \ \ \ 2

 a = 2018 \ \ \ : \ \ \ 2 \cdot 2019

 a = 1009 \cdot 2019

PS: Dacă nu îți mai amintești Suma lui Gauss găsești aici PDF-ul gratuit : Suma Gauss

Calculăm și numărul b pentru a obține o formă mai simplă.

b = 2+4+6+.........................+4036.

Dăm factor comun pe 2 și obținem din nou Suma Gauss a primelor 2018 numere naturale consecutive.

 b =2 \cdot (1+2+3+...............+2018)

 b =2 \cdot [2018\cdot (2018+1) \ \ :\ \ \ 2]

 b =2 \cdot [2018\ \ :\ \ \ 2 \cdot (2018+1) ]

 b =2 \cdot [2018\ \ :\ \ \ 2 \cdot 2019 ]

 b =2 \cdot 1009 \cdot 2019

 b =2018 \cdot 2019

  • a) Facem raportul   \frac{a}{b} = \frac{1009 \cdot 2019}{2018 \cdot 2019} ^{{(1009 \cdot 2019}}  \Rightarrow \frac{a}{b} = \frac{1}{2}
  • b) Calculăm raportul     \frac{a+b}{b-a}=  \frac{1009\cdot 2019+2018\cdot 2019}{2018\cdot 2019-1009\cdot 2019}=

Observăm că putem da factor comun pe 1009\cdot2019 și la numărător și la numitor și obținem:

 \frac{1009\cdot 2019\cdot (1+2)}{1009\cdot 2019\cdot(2-1)}= \frac{1009\cdot 2019\cdot 3}{1009\cdot 2019\cdot 1}=

Observăm că putem simplifica raportul prin 1009\cdot2019 și obținem:

 \frac{1009\cdot 2019\cdot 3}{1009\cdot 2019\cdot 1}^{{(1009\cdot 2019}} =\frac{3}{1}=3

Exercițiul 3:

Știind că  \frac{a}{b} = \frac{7}{2}  calculați valoarea raportului:

a)  \frac{12\cdot a+6\cdot b}{6\cdot a-b} = ?

b) \frac{3\cdot a+5\cdot b}{2\cdot a+b} = ?

Rezolvare:

a) Știind raportul  \frac{a}{b} = \frac{7}{2}  înmulțim pe diagonală și scoatem a în funcție de b

 \Rightarrow 2\cdot a= 7 \cdot b \Rightarrow a=\frac{7\cdot b }{{2}}

Înlocuim a în raportul pe care îl avem de calculat și obținem:

 

\Rightarrow \frac{12\cdot \frac{7\cdot b }{{2}}+6\cdot b}{6\cdot \frac{7\cdot b }{{2}}-b} =  \frac{ \frac{84\cdot b }{{2}}+6\cdot b}{ \frac{42\cdot b }{{2}}-b} =

\frac{ {42\cdot b }+6\cdot b}{ 21\cdot b -b} =  \frac{ {48\cdot b }}{ 20\cdot b } ^{(4\cdot b} =  \frac{ {12 }}{ 5 }

b) Știind raportul  \frac{a}{b} = \frac{7}{2}  înmulțim pe diagonală și scoatem a în funcție de b

 \Rightarrow 2\cdot a= 7 \cdot b \Rightarrow a=\frac{7\cdot b }{{2}}

Înlocuim a în raportul pe care îl avem de calculat și obținem:

\frac{3\cdot a+5\cdot b}{2\cdot a+b} =  \frac{3\cdot \frac{7\cdot b }{{2}} +5\cdot b}{2\cdot \frac{7\cdot b }{{2}}+b} =  \frac{\frac{21\cdot b }{{2}} + 5\cdot b}{ \frac{14\cdot b }{{2}}+b} =  \frac{\frac{21\cdot b }{{2}} + _{{}}^{2)}{5\cdot b}}{ \frac{14\cdot b }{{2}}+_{{}}^{2)}{ b}} =  \frac{\frac{21\cdot b }{{2}} + {\frac{10\cdot b }{{2}}} }{ \frac{14\cdot b }{2}+{{{\frac{2\cdot b }{{2}}}}  = \frac{\frac{31\cdot b }{{2}} }{ \frac{16\cdot b }{2}} =  {\frac{31\cdot b }{{2}} }\ \ \ :\ \ \ { \frac{16\cdot b }{2}} =   {\frac{31\cdot b }{{2}} } \cdot { \frac{2}{16\cdot b}} =  {\frac{31 }{{16}} }

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Unghiuri opuse la vârf

” Nu e destul să știm, trebuie să și aplicăm. Nu e destul să ne dorim, trebuie să facem.”

Goethe

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas 3 Exerciții  rezolvate la Unghiuri opuse la vârf !  (mai mult…)

Exercițiul1:

Fie unghiurile  \widehat{AOB} și  \widehat{COD} două unghiuri opuse la vârf. Știind că  m(\widehat{AOB})=59^\circ aflați  m(\widehat{AOC})=? și  m(\widehat{BOD})=?

Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Din datele problemei știm că  \widehat{AOB} și  \widehat{COD} opuse la vârf \Rightarrow

 m(\widehat{COD}) \equiv m(\widehat{AOB}) =59^{\circ}

Analizând figura observăm că punctele A,\ \ \ O și D sunt coliniare:  m(\widehat{AOC}) + m(\widehat{AOB})=180^\circ \Rightarrow m(\widehat{AOC})+59^\circ=180^\circ \Rightarrow m(\widehat{AOC})=180^\circ- 59^\circ\Rightarrow m(\widehat{AOC})=121^\circ

m(\widehat{AOC})\equiv m(\widehat{BOD})\Rightarrow m(\widehat{BOD})=121^\circ

Exercițiul 2:

Fie \widehat{AOB} și \widehat{COD} opuse la vârf și dreptele AD \cap BC=\left \{ O \right \}. Știind că m(\widehat{AOC})=21^\circ+x  și m(\widehat{AOB})=97^\circ+x aflați : m(\widehat{AOB}) șim(\widehat{AOC}).

Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Din datele problemei știm că \widehat{AOB} și \widehat{COD} opuse la vârf și  AD \cap BC=\left \{ O \right \} \Rightarrow B\ \ , \ \ O și C coliniare \Rightarrow m(\widehat{BOC})=180^\circ

Dacă privim atent desenul observăm: \Rightarrow m(\widehat{BOC})=m(\widehat{AOB})+m(\widehat{AOC})\Rightarrow m(\widehat{AOB})+m(\widehat{AOC})=180^\circ \Rightarrow 97^\circ+x+21^\circ+x=180^\circ

\Rightarrow 2x+ 118^\circ=180^\circ \Rightarrow 2x=180^\circ-118^\circ \Rightarrow 2x=62^\circ \Rightarrow x=62^\circ\ \ \ :\ \ \ 2 \Rightarrow x=31^\circ

m(\widehat{AOC})=21^\circ+x \Rightarrow m(\widehat{AOC})=21^\circ+31^\circ\Rightarrow m(\widehat{AOC})=52^\circ

m(\widehat{AOB})=97^\circ+x\Rightarrow m(\widehat{AOB})=97^\circ+31^\circ  \Rightarrow m(\widehat{AOB})=128^\circ

 

Exercițiul 3:

Dacă AB\cap CD= \left \{ O \right \} și \frac{ m(\widehat{AOD})}{ m(\widehat{AOC})}=\frac{4}{{5}} află m(\widehat{BOC}) și m(\widehat{BOD}).

Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Problema ne spune că \frac{ m(\widehat{AOD})}{ m(\widehat{AOC})}=\frac{4}{{5}} \Rightarrow 5\cdot m(\widehat{AOD})}= 4\cdot m(\widehat{AOC})

\Rightarrow m(\widehat{AOD})}= \frac{4}{5}\cdot m(\widehat{AOC})

Dar AB\cap CD= \left \{ O \right \} \Rightarrow C\ \ , \ \ O \ \ și D coliniare  \Rightarrow m(\widehat{COD})= 180^\circ

Analizând desenul observăm că m(\widehat{COD})= m(\widehat{AOC})+ m(\widehat{AOD})

\Rightarrow m(\widehat{AOC})+ m(\widehat{AOD})=180^\circ \Rightarrow m(\widehat{AOC})+ \frac{4}{5}\cdot m(\widehat{AOC})=180^\circ | \ \ \ \cdot 5

\Rightarrow 5\cdot m(\widehat{AOC})+ 4\cdot m(\widehat{AOC})=5\cdot 180^\circ  \Rightarrow 9\cdot m(\widehat{AOC})=900 ^\circ | \ \ \ :\ \ \ 9  \Rightarrow m(\widehat{AOC})=100 ^\circ

Știm că  m(\widehat{AOD})}= \frac{4}{5}\cdot m(\widehat{AOC})\Rightarrow m(\widehat{AOD})}= \frac{4}{5}\cdot 100^\circ \Rightarrow m(\widehat{AOD})}= \frac{4\cdot 100^\circ}{5}\Rightarrow m(\widehat{AOD})}= \frac{400^\circ}{5}\Rightarrow m(\widehat{AOD})}= 80^\circ

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Factorul Comun la Puteri

“Un ratat nu știe ce va face dacă pierde, dar vorbește despre ce va face dacă va castiga. Un învingător nu vorbește despre ce va face dacă va caștiga, dar știe ce va face dacă pierde.”
Eric Berne
Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună cateva exerciții la “Factorul comun la Puteri”.

(mai mult…)

Exercițiul 1:

Efectuați calculele, folosind factorul comun:

a) 3^{96}+3^{98}+3^{100}

b) 2\cdot2^{47}+3\cdot2^{48}+2^{50}

c) 8^{300}-24\cdot8^{298}-64\cdot8^{297}

d) 3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}

e) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

  • Rezolvare: 
  • a) 3^{96}+3^{98}+3^{100}
  • Adunarea este o operație de gradul I și ridicarea la putere este o operație de gradul III, iar ordinea efectuării operațiilor ne spune că trebuie să facem mai întâi operațiile de gradul III și apoi cele de gradul I

Observăm că avem puteri foarte mari și nu putem ridica la putere așa că ne vom folosi de factorul comun și vom da factor comun puterea cea mai mică.

Observăm că 3^{96} este puterea cea mai mică asa ca îl dăm factor comun pe 3^{96} și obținem:

3^{96}\cdot(3^{96-96}+3^{98-96}+3^{100-96})

Scădem puterile și obținem:

3^{96}\cdot(3^{0}+3^{2}+3^{4})

Ridicăm la putere termenii din paranteza rotundă:

3^{96}\cdot(1+9+81)=3^{96}\cdot91

  • b)      2\cdot2^{47}+3\cdot2^{48}+2^{50}

Observăm că  2^{47} este puterea cea mai mică așa că îl dăm factor comun pe 2^{47} și obținem:

2^{47}\cdot(2\cdot2^{47-47}+3\cdot2^{48-47}+2^{50-47})

Scădem puterile și obținem:

2^{47}\cdot(2\cdot2^{0}+3\cdot2^{1}+2^{3})

Ridicăm la putere termenii din paranteza rotundă și obținem:

2^{47}\cdot(2\cdot 1+3\cdot2+8)

Efectuăm  înmulțirile și obținem:

2^{47}\cdot(2+6+8)=

Efectuăm adunarea din paranteză și obținem:

2^{47}\cdot 16=

Știm că 16 îl putem scrie în baza 2 ca 2^{4} și obținem

2^{47}\cdot2^{4}=

Aplicăm Regulile de calcul cu puteri și scriem baza și adunam exponenții:

2^{47+4}=2^{51}

  • c)   8^{300}-24\cdot8^{298}-64\cdot8^{297}

Observăm că 8^{297} este cea mai mică putere, îl dăm factor comun pe 8^{297} și obținem:

8^{297}\cdot(8^{300-297}-24\cdot8^{298-297}-64\cdot8^{297-297})

Scădem puterile și obținem:

8^{297}\cdot(8^{3}-24\cdot8^{1}-64\cdot8^{0})

Ridicăm la putere termenii din paranteză și obținem:

8^{297}\cdot(512-24\cdot8-64\cdot1) =

Efectuăm înmulțirile din paranteză și obținem:

  • 8^{297}\cdot(512-192-64) =

Efectuăm scăderea din paranteza rotundă și obținem:

8^{297}\cdot 256 =

Știm că putem scrie 8=2^3 și 256=2^8 și obținem:

(2^3)^{297}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri înmulțim puterile și obținem:

2^{3\cdot297}\cdot 2^8=2^{891}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri, scriem baza și adunam puterile și obținem astfel:

2^{891+8}=2^{899}

  • d)  3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}=

Aplicăm Regulile de calcul cu puteri și obținem:

3^{2n}\cdot3^2+7\cdot 3^{2n}\cdot3^1-6\cdot3^{2n}=

Observăm că se repetă în fiecare termen al adunării 3^{2n},  îl dăm factor comun și obținem:

3^{2n}\cdot(3^2+7\cdot3^1-6\cdot1)=

Ridicăm la putere termenii din paranteza rotundă și obținem:

3^{2n}\cdot(9+7\cdot3-6)=

Efectuăm Înmulțirea din paranteză și obținem:

3^{2n}\cdot(9+21-6)=

Efectuăm calculele din paranteza rotundă și obținem:

3^{2n}\cdot 24=3^{2n}\cdot 3\cdot8=

Aplicăm Regulile de calcul cu puteri scriem baza și adunăm exponenții și obținem:

3^{2n+1}\cdot8

  • d) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri  transformăm bazele pe 6 îl scriem 6=2\cdot3 , pe 4=2^2, 9=3^2 , pe  18=2\cdot3^2  și obținem:

(2\cdot3)^{2n+1}+6\cdot (2^2)^{n+1}\cdot (3^2)^{n+2}+(2\cdot3^2)^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri, distribuim puterea și obținem:

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2\cdot(n+1)}\cdot 3^{2\cdot(n+2)}+2^{n+1}\cdot3^{2(n+1)}\cdot2^{n+1}

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2n+2}\cdot 3^{2n+4}+2^{n+1}\cdot3^{2n+2}\cdot2^{n+1}

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n}\cdot2^1\cdot3^{2n}\cdot3^2\cdot2^{n}\cdot2^1

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n+n}\cdot2^{1+1}\cdot3^{2n}\cdot3^2

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{2n}\cdot2^{2}\cdot3^{2n}\cdot3^2

Observăm că se repeta 2^{2n}\cdot3^{2n} și îl dăm factor comun, astfel obținem:

2^{2n}\cdot3^{2n}\cdot(2^1\cdot3^1+6\cdot2^2\cdot3^4+2^{2}\cdot3^2)

Ridicăm la putere termenii din paranteza rotundă:

2^{2n}\cdot3^{2n}\cdot(2\cdot3+6\cdot4\cdot81+4\cdot9)

Efectuăm înmulțirile din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot(6+1944+36)

Efectuăm calculele din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot 1986=(2\cdot3)^{2n}\cdot 6\cdot331=(6)^{2n}\cdot 6^1\cdot331=(6)^{2n+1}\cdot331

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în Clubul de “Matematică Math More Easy.” 

1 2