Posts Tagged ‘reguli de calcul cu puteri’

Exerciții rezolvate la Compararea puterilor

“Educația nu e cât de mult ai memorat sau cât știi. E capacitatea de a face diferența între ce știi și ce nu știi”.

Anatole France 

Dragul meu părinte bine te-am regăsit! Azi revin cu o lecție nouă la capitolul Numere Naturale: Exerciții rezolvate la Compararea Puterilor.

(mai mult…)

Exercițiul 1: Comparați numerele:

  • a) 4 ^{17} și 2 ^{34}
  • b) 3 ^{27} și 9 ^{13}
  • c) 8 ^{17} și  2^{52}

Rezolvare: 

  • 4 ^{17} și 2 ^{34}
  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că putem să-l scriem pe 4 ca bază 2 ^2.
  • ({2 ^2})^{17}    și 2 ^{34}
  • Aplicăm Regulile de Calcul cu Puteri pentru primul număr, înmulțim exponenții și obținem:
  • 2 ^{2\cdot 17}  și 2 ^{34} \Rightarrow 2 ^{34}   = 2 ^{34}

b) 3 ^{27}   și 9 ^{13}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că  putem modifica bazele atunci îl vom scrie pe 9=3 ^{2} și obținem:
  • 3 ^{27} și (3 ^{2}) ^{13} \Rightarrow 3 ^{27} și  3 ^{2\cdot 13}  \Rightarrow 3 ^{27}   \gt \ \ \ 3 ^{26}

c)  8 ^{17} și  2 ^{52}

    • Observăm că  putem modifica bazele atunci îl vom scrie pe 8= 2^{3} și obținem:
    • (2^{3})^{17} și 2^{52 \Rightarrow 2^{3\cdot 17} și  2^{52}  \Rightarrow 2^{51} \lt 2^{52}
Exercițiul 2:  Comparați numerele:
  • a)  2 ^{48}  și   3 ^{32}
  • b)  2 ^{60}  și  3 ^{36}
  • c)  3 ^{42}  și  5 ^{28}
  • d) { 2^2}^3  și (2^2)^3

Rezolvare: 

a) 2^{48} și 3^{32}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel  48=3\cdot16 și 32=2\cdot16. Obținem:
  • 2^{3\cdot16} și 3^{2\cdot16}  \Rightarrow (2^3)^{16} și  (3^2)^{16}
  • Ridicăm la putere știind că  2^3=8 și  3^2=9 obținem:
  •  8^{16} \lt 9^{16}
  • Numărul cu baza mai mică este mai mic.

b)  2^{60} și  3^{36}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel: 60=10\cdot 6 și 36=6\cdot 6. Obținem:
  • 2^{10\cdot 6} și 3^{6\cdot 6} \Rightarrow (2^{10})^ 6 și (3^{6})^ 6
  • Ridicăm la putere știind că 2^{10}=1024 și 3^{6}=729. Obținem:
  •  1024^{6} \gt 729^6
  • Numărul cu baza mai mare este mai mare.

c) 3^{42} și 5^{28}

  • Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel: 42=3\cdot 14  și 28=2 \cdot 14. Obținem:
  • 3^{3\cdot14} și 5^{2\cdot14}   \Rightarrow (3^3)^{14} și  (5^2)^{14}
  • Ridicăm la putere știind că  3^3= 27 și  5^2= 25 obținem:
  •  27^{14}\ \ \gt\ \ 25^{14}.

d) { 2^2}^3 și (2^2)^3

  • Observăm că la primul număr avem puterea unei puteri cu alte cuvinte exponentul este tot o putere 2^3. Mai întâi ridicăm la putere exponentul știind că 2^3 = 8 și obținem: { 2^2}^3=2^8.
  • La cel de-al doilea număr aplicăm Regulile de calcul cu puteri,  înmulțim puterile și obținem: (2^3)^2=2^{3\cdot 2}= 2^6
  • { 2^2}^3 și (2^2)^3\Rightarrow 2^8 \ \ \gt \ \ 2^6

Exercițiul 3: Comparați numerele:

a) 8^{18} - 7\cdot 8^{17} și 16^{14} - 15\cdot 16^{13}

c) (9^{15}\cdot 3^{14})^4  și (81^{3}\cdot 27^{7})^3 \cdot 243 ^{15}

Rezolvare:

a) 8^{18} - 7\cdot 8^{17} și 16^{14} - 15\cdot 16^{13}

  • Pentru a putea compara cele două numere trebuie să le aducem la o formă mai simplă. Pentru că avem operația de scădere între termenii celor două numere trebuie să dam factor comun baza care se repetă la puterea cea mai mică
  • 8^{17}\cdot (8^{18-17} - 7\cdot 8^{17-17}) și 16^{13}\cdot (16^{14-13} - 15\cdot 16^{13-13})
  • 8^{17}\cdot (8^{1} - 7\cdot 8^{0})   și 16^{13}\cdot (16^{1} - 15\cdot 16^{0})
  • Știm că orice număr la puterea 0 este egal cu 1  \Rightarrow 8^0=1 și \Rightarrow 16^0=1
  • Obținem:
  • 8^{17}\cdot (8 - 7\cdot 1) și 16^{13}\cdot (16 - 15\cdot 1)
  • 8^{17}\cdot (8 - 7) și 16^{13}\cdot (16 - 15)
  • 8^{17}\cdot 1 și 16^{13}\cdot 1 \Rightarrow 8^{17} și 16^{13}
  • Pentru a putea compara cele două numere trebuie să le aducem la aceeași bază.
  • Știm că putem scrie:8=2^{3} și 16=2^{4} astfel obținem:
  • (2^{3})^{17} și (2^{4})^{13} \Rightarrow 2^{3\cdot 17} și 2^{4\cdot 13} \Rightarrow 2^{51} \lt 2^{52}

b) (9^{15}\cdot 3^{14})^4 și (81^{3}\cdot 27^{7})^3 \cdot 243 ^{15}

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy”.  

Exerciții rezolvate la Pătrate Perfecte!

“Nu poți împinge pe nimeni să urce pe o scară dacă nu este dispus să o urce singur ”

Andrew Carnegie

Dragul meu părinte bine te-am regăsit! În articolul anterior am prezentat cateva “Exerciții Rezolvate la Ultima Cifră a unui Număr Natural”. Astăzi te invit să rezolvăm și să explicăm câteva exerciții la Pătrate Perfecte. Să vedem cum putem arăta că un număr foarte mare poate fi sau nu pătrat perfect!

(mai mult…)

Exercițiul 1: 

Arătați că numărul a=2003 + 2\cdot (1+2+3+................+ 2002) este pătrat perfect.

  • Rezolvare: Pentru a arăta că numărul “a” este pătrat perfect trebuie să arătam că numărul “a”se poate scrie ca un număr natural la puterea a doua.
  • Observăm că în paranteză avem  Suma Gauss a primelor 2002 numere naturale consecutive așa că vom aplica formula de calcul a lui Gauss.
  • a=2003 + 2\cdot (1+2+3+................+ 2002)
  • a=2003 + 2\cdot [2002\cdot (2002+1)\ : \ 2]
  • a=2003 + 2\cdot [2002\cdot 2003 \ : \ 2]
  • Pentru că înmulțirea și împărțirea sunt operații de același ordin putem efectua mai întâi operația de împărțire.
  • a=2003 + 2\cdot [2002\ \ : \ 2 \cdot 2003]
  • a=2003 + 2\cdot 1001 \cdot 2003
  • a=2003 + 2002 \cdot 2003
  • Dăm factor comun pe 2003.
  • a=2003\cdot (1 + 2002)
  • a=2003\cdot 2003
  • a=2003^2.
  • \Rightarrow numarul \ este pătrat perfect.
Exercițiul 2: 

Arătați că numărul  a=81+81 \cdot 2+ 81 \cdot 3+.....................+81 \cdot 49 este pătrat perfect.

