Posts Tagged ‘numere intregi’

Model Rezolvat Teza clasa a VIII-a Semestrul II

Şcoala trebuie să te înveţe a fi propriul tău dascăl, cel mai bun şi cel mai aspru.

Nicolae Iorga

Dragul meu părinte bine te-am regăsit!  A început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(more…)

Model Propus Teza clasa a VIII-a Semestrul II

 

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului: \sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  este:……………………………

Rezolvare:

\sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  =\sqrt{2\cdot 3}-3\sqrt{6} =\sqrt{6}-3\sqrt{6} =-2\sqrt{6}

Exercițiul 2 (1 punct):

Simplificând cu x^2+1  raportul : \frac{x^4-1}{{x^2+1}} se obține:……………………………….

Rezolvare:

Aplicăm formulele de calcul prescurtat pentru expresia: x^4-1 și se obține:

\frac{x^4-1}{{x^2+1}}=\frac{(x^2)^2-1^2}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}^{(x^2+1}=\frac{x^2-1}{1}=x^2-1.

Exercițiul 3 (1 punct):

Soluția ecuației: x-\sqrt{3}=0 este: ………………………………….

Rezolvare:

x-\sqrt{3}=0 \Rightarrow x-\sqrt{3}=0 /-\sqrt{3} \Rightarrow x=-\sqrt{3}

Exercițiul 4 (1 punct):

Se considera funcția f : R \to R  ,  f (x)=x-3. Valoarea funcției în punctul x=3 este egală cu: …………………….

Rezolvare:

Pentru a afla valoarea functiei în punctul x=3 calculăm  f (3) (îl înlocuim pe x cu 3 în funcție.

 f (3)=3-3=0

Exercițiul 5 (1punct):

Volumul cubului cu lungimea diagonalei de \sqrt{12}cm este: ……………………

Rezolvare:

Știm că diagonala cubului este egală cu:

 d=l\sqrt{3}\Rightarrow  l\sqrt{3}=\sqrt{12}\Rightarrow   l\sqrt{3}=\sqrt{4\cdot3}\Rightarrow   l\sqrt{3}=2\sqr{3}\Rightarrow  l\sqrt{3}=2\sqr{3} / :\sqr{3} \Rightarrow   l=2 cm

Știm că volumul cubului are formula:  V= l^3  ; înlocuim latura cu 2 cm și obținem:

 V= l^3 \Rightarrow  V= (2cm)^3 \Rightarrow V= 8cm^3 .

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete.

Exercițiul 1 (1,5 puncte):

Se consideră expresia: E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}.

a) Determina’i valorile reale ale lui x pentru care expresia E(x) este bine definită.

b) Demonstrați că E(x)=1,  (\forall ) x \in R \setminus \left \{ -2; 1\right \}.

Rezolvare:

E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

  • a)Punem condițiile de existență ale fracțiilor (numitorul fracției trebuie să fie diferit de 0):

 x-2 \neq 0 \Rightarrow x \neq 2

 3x-1 \neq 0 \Rightarrow 3x \neq 1 \Rightarrow 3x \neq \frac{1}{{3}}

 \Rightarrow x \in R\setminus \left \{ \frac{1}{{3}} , 2 \right \}

  • E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2

Înmulțim cu a doua fracție răsturnată.

  •  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

Aducem la același numitor în paranteză.

  •  \Rightarrow E(x)=(_{{}}^{x-2)}\textrm{1}- _{{}}^{x-2)}\textrm{x}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}    \Rightarrow E(x)=(\frac{x-2}{x-2}- \frac{x(x-2)}{x-2}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=(\frac{x-2-x^2+2x+x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=\frac{3x-1}{x-2}\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=1

Exercițiul 2 (1,5 puncte):

Se consideră funcția  f : R \to R , f(x)= -x+2 .

a) Calculați media aritmetică a numerelor a=f(0)  și b=f(2) .

b) Reprezentați grafic funcția f(x).

c) Calculați aria triunghiului determinat de graficul funcției f(x) și axele de coordonate OX și OY.

Rezolvare:

  • a) f(0)=0+2=2

f(2)=-2+2=0

 M_{a}=\frac{f(0)+f(2)}{{2}} \Rightarrow  M_{a}=\frac{2+0}{{2}} \Rightarrow  M_{a}=\frac{2}{{2}} \Rightarrow M_{a}= 1

  • b) Pentru a reprezenta grafic funcția f(x) facem intersecția cu cele două axe OX și OY
  • \cap OX : y=0 \Rightarrow f(x)=0   \Rightarrow -x+2=0   \Rightarrow -x=-2  \Rightarrow x=2  \Rightarrow A(2;0)
  • \cap OY:   x=0 \Rightarrow f(0)=0+2=2\Rightarrow B(0;2)

Exercițiul 3 (1,5 puncte):

O piramidă triunghiulară regulată VABC are latura AB=4\sqrt{6} cm și VO=2\sqrt{6} cm, unde O este centrul bazei ABC. Calculați:

a) aria laterală a piramidei;

b) distanța de la O la planul (VBC)

c) distanța de la punctul A la planul (VBC)

d) măsura unghiului format de planele (VBC) și (ABC).