  • Rezolvare: Pentru a arăta că numărul “a” este pătrat perfect trebuie să arătam că numărul “n”se poate scrie ca un număr natural la puterea a doua.
  • Observăm că 81 se repetă și îl putem da factor comun.
  • a=81\cdot (1+ 2+ 3+.....................+49).
  • În paranteză obținem   Suma Gauss a primelor 49 numere naturale consecutive așa că vom aplica metoda de calcul a lui Gauss.
  • a=81\cdot [49 \cdot(49+1) \ \ : \ 2 ]
  • a=81\cdot [49 \cdot 50 \ \ : \ 2 ]
  • a=81\cdot 49 \cdot 25
  • a=9^2\cdot 7^2 \cdot 5^2
  • Aplicăm Regulile de Calcul cu Puteri și obținem:
  • a=(9\cdot 7 \cdot 5)^2
  • a=315^2
Exercițiul 3:  

Arătați că numărul   n= 27^9 \cdot 32^{11} \ \ : \ \ 2 - 16^6\cdot 2\cdot 6^{27} este pătrat perfect.

  • Rezolvare:  Pentru a arăta că numărul “n” este pătrat perfect trebuie să arătăm că se poate scrie ca un număr natural la puterea a doua.
  • Observăm că pe 27 îl putem scrie ca bază 3, pe 16 și 32 îi putem scrie ca baza 2 iar pe 6 îl putem scrie ca produsul 2\cdot 3
  • n= (3^3)^9 \cdot (2^5)^{11} \ \ : \ \ 2^1 - (2^4)^6\cdot 2^1 \cdot (2\cdot3)^{27}
  • Aplicăm Regulile de calcul cu puteri și obținem:
  • n= 3^{3\cdot9} \cdot 2^{5\cdot 11} \ \ : \ \ 2^1 - 2^{4\cdot 6}\cdot 2^1 \cdot 2^{27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{55} \ \ : \ \ 2^1 - 2^{24}\cdot 2^1 \cdot 2^{27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{55-1} - 2^{24+1+27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{54} - 2^{52}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{52} \cdot 2^2 - 2^{52}\cdot 3^{27}
  • Observăm că se repetă  3^{27} \cdot 2^{52} și îi dăm factor comun.
  • n= 3^{27} \cdot 2^{52} \cdot (2^2 - 1)
  • n= 3^{27} \cdot 2^{52} \cdot (4 - 1)
  • n= 3^{27} \cdot 2^{52} \cdot 3
  • n= 3^{27} \cdot 2^{52} \cdot 3^1
  • n= 3^{27+1} \cdot 2^{52}
  • n= 3^{28} \cdot 2^{52}
  • n= (3^{14} \cdot 2^{26} )^2 \Rightarrow n este pătrat perfect
Exercițiul 4:  

Arătați că numărul  n= 2^{2011}- 2^{2010}-2^{2009}-2^{2008}  este pătrat perfect.

  • Rezolvare: Pentru a arăta că numărul “n” este pătrat perfect trebuie să arătăm că se poate scrie ca un număr natural la puterea a doua.
  • Aplicând Regulile de Calcul cu Puteri  putem scrie: 2^{2011}= 2^{2008}\cdot 2^{3}2^{2010}= 2^{2008}\cdot 2^{2} și 2^{2009}= 2^{2008}\cdot 2^{1}. Obținem astfel:
  •  n= 2^{2008}\cdot 2^{3} - 2^{2008}\cdot 2^{2} - 2^{2008}\cdot 2^{1} -2^{2008}
  • Observăm că se repetă  2^{2008} și putem sa îl dăm factor comun:
  •  n= 2^{2008}\cdot (2^{3} - 2^{2} - 2^{1} - 1)
  •  n= 2^{2008}\cdot (8 - 4 - 2 - 1)
  •  n= 2^{2008}\cdot 1
  •  n= 2^{2008}
  •   n= (2^{1004})^2 \Rightarrow n este pătrat perfect

 

Exercițiul 5: 

Arătați că numărul a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002}   nu este pătrat perfect.

  • Rezolvare: Observăm că avem Suma Gauss a puterilor lui 2. Pentru a rezolva acest exercițiu înmultim întreaga expresie matematică cu un 2. 
  • a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002} | \ \ \ \cdot2
  • 2\cdot a= 2\cdot 2^{1504} + 2\cdot 2^{1505} + 2\cdot 2^{1506} +..............+2\cdot 2^{2002}
  • 2\cdot a= 2^{1504+1} + 2^{1505+1} + 2^{1506+1} +..............+ 2^{2002+1}
  • 2\cdot a= 2^{1505} + 2^{1506} + 2^{1507} +.............+2^{2002}+ 2^{2003}
  • Scădem cele două relații și obținem:
  • suma gauss a puteror lui 2

  •  a = 2^{2003} - 2^{1504}
  • Pentru a demonstra că numărul  a = 2^{2003} - 2^{1504} nu este pătrat perfect trebuie să arătăm că Ultima cifră a lui a aparține mulțimii: \left \{ 2,3, 7,8 \right \}.
  • Calculăm Ultima cifră a numărului a = 2^{2003} - 2^{1504}
  •  U(a) = U(2^{2003} - 2^{1504})
  •  U(a) = U(2^{2003}) - U(2^{1504})
  • Calculăm  U(2^{2003}) .
  • Mai întâi calculăm puterilelui 2.
  • Observăm că ultima cifră se schimbă din 4 în 4.
  • Împărțim 2003 la 4 și obținem câtul 500 și restul 3.
  •  U(2^{2003})=U(2^{4\cdot 500+3})=U[(2^4)^{500}\cdot 2^3]=U[(2^4)^{500}]\cdot U(2^3)
  • Dacă privim atent puterile lui 2 observăm ca ultima cifră a lui 2^4 este 6 și astfel obținem:
  • U[(2^4)^{500}]\cdot U(2^3)= U[U(6^{500})\cdot 8]
  • Știm că 6 ridicat la orice putere are ultima cifra tot 6.
  • Și obținem: U[U(6^{500})\cdot 8]=U(6 \cdot 8)= U(48)=8
  • Am obținut că  U(2^{2003})=8
  • Calculăm  U(2^{1504}).
  • Împărțim 1504 la 4 și obținem câtul 376.
  •  U(2^{1504})=U(2^{4\cdot 376})=U[(2^4)^{376}]
  • U(2^4)=6\Rightarrow U[(2^4)^{376}]=U(6^{376})=6
  • Am obținut astfel:  U(a) = U(2^{2003}) – U(2^{1504})=8-6=2
  • Știm că ultima cifră a unui pătrat perfect nu poate fi 2 \Rightarrow  a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002} nu este pătrat perfect

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

 

Exerciții rezolvate la Ultima Cifră a unui Număr Natural

“Zadarnic vei vrea să-l înveți

pe cel ce nu e dornic să fie învățat, dacă nu-l vei fi făcut mai întâi dornic de a învăța.”

Comenius

Dragul meu părinte bine te-am regăsit. În articolul anterior am vorbit despre cum putem afla Ultima cifră a unui număr natural. Azi îți propun câteva exemple de exerciții rezolvate și explicate pas cu pas la această lecție dificilă pentru clasa a V-a.

(mai mult…)

Exercițiul 1:

Calculați ultima cifră a numerelor:

a)  2^{1299}; \ \ \ 2^{2020};

b)  21^{324}; \ \ \ 19^{257}; \ \ \ 17^{2020};

Rezolvare:

  • a) Pentru a calcula  2^{1299}; mai întâi privim atent puterile numărului 2.

Observăm că ultima cifră se repetă din 4 în 4.

Împărțim puterea 1299 la 4 și obținem:  1299 \ \ \ : \ \ \ 4=324 \ \ \ rest \ \ \ 3 \Rightarrow 1299=4\cdot 324 +3

Atunci putem scrie că: U(2^{1299})=U(2^{4\cdot 324 +3})=U[(2^{4})^{ 324} \cdot 2^3)] =U[(2^{4})^{ 324}] \ \ \ \cdot \ \ \ U( 2^3)

Consultăm tabelul cu puterile lui 2 și observăm că 2^{4} are ultima cifră 6 astfel obținem:

 U[(2^{4})^{ 324}] \ \ \ \cdot \ \ \ U( 2^3)=U(6^{ 324}) \ \ \ \cdot \ \ \ 8

Consultăm tabelul cu puterile lui 6.

Observăm că  6 ridicat la orice putere are ultima cifră 6 astfel obținem:

U(6^{ 324}) \ \ \ \cdot \ \ \ 8=U(6 \cdot 8)=U(48)=8

Am obținut că U(2^{ 1299})=8

Calculăm acum pentru U(2^{ 2020})=?

Avem mai sus tabelul cu puterile lui 2 și am observat că ultima cifră se repetă din 4 în 4.

Împărțim puterea 2020 la 4 și obținem: 2020 \ \ \ : \ \ \ 4=505 \ \ \ rest \ \ \ 0

Atunci putem scrie că: U(2^{2020})=U(2^{4\cdot 505 +0})=U[(2^{4})^{ 505} \cdot 2^0)] .

Știm că orice număr ridicat la puterea 0 este egal cu 1 \Rightarrow 2^{0}=1.

Am văzut mai sus că  2^{4} are ultima cifră 6 astfel obținem:

=U[(6^{ 505} \cdot 1)]=U(6 \cdot1)=6 .

Am obținut că: U(2^{ 2020}) = 6

b)   21^{324}; \ \ \ 19^{257}; \ \ \ 17^{2020};

  • Calculăm  U(21^{ 324}) = ?

 U(21^{ 324}) = U(1^{ 324})

Știm că 1 ridicat la orice putere este egal cu 1.  \Rightarrow U(1^{ 324}) = 1

  • Calculăm  U(19 ^{ 257}) = ?

 U(19 ^{ 257}) = U(9^{ 257}) =

Calculăm puterile lui 9.

Observăm că ultima cifră se repetă din 2 în 2.

Împărțim 257 la 2 și obținem: 257 \ \ \ : \ \ \ 2 = 128 \ \ \ rest \ \ \ 1

Atunci putem scrie că: U(9^ {257})= U(9^ {2\cdot128+1})= U(9^ {2})^{128} \cdot U(9^1)=

Consultând tabelul cu puterile lui 9 observăm că 9^2 are ultima cifră egală cu 1, astfel obținem:  U(9^ {2})^{128} \cdot U(9^1)= U(1^{128})\ \ \ \cdot \ \ \ 9=U(1 \cdot 9 )=9

Am obținut că U(19^{ 257}) = 9

  • Calculăm U(17^{ 2020}) = ?

U(17^{ 2020}) = U(7^{ 2020}) = ?

Calculăm puterile lui 7.

Observăm că ultima cifră se repetă din 4 în 4.

Împărțim 2020 la 4 și obținem: 2020 \ \ \ : \ \ \ 4 = 505 \ \ \ rest \ \ \ 0

Atunci putem scrie că:  U(7^{ 2020}) = U[(7^4)^{ 505}]

Consultând tabelul cu puterile lui 7 observăm că 7^4 are ultima cifră egală cu 1, astfel obținem:

U[(7^4)^{ 505}] = U(1^{505})=1

Am obținut că U(17^{ 2020})=1

Învăț pentru mine

Dragul meu părinte își propun câteva exerciții pe care să le rezolve copilul tău urmărind exemplele explicate și rezolvate mai sus!

Determină ultima cifră a numerelor:

a)  2^{99}; \ \ \ 2^{2018}; \ \ \ 2^{2024};

b)  41^{2017}; \ \ \ 125^{2017}; \ \ \ 2017^{2018};

c)  4^{1999}; \ \ \ 129^{2022}; \ \ \ 2016^{2018};

 

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

Ultima cifră a unui număr natural

 

Cu cât un copil a văzut și a înțeles mai mult, cu atât vrea el să vadă și să înțeleagă mai mult.” 

Jean Piaget

Dragul meu părinte bine te-am regăsit! În articolul anterior am vorbit despre “Pătratul unui număr natural”. Astăzi îți propun o nouă lecție care mă ajută să demonstrez dacă un număr natural este pătrat perfect sau nu: “Ultima cifră a unui număr natural”.

(mai mult…)

Șirul de numere: 0, 1, 4, 9, 16, 25, 36, …………… este șirul 0 ^{2}, 1 ^{2}, 2 ^{2}, 3 ^{2}, 4 ^{2}, 5 ^{2}, 6 ^{2}, .............., n ^{2}, .......... și se numește șirul numerelor naturale pătrate perfecte.

Fie x un număr natural. Notăm cu U(x) ultima cifră a numărului x.

Să privim cu atenție următorul tabel:

Observăm ca ultima cifră a unui pătrat perfect poate fi: 0, 1, 4, 5, 6 \ \ sau \ \ \ 9 .

Observație:

  • Dacă ultima cifră a unui număr natural este 2, 3, 7\ \ sau \ \ \ 8 atunci acel număr natural nu poate fi pătrat perfect.
  • Dacă ultima cifră a unui număr natural este 0, 1, 4, 5, 6 \ \ sau \ \ \ 9 acel număr natural este pătrat perfect.

Pentru a afla ultima cifră a unui număr vor avea în vedere următoarele reguli de calcul:

  • U(x+y)=U(U(x)+U(y))
  • U(x\cdot y)=U(U(x)\cdot U(y))
  • U(x^n)=U[(U(x))^n]

Exemple:

  • U(79 +24)=U(U(79) +U(24))=U(9+4)=U(13)=3
  • U(98 \cdot 82)=U(U(98) \cdot U(82))=U(8 \cdot 2)=U(16)=6
  • U(36 ^{89})=U(U(36) ^{89})=U(6^ ^{89})=6

Să analizăm atent următorul tabel:

Puterile numerelor naturale

Observație:

  • Numerele 1,5 \ \ \ si \ \ \ 6 ridicate la orice putere îmi dă ultima cifră 1,5 \ \ \ si \ \ \ respectiv \ \ \ 6 .
  • La numerele 2,3, 7 \ \ \ si \ \ \ 8 se repetă ultima cifră din patru în patru puteri. La aceste numere ca să pot afla ultima cifră împart exponentul la 4, iar ultima cifră va fi egală cu ultima cifră a numărului 2,3,7 sau respectiv 8  ridicat la puterea egală cu restul împărțirii.
  • Iar la numerele 4 \ \ \ si \ \ \ 9 se repetă ultima cifră din două în două puteri.La aceste numere ca să pot afla ultima cifră împart exponentul la 2, iar ultima cifră va fi egală cu ultima cifră a numărului 4 sau respectiv 9 ridicat la puterea egală cu restul împărțirii.

 

Exemple:

Determinați ultima cifră a numerelor:

  •  2^{{2017}}\ \ \ si \ \ 4^{{2017}}

Rezolvare: 

  • Calculăm pentru  2^{{2017}}. Scriem puterile lui 2.

Puterile lui 2

Observăm ca ultima cifră se repetă din 4 în 4.

Împărțim 2017 la 4

Obținem astfel 2017\ \ \ : \ \ \ 4 =504 \ \ \ rest \ \ \ 1

Rezultă că U(2^{2017})= U[(2^4)^{2017} \cdot 2^1]=U(2^4)^{2017}\cdot U(2^1)

Privind puterile lui 2 observăm că ultima cifră a lui 2^4 este 6, iar ultima cifră a lui 2^1 este 2.

Astfel obținem că U(6^{2017})\cdot 2= U(6 \cdot 2) = U(12) = 2

  • Observație: Am precizat mai sus ca 6 la orice putere are ultima cifră egala tot cu 6.

 

  • Calculăm ultima cifră pentru numărul U(4^{2017})=

Scriem puterile lui 4.

Observăm că la numărul 4 ultima cifră se repetă din 2 în 2.

Împărțim 2017 la 2 :

 

Obținem astfel: 2017 \ \ \ :\ \ \ 2 = 1008 \ \ \ rest\ \ \ 1

Rezultă că: U(4^{2017})=U[(4^2)^{1008} \cdot 4^1]=U[(4^2)^{1008}] \cdot U(4^1)=

Ultima cifră a lui 4^2 este 6 iar ultima cifră a lui 4^1 este 4. Înlocuiesc și obțin:

U(6^{1008})\cdot U(4^1)= U(6 \cdot 4)= U(24)= 4.

Te invit să exersezi și tu 3 exerciții identice pe care ți le propun în rubrica:

Învăț pentru viitorul meu:

Determină ultima cifră a numerelor:

9^{2017}; \ \ \ 3^{2019} ;\ \ \ 8^{2021}.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un grad de dificultate ridicat rezolvate și explicate pas cu pas te invit alături de mine in Clubul de Matematică “Math More Easy”  sau accesează link-ul de mai jos:http://mathmoreeasy.ro/exercitii-rezolvate-la-ultima-cifra-a-unui-numar-natural/

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și  pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai  nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor! 

REGULI DE CALCUL CU PUTERI

clasa a VI-aDragul meu părinte, copilul tău a învăţat prima oară această lecţie: „ Reguli de calcul cu puteri” în anul anterior, în clasa a V-a.

În acest an, în clasa a VI-a această lecţie este reamintită, deoarece noţiunile învăţate în această lecţie îi sunt utile copilului tău la următoarea lecţie: „ Criterii de diviozibilitate”.

(mai mult…)

Dar să vedem, dragul meu părinte, ce ar trebui să reţină copilul tău la această lecţie: „Reguli de calcul cu puteri”:

  • Definiţie:

    Fie „a” şi „n” , două numere naturale, cu n ≥ 2.Produsul a „n” factori egali cu „a” se numeşte puterea a n-a a numărului „a” şi se notează :

  • Se scrie:      a^{n}

  • Se citeşte: „ a la puterea n”.

  • a” se numeşte bază.

  • n” se numeşte exponent.

  • Exemplu:

                    a · a = a²

a · a · a= a³

a · a· a· …………….· a =   a^{n}

  • Excepţie:   a^{1}= a şi  a^{0} = 1
  • Orice număr la puterea 1 este egal cu el însuşi.
  • Orice număr la puterea 0 este egal cu 1.

Dar să vedem, dragul meu părinte, care sunt regulile cu puteri:

  • Înmulţirea puterilor cu aceeaşi bază:

  •  a^{m}\cdot a ^{n}=a^{m+n}
  • – se scrie baza şi se adună exponenţii

  • Împărţirea puterilor cu aceeaşi bază:

  •  a^{m}\div a ^{n}=a^{m-n}
  • se scrie baza şi se scad exponenţii
  • Puterea unei puteri:

  • <br /><br /><br /><br /> (a^{m}) ^{n}=a^{m\cdot n}
  • -se scrie baza şi se înmulţesc exponenţii
  • Puterea unui produs:

  • <br /><br /><br /><br /> (a\cdot b) ^{n}=a^{n}\cdot b^{n}
  • Puterea unui cât:

  •  (a\div b) ^{n}=a^{n}\div b^{n}

Dragul meu părinte, la această lecţie, copilul tău trebuie să reţină şi prioritatea pe care o are ridicarea la putere în calcul.

  • Ridicarea la putere este o înmulţire repetată.

  • Exponentul arată de câte ori se repetă produsul prin care se calculează puterea.

  • Ridicarea la putere este o operaţie de ordinul III.

  • Dacă într-un exerciţiu nu există paranteze, atunci se efectuează întâi redicările la putere, apoi înmulţirile şi împărţirile, iar la final, adunările li scăderile.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un grad de dificultate ridicat rezolvate și explicate pas cu pas te invit alături de mine în Clubul de Matematică “Math More Easy” sau accesează link-ul de mai jos: http://mathmoreeasy.ro/exercitii-rezolvate-la-reguli-de-calcul-cu-puteri/

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!