Rezolvare:

Scriem datele problemei și apoi le analizăm:

Realizăm și desenul:

  • a)  Știm formula arie laterale:  A_{l}= \frac{P_{b}\cdot a_{p}}{2}.

Pentru a calcula A_{{l}} trebuie să aflăm mai întâi apotema piramidei a_{{p}}=VM.

VABC este piramidă triunghiulară regulată  \Rightarrow \bigtriangleup ABC  echilateral   \Rightarrow  AM înălțimea \bigtriangleup ABC  \Rightarrow AM=\frac{l\sqrt{3}}{{2}}  \Rightarrow AM=\frac{AB\sqrt{3}}{{2}}   \Rightarrow AM=\frac{4\sqrt{6}\cdot \sqrt{3}}{{2}}  \Rightarrow AM=\frac{4\sqrt{6\cdot 3}}{{2}}    \Rightarrow AM=\frac{4\cdot 3\sqrt{2}}{{2}}   \Rightarrow AM=\frac{12\sqrt{2}}{{2}}   \Rightarrow AM=6\sqrt{2} cm

Știm că OM= \frac{1}{{3}}\cdot AM \Rightarrow OM= \frac{1}{{3}}\cdot 6\sqrt{2} cm \Rightarrow OM= \frac{6\sqrt{2}}{{3}} cm \Rightarrow OM= 2\sqrt{2}} cm.

Aplicăm Teorema lui Pitagora în \bigtriangleup VOM pentru a afla apotema VM.

\bigtriangleup VOM((\widehat{VOM})=90^\circ )\RightarrowT.P \Rightarrow VM^2=VO^2+OM^2  \Rightarrow VM^2= (2\sqrt{6} cm)^2 + (2\sqrt{2} cm)^2

\Rightarrow VM^2= 2^2\cdot (\sqrt{6})^2 cm^2 + 2^2\cdot (\sqrt{2})^2 cm^2

\Rightarrow VM^2= 4\cdot 6 cm^2 + 4\cdot 2 cm^2

\Rightarrow VM^2= 24 cm^2 + 8 cm^2

\Rightarrow VM^2= 32 cm^2   \Rightarrow VM= \sqrt{32 cm^2}  \Rightarrow VM= \sqrt{16 \cdot2} cm

 \Rightarrow VM= 4\sqrt{2} cm

Aflăm și perimetrul bazei. Pentru ca \bigtriangleup ABC  este echilateral  \Rightarrow P_{b}= 3 \cdot l  \Rightarrow P_{b}= 3 \cdot AB

 \Rightarrow P_{b}= 3 \cdot 4\sqrt{6} cm  \Rightarrow P_{b}= 12\sqrt{6} cm.

Înlocuim în aria laterală și obținem:

 A_{l}= \frac{P_{b}\cdot a_{p}}{2}  \Rightarrow A_{l}= \frac{12\sqrt{6} cm\cdot 4\sqrt{2} cm}{2}   \Rightarrow A_{l}= \frac{12 \cdot 4 \sqrt{6\cdot 2} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{12} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{4 \cdot 3} cm^2}{2}  \Rightarrow A_{l}= \frac{48\cdot 2 \sqrt{ 3} cm^2}{2}  \Rightarrow A_{l}= 48\sqrt{ 3} cm^2

  • b) d(O; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]  și  \left \{ O \right \} \in AM\Rightarrow \left [ OM \right ]\perp \left [ BC \right ]

  • OM=2\sqrt{2}cm

 

  • c) d(A; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]

  • d) m(\widehat{ (VOM),(ABC)} )=?

\bigtriangleup VOM((\widehat{VOM})=90^\circ ) : sin (\widehat{VMO})= \frac{VO}{{VM}} =\frac{2\sqrt{6}cm}{4\sqrt{2}cm} =\frac{\sqrt{3}}{2}   \Rightarrow m((\widehat{VMO})= 60^\circ)  \Rightarrow m((\widehat{VMA})= 60^\circ).

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

Model Rezolvat Teza clasa a VII-a Semestrul II

Încearcă să fii un om de valoare și nu neapărat un om de succes. – Albert Einstein

Dragul meu părinte bine te-am regăsit!  De azi a început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(more…)

Model-Teza-clasa-a-VII-a-Semestrul-II

 

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului: \sqrt{20}+\sqrt{45}-3\sqrt{5}  este:……………………………

Rezolvare:

\sqrt{20}+\sqrt{45}-3\sqrt{5}= \sqrt{4\cdot 5}+\sqrt{9\cdot 5}-3\sqrt{5}= 2\sqrt{5}+3\sqrt{5}-3\sqrt{5}=2\sqrt{5}

Exercițiul 2 (0,5 puncte):

Raționalizând fracția: \frac{4}{\sqrt{5}-1}  obținem:…………………

Rezolvare:

_{{}}^{\sqrt{5}+1)}\textrm{\frac{4}{\sqrt{5}-1}}={\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}}={\frac{4(\sqrt{5}+1)}{(\sqrt{5})^2-1^2}}= {\frac{4(\sqrt{5}+1)}{5-1}}={\frac{4(\sqrt{5}+1)}{4}}=\sqrt{5}+1

Exercițiul 3 (1 punct):

Rezultatul calculului: (2a+1)^2 - (2a)^2= este………………………

Rezolvare:

(2a+1)^2 - (2a)^2= (2a)^2+2\cdot2a\cdot1+(1)^2 - (2a)^2= 4a^2+4a+1 -4a^2= 4a+1

Exercițiul 4 (1 punct):

Dacă x+\frac{1}{{x}}=4 atunci x^2+\frac{1}{{x^2}}  este egal cu………………….

Rezolvare:

Pornim de la relația x+\frac{1}{{x}}=4 și o ridicăm la pătrat iar relația x+\frac{1}{{x}} o ridicăm la pătrat cu formula de calcul prescurtat :(a+b)^2=a^2+2\cdot a\cdot b+b^2. Astfel obținem:

x+\frac{1}{{x}}=4 /^2 \Rightarrow(x+\frac{1}{{x}})^2=4^2 \Rightarrow  x^2+2\cdot x \cdot \frac{1}{{x}} +(\frac{1}{{x}})^2=16 \Rightarrow   x^2+(\frac{1}{{x}})^2 +2=16 /-2 \Rightarrow  x^2+(\frac{1}{{x}})^2 =16-2 \Rightarrow  x^2+(\frac{1}{{x}})^2 =14

Exercițiul 5 (0,5puncte):

Soluția ecuației x+\sqrt{2}=0 este: …………………….

Rezolvare:

 x+\sqrt{2}=0 /-\sqrt{2} \Rightarrow  x=-\sqrt{2}

Exercițiul 6 (0,5puncte):

 sin 45^\circ  este egal cu …………..

Rezolvare:

 sin 45^\circ =\frac{\sqrt{2}}{2}

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete:

Exercițiul 1:(1,5 puncte):

Media geometrică a numerelor:  a=\left \| 2\cdot\sqrt{6} - 6\cdot\sqrt{2} \right \| și  b= \sqrt{72} + \sqrt{24} .

Rezolvare:

Știm că M_{{g}} =\sqrt{a\cdot b} .

Pentru a calcula \sqrt{a\cdot b} trebuie să aducem a și b la o formă mai simplă.

Pentru a aduce numărul “a” la o formă mai simplă trebuie să comparăm  2\cdot\sqrt{6}  cu  6\cdot\sqrt{2}  să aflăm dacă numărul a este un număr pozitiv sau negativ.

Pentru a compara  2\cdot\sqrt{6}  cu 6\cdot\sqrt{2}  trebuie să ridicăm la pătrat pentru a scăpa de redicali.

 2\cdot\sqrt{6} \sqcup 6\cdot\sqrt{2} /^2 \Rightarrow   2^2 \cdot6 \sqcup 6^2 \cdot2 \Rightarrow 4 \cdot6 \sqcup 36 \cdot2  \Rightarrow  24 \lt 72 \Rightarrow 2\cdot\sqrt{6} \lt 6\cdot\sqrt{2} \Rightarrow  numărul “a” este un număr negativ \Rightarrow  a=\left \| 2\cdot\sqrt{6} - 6\cdot\sqrt{2} \right \|=-2\cdot\sqrt{6}+6\cdot\sqrt{2}=6\cdot\sqrt{2}- 2\cdot\sqrt{6}

Pentru a aduce numărul “b” la o formă mai simplă trebuie să scoatem de sub radical:

 b= \sqrt{72} + \sqrt{24}   = \sqrt{2\cdot 36} + \sqrt{4\cdot 6}   =6 \sqrt{2} + 2\sqrt{ 6}

În concluzie  M_{{g}} =\sqrt{a\cdot b}  =\sqrt{(6 \sqrt{2} - 2\sqrt{ 6})\cdot(6 \sqrt{2} + 2\sqrt{ 6} )}  =\sqrt{(6 \sqrt{2})^2- (2\sqrt{ 6} )^2}  =\sqrt{36\cdot 2- 4\cdot 6}}  =\sqrt{72- 24}}  =\sqrt{48}} =\sqrt{16\cdot3 }}  =4\sqrt{3 }}.

Exercițiul 2:(1,5 puncte):

Rezolvați ecuația:  (x-2)^2-(x-1)(3-2x)=3(x+3)(x-3)+25

Rezolvare: Aplicăm formulele de calcul prescurtat și obținem:

 (x-2)^2-(x-1)(3-2x)=3(x+3)(x-3)+25

 (x)^2-2\cdot x \cdot 2+(2)^2-(x\cdot 3-x \cdot2x-1\cdot3+1\cdot2x)=3(x^2-3^2)+25

x^2-4x+4-3x +2x^2+3-2x=3(x^2-9)+25

3x^2-9x+7=3x^2-27+25

3x^2-9x+7=3x^2-2

3x^2-9x-3x^2 = -2-7

-9x= -9

-9x= -9 /:(-9)  \Rightarrow x= 1

Exercițiul 3:(1,5 puncte):

În trapezul ABCD cu  AB \parallel CD, m(\widehat{A})= m(\widehat{D})= 90^{\circ}, se consideră BE\perp CD, unde  E\in(CD). Știind că AB=6cm,CD=10cm și  BD \perp BC , determinați:

a) lungimea înălțimii BE.

b) perimetrul trapezului ABCD.

c) aria trapezului ABCD, rotunjită la cel mai apropiat număr întreg.

Rezolvare:

 

Scriem datele problemei după care le analizăm.

Trasăm desenul respectând datele problemei.

Trapez dreptunghic

  • a) Observăm că triunghiul este dreptunghic în unghiul B și putem aplica teorema înălțimii [ BE ] .

Mai știm Că  \left [ AB \right ] \equiv \left [ DE \right ] \Rightarrow \left [ EC \right ]=4 cm

\bigtriangleup DBC  (\widehat{DBC})= 90^{\circ}  \Rightarrow T.Î  \Rightarrow  BE^2=DE \cdot EC  \Rightarrow BE^2=6 cm \cdot 4 cm \Rightarrow BE^2= 24 cm^2  \Rightarrow BE= \sqrt{24 cm^2} \Rightarrow BE= \sqrt{4\cdot 6 } cm  \Rightarrow BE= 2\sqrt{6 } cm

Știm că  \left [ BE \right ] \equiv \left [ AD \right ] \Rightarrow  AD= 2\sqrt{6 } cm

  • b) Pentru a calcula perimetrul trapezului trebuie să aflam și latura \left [ BC \right ].

Știm că triunghiul \bigtriangleup BEC este dreptunghic în unghiul (\widehat{BEC})= 90^{\circ} astfel putem aplica Teorema lui Pitagora pentru a afla lungimea laturii \left [ BC \right ].

\bigtriangleup BEC (\widehat{BEC})= 90^{\circ} \Rightarrow T.P. \Rightarrow BC^2=BE^2+EC^2  \Rightarrow BC^2=(2\sqrt{6}cm)^2+(4cm)^2   \Rightarrow BC^2=2^2\cdot6} cm^2+16cm^2

 \Rightarrow BC^2=4\cdot6} cm^2+16cm^2   \Rightarrow BC^2=24 cm^2+16cm^2   \Rightarrow BC^2=40 cm^2

 \ \Rightarrow BC=\sqrt{40cm ^2}  \Rightarrow BC=\sqrt{4 \cdot 10cm ^2}  \Rightarrow BC=2\sqrt{ 10} cm

P_{{ABCD}}= AB+BC+CD+AD \Rightarrow P_{{ABCD}}= 6 cm+2\sqrt{ 10} cm+10 cm+2\sqrt{ 6} cm

\Rightarrow P_{{ABCD}}= 16 cm+2(\sqrt{ 10} +\sqrt{ 6}) cm.

  • c)  A_{ABCD}= \frac{(B+b)\cdot h}{{2}}\Rightarrow  A_{ABCD}= \frac{(AB+DC)\cdot AD}{{2}}\Rightarrow  A_{ABCD}= \frac{(6 cm+10 cm)\cdot 2\sqrt{6}cm }{{2}}\Rightarrow   A_{ABCD}= \frac{16cm\cdot 2\sqrt{6}cm }{{2}}\Rightarrow  A_{ABCD}= \frac{32\sqrt{6}cm^2 }{{2}}\Rightarrow   A_{ABCD}= 16\sqrt{6}cm^2

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la Formulele de Calcul Prescurtat

“Invata tot ce poti, in orice moment disponibil, de la oricine si intotdeuna va veni o vreme cand te vei simti recompensat pentru ceea ce ai invatat.”
Sarah Caldwel

Bine te-am regăsit dragul meu părinte. Azi te invit să efectuăm  împreună câteva exerciții la formulele de calcul prescurtat.

(more…)

EXERCIŢIUL 1: Efectuați, folosind formula de calcul prescurtat: 

  • a)       (2x+1) ^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=2x şi b=+1. Aplicând formula obţinem:

 (2x+1)^{2}=(2x)^{2}+2\cdot 2x\cdot (+1)+(+1)^{2}

 (2x+1)^{2}=4x^{2}+4 x+1

  •     b)  (4x - 7y)^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=4x şi b=7y . Aplicând formula obţinem:

 (4x - 7y)^{2}=(4x)^{2}-2\cdot 4x\cdot 7y +(7y)^{2}

 

 (4x - 7y)^{2}=16x^{2}-56xy +49y^{2}

  • c)  (2x+\sqrt{3})^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=2x şi b=\sqrt{3}. Aplicând formula obţinem:

 (2x+\sqrt{3})^{2}=(2x)^{2}+2\cdot 2x\cdot\sqrt{3}+(\sqrt{3})^{2}

 (2x+\sqrt{3})^{2}=4x^{2}+4\sqrt{3} x+3

  • d)  (5x-\sqrt{2})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=5x şi b=\sqrt{2}. Aplicând formula obţinem:

 (5x-\sqrt{2})^{2}=(5x)^{2}-2\cdot 5x\cdot \sqrt{2}+(\sqrt{2})^{2}

 (5x-\sqrt{2})^{2}=25x^{2}-10 \sqrt{2}x+2

  • e) (\frac{2}{3}x+\frac{1}{3})^{2}=

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru:  a=\frac{2}{3}x şi  b=\frac{1}{3} . Aplicând formula obţinem:

 (\frac{2}{3}x+\frac{1}{3})^{2}=(\frac{2}{3}x)^{2}+2\cdot \frac{2}{3}x\cdot \frac{1}{3}+(\frac{1}{3})^{2}

 (\frac{2}{3}x+\frac{1}{3})^{2}=\frac{4}{9}x^{2}+ \frac{4}{9}x +\frac{1}{9}

  • f) (\frac{2}{7}x-\frac{7}{4})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru:  a=\frac{2}{7}x şi  b=\frac{7}{4}. Aplicând formula obţinem:

 (\frac{2}{7}x-\frac{7}{4})^{2}=(\frac{2}{7}x)^{2}-2\cdot \frac{2}{7}x\cdot \frac{7}{4}+(\frac{7}{4})^{2}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-\frac{28}{28}x+\frac{49}{16}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-x+\frac{49}{16}

f)  (x+9)(x-9)

Aplicăm formula de calcul prescurtat:  (a+b)(a-b)= a^{2}-b^{2}

În cazul exerciţiului  nostru: a=x şi b=9. Aplicând formula obţinem:

 (x+9)(x-9)= x^{2}-9^{2}

 (x+9)(x-9)= x^{2}-81

EXERCIŢIUL 2:  Efectuaşi calculele :

  •  a)  (x+2)^{2}+ (x-1)^{2}

Aplicând formulele de calcul prescurtat obţinem:

 (x+2)^{2}+ (x-1)^{2}=x^{2}+2\cdot x\cdot 2+ 2^{2}+x^{2}-2\cdot x\cdot 1+1^{2}= aplicatii-formule-de-calcul-prescurtat-ex-2

  •  b) (2\sqrt{2}-3\sqrt{3}) ^{2}-2(\sqrt{3}+3\sqrt{2}) ^{2}

Aplicând formulele de calcul prescurtat obţinem:

 [(2\sqrt{2})^{2}-2\cdot 2\sqrt{2}\cdot 3\sqrt{3}+(3\sqrt{3})^{2}]-2[(\sqrt{3})^{2}+2\cdot \sqrt{3}\cdot 3\sqrt{2}+(3\sqrt{2})^{2}] =

 (4\cdot 2-12\sqrt{2\cdot3}+9\cdot 3)-2(3+6 \sqrt{2\cdot3}+9\cdot2)=

 8-12\sqrt{6}+27-6+12 \sqrt{6}-36=

 8+27-6+12 -36=5

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Criterii de divizibilitate

Clasa a V-aBine te-am regăsit dragul meu părinte! În articolul anterior   ţi-am prezentat lecţia “Divizor.Multiplu”. Am învăţat împreună care sunt divizorii unui număr, care sunt multiplii unui număr natural şi cum arătăm dacă un număr natural divide sau nu un alt număr natural. Astăzi voi continua cu o noua lecţie la acest capitol “Criterii de divizibilitate” .

(more…)

Criteriul de divizibilitate cu 2

  •  Un număr natural este divizibil cu 2 dacă şi numai dacă ultima cifră a numărului este o cifră pară.
  • numar-divizibil-cu-2

Criteriul de divizibilitate cu 5

  •  Un număr natural este divizibil cu 5 dacă şi numai dacă ultima cifră a numărului este 0 sau 5
  • numar-divizibil-cu-5

Criteriul de divizibilitate cu 10.

  • Un număr natural este divizibil cu 10 dacă şi numai dacă ultima cifră a numărului este 0.
  • numar-divizibil-cu-10

Criteriul de divizibilitate cu 100(1000, 10000, etc).

  • Un număr natural este divizibil cu 100(respectiv 1000, 10000, etc) dacă şi numai dacă ultimile două )respectiv trei, patru, etc) cifre ale numărului sunt egale cu 0.
  • numar-divizibil-cu-100

 

Criteriul de divizibilitate cu 3 (respectiv 9).

  • Un număr natural este divizibil cu 3 (respectiv 9) dacă şi numai dacă suma cifrelor sale se divide cu 3 (respectiv 9).
  • numar-divizibil-cu-3

Criteriul de divizibilitate cu 4.

  • Un număr natural este divizibil cu 4  dacă şi numai dacă numărul format din ultimele două cifre se divide cu 4
  • numar-divizibil-cu-4

Criteriul de divizibilitate cu 25.

  • Un număr natural este divizibil cu 25  dacă şi numai dacă  ultimele două cifre ale sale sunt 00, 25, 50 sau 75.
  • numar-divizibil-cu-25

    Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

    De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

    https://www.facebook.com/MathMoreEasy.

    Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

    Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la numere reale!

Clasa a VIII-aBine te-am regăsit dragul meu părinte! În articolul pe care l-am publicat luni pe blog am rezolvat trei exerciţii la lecţia mulţimea numerelor reale. Astăzi revin cu un nou articol în care mai explic pas cu pas doua exemple de exerciţii cu un grad de dificultate mai ridicat pentru a veni în ajutorul tău şi al copilului tău.

 

(more…)

EXERCIŢIUL 1: Determinaţi elementele mulţimilor:

A=\left \{ x\epsilon N|  \frac{15}{2x+1}\epsilon N \} şi B=\left \{ x\epsilon Z| \frac{3x+9}{2x-3}\epsilon Z \}.

Rezolvare: Să aflăm întâi mulţimea A.

A=\left \{ x\epsilon N|  \frac{15}{2x+1}\epsilon N \}

Exerciţiul îmi cere să găsesc toate valorile numere naturale care îndeplinesc condiţia: \frac{15}{2x+1}\epsilon N \Rightarrow2x+1 \epsilon D_{{15}}.

Numitorul 2x+1 trebuie să aparţină mulţimii divizorilor lui 15, deoarece împărţirea 15 la 2x+1 trebuie să fie o împărţire exactă, astfel încât rezultatul să aparţină mulţimii numerelor naturale.

 D_{{15}}=\left \{ 1,3,5,15 \right \}

2x+1=1 | -1 \Rightarrow 2x=1-1 \Rightarrow2x=0| :2 \Rightarrow x=0

2x+1=3 | -1 \Rightarrow 2x=3 -1 \Rightarrow 2x=2 | :2 \Rightarrow x=1

2x+1=5 | -1 \Rightarrow 2x=5 -1 \Rightarrow 2x=4 | :2 \Rightarrow x=2

2x+1=15 | -1 \Rightarrow 2x=15 -1 \Rightarrow 2x=14 | :2 \Rightarrow x=7

Soluţie :x \epsilon \left \{ 0, 1,2,7\right \}.

  • Determinăm şi mulţimea B=\left \{ x\epsilon Z| \frac{3x+9}{2x-3}\epsilon Z \}.

La această mulţime trebuie să prelucrăm numărătorul în funcţie de numitor, astfel încât să găsim  mulţimea divizorilor unui număr întreg.

\frac{3x+9}{2x-3}\epsilon Z \Rightarrow\frac{6x+18}{2x-3}\epsilon Z \Rightarrow\frac{6x-9+27}{2x-3}\epsilon Z \Rightarrow\frac{3(2x-3)}{2x-3}+\frac{27}{2x-3}\epsilon Z \Rightarrow3+\frac{27}{2x-3}\epsilon Z

Deoarece 3\epsilon Z ,  este suficient să demonstrez că \frac{27}{2x-3}\epsilon Z \Rightarrow{2x-3}\epsilon D_{27}

Deoarece sunt pe multimea Z, \Rightarrow D_{27}=\left \{ \pm1, \pm3,\pm9, \pm27 \right \}

2x-3=1| +3 \Rightarrow 2x=1+3 \Rightarrow 2x=4| :2 \Rightarrow x=2

2x-3=-1| +3 \Rightarrow 2x=-1+3 \Rightarrow 2x=2| :2 \Rightarrow x=1

2x-3=3| +3 \Rightarrow 2x=3+3 \Rightarrow 2x=6| :2 \Rightarrow x=3

 2x-3=-3| +3 \Rightarrow 2x=-3+3 \Rightarrow 2x=0 \Rightarrow x=0

 2x-3=9|+3 \Rightarrow 2x=9+3 \Rightarrow 2x=12| :2 \Rightarrow x=6 2x-3=-9|+3 \Rightarrow 2x=-9+3 \Rightarrow 2x=-6| :2 \Rightarrow x=-3

2x-3=27|+3 \Rightarrow 2x=27+3 \Rightarrow 2x=30| :2 \Rightarrow x=15

2x-3=-27|+3 \Rightarrow 2x=-27+3 \Rightarrow 2x=-24| :2 \Rightarrow x=-12

Soluţie : x\in \left \{ -12;-3;0;1;2;6;15 \right \}

 

EXERCIŢIUL 2: Determinaţi x\in Z pentru care \frac{\sqrt{7+4\sqrt{3}}+\sqrt{52-14\sqrt{3}}}{2x-1}\in Z

Rezolvare: Pentru a determina valorile pe care le poate lua x trebuie sa determinam numarătorul. Vom scrie cei doi radicali de la numărător cu ajutorul formulelor de calcul prescurtat ca un număr la puterea a doua.

Astfel vom scrie \sqrt{7+4\sqrt{3}}=\sqrt{(2+\sqrt{3})^2} , iar \sqrt{52-14\sqrt{3}}=\sqrt{(7-\sqrt{3})^2}.

Obţinem astfel: \frac{\sqrt{(2+\sqrt{3})^2}+\sqrt{(7-\sqrt{3})^2}}{2x-1}\in Z \Rightarrow\frac{\left \| 2+\sqrt{3} \right \|+\left \| 7-\sqrt{3} \right \|}{2x-1}\in Z

Considerăm \sqrt{3}\simeq 1,73 obţinem: 2+ 1,73 =3,73 şi 7-1,73 =5,27

Deoarece \left \| 2+\sqrt{3} \right \| şi \left \| 7-\sqrt{3} \right \| sunt numere pozitive, sunt mai mari decît 0,ambele numere  ies de sub modul cu sumnul +, adica 2+\sqrt{3} şi 7-\sqrt{3}.

Obţinem astfel: \frac{ 2+\sqrt{3} +7-\sqrt{3} }{2x-1}\in Z \Rightarrow\frac{ 2 +7 }{2x-1}\in Z \Rightarrow\frac{ 9 }{2x-1}\in Z \Rightarrow2x-1\in D_{9} .

D_{9} =\left \{ \pm1;\pm3;\pm9 \right \}.

 

2x-1=1| +1 \Rightarrow 2x=1 +1 \Rightarrow 2x=2| :2 \Rightarrow x=1
2x-1=-1| +1 \Rightarrow 2x=-1 +1 \Rightarrow 2x=0| :2 \Rightarrow x=0

2x-1=3| +1 \Rightarrow 2x=3 +1 \Rightarrow 2x=4| :2 \Rightarrow x=2

2x-1=-3| +1 \Rightarrow 2x=-3 +1 \Rightarrow 2x=-2| :2 \Rightarrow x=-1

2x-1=9| +1 \Rightarrow 2x=9 +1 \Rightarrow 2x=10| :2 \Rightarrow x=5 2x-1=-9| +1 \Rightarrow 2x=-9 +1 \Rightarrow 2x=-8| :2 \Rightarrow x=-4

Soluţie: x\in \left \{ -4;-1; 0; 1; 2; 5 \right \}

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăti în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

Exerciții rezolvate „Reguli de Calcul cu puteri”

clasa a VI-aDragul meu părinte, în lecţia anterioară „Reguli de calcul cu puteri” am vorbit despre noţiunile pe care trebuie sa le reţină copilul tău la această lecţie.

In acest articol, vreau să îţi prezint câteva exemple de exerciţii cu un grad de dificultate diferit, explicate pas cu pas, pentru a te ajuta să-i explici şcolarului tău modul în care trebuiesc abordate exerciţiile de la această lecţie.

(more…)

  • Exerciţiul 1:  Calculaţi:
  •  15^{38} : 5^{38} - (3^{19})^{2}=

Dragul meu părinte, observăm că în acest exerciţiu avem operaţii de ridicare la putere care sunt operaţii de ordin III, operaţii de împărţire a numerelor naturale care sunt operaţii de ordinul II şi operaţia de scădere care este o operaţie de ordinul I.

Comform ordinii efectuarii operaţiilor numerelor naturale, mai întâi efectuăm operaţiile de ordinul III (ridicarea la putere), apoi operaţiile de ordinul II (împărţirea), iar la urmă efectuăm operaţiile de ordinul I (scăderea).

Pentru că avem ridicare la putere cu un exponent mare( şi ar dura mult timp) aplicăm regulile de calcul cu puteri pentru a simplifica rezolvarea exerciţiului, după cum urmează:

Astfel obţinem:

(5\cdot3) ^{38} : 5^{38} - (3^{19})^{2}=

5^{38}\cdot3 ^{38} : 5^{38} - (3^{19})^{2}=

1\cdot3 ^{38} - (3^{19})^{2}=

"1\cdot3

3 ^{38} - 3^{38}=0

Exerciţiul 2:  Calculaţi: a=(b-c) ^{2011}dacă :                                  b=[(2 ^{3})^{2}-1954^{0}] : 3^{2^{1^{7}}}-(4^{1^{2^{3}}}-1^{4^{3^{2}}})

c=32\cdot7 ^{5}-14^{5}+3<br /><br />

Rezolvare:

Mai întâi aducem la o formă mai simplă pe „b” şi pe „c”.

Avem :  1954 ^{0}=1

deoarece  ştim ca orice număr la puterea 0 este egal cu 1.

Deasemenea ştim că 1 ridicat la orice putere este egal cu 1

Astfel obţinem:         b=(2 ^{3\cdot2}-1) : </p> <p>3 ^{2^{1}}-( </p> <p>4 ^{1^{8}}-1 ^{4^{9}}</p> <p>)

                                b=(2 ^{6}-1) : </p> <p>3 ^{2}-( </p> <p>4 ^{1}-1</p> <p>)

                               b=(64-1) : 9 - 3

                              b=63 : 9 - 3<br />

                              "b=

                              b=4<br />

                             c=32\cdot7 ^{5}-14 ^{5}+3

                             c=32\cdot7 ^{5}-(2\cdot7) ^{5}+3

                            c=2^{5}\cdot7 ^{5}-(2\cdot7) ^{5}+3

                           c=(2\cdot7) ^{5}-(2\cdot7) ^{5}+3

                           c=0+3

                           c=3

Calculăm numărul „a”:       a=(4-3) ^{2011}

                                          a=1 ^{2011}

                                          a=1

  • Exerciţiul 3:
  • Determinaţi numărul natural “n” pentru care sunt adevărate egalităţile:
  • "7

 

Dragul meu părinte, observăm ca in acest exerciţiu avem suma lui Gauss.

"11+12+13+..............+30=<br

"(11+30)+(12+29)+..............=<br

Avem 20 termeni grupati in 10 paranteze, iar suma fiecarei paranteze este egală cu 41.

"41+41+............+41=<br

(de 10 ori)

"10\cdot41<br

Astfel obţinem: 7 ^{10\cdot41}=7^{n\cdot3}\cdot7^{2}

7 ^{410}=7^{3n+2}   \Rightarrow410={3n+2}  /(-2)

410-2 =3n+2-2

408 =3n /: 3

408 : 3 =3n : 3

136 =n

  • Exerciţiul 4:
  • Demonstraţi că pentru orice număr natural “n” este adevărată relaţia:
  • 15 / A= 72 ^{n+1}+3^{2n+1}\cdot2^{3n+2}+3^{2n}\cdot2^{3n}\cdot6

Pentru a demonstra că 15 divide numărul A trebuie să demonstrăm că numărul A este un multiplu de 15. Să aducem numărul A la o formă mai simplă.

 A= 72 ^{n+1}+3^{2n+1}\cdot2^{3n+2}+3^{2n}\cdot2^{3n}\cdot6

Pentru început îl descompunem pe 72 in factori primi şi obţinem:

 A= (2 ^{3}\cdot3 ^{2}) ^{n+1}+3^{2n+1}\cdot2^{3n+2}+3^{2n}\cdot2^{3n}\cdot6

La următorul pas aplicăm regula de calcul cu puteri: "(a

A=2 ^{3(n+1)}\cdot3 ^{2(n+1)}+3 ^{2n+1}\cdot2 ^{3n+2}+3 ^{2n}\cdot2 ^{3n}\cdot6

A=2 ^{3n+3}\cdot3 ^{2n+2}+3 ^{2n+1}\cdot2 ^{3n+2}+3 ^{2n}\cdot2 ^{3n}\cdot6

La următorul pas aplicăm regula de calcul cu puteri:  a ^{m+n}=a ^{m}\cdot a ^{n}

A=2 ^{3n}\cdot2 ^{3}\cdot3 ^{2n}\cdot3 ^{2}+3 ^{2n}\cdot3 ^{1}\cdot2 ^{3n}\cdot2 ^{2}+3 ^{2n}\cdot2 ^{3n}\cdot6

La următorul pas dăm factor comun pe: 2 ^{3n}\cdot 3 ^{2n}

A=2 ^{3n}\cdot3 ^{2n}(2 ^{3}\cdot3 ^{2}+3 \cdot2 ^{2}+6)

A=2 ^{3n}\cdot3 ^{2n}(8\cdot9+3 \cdot4+6)

A=2 ^{3n}\cdot3 ^{2n}(72+12+6)

A=2 ^{3n}\cdot3 ^{2n}\cdot90<br />

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

 

DIVIZOR. MULTIPLU

Clasa a V-a

Dragul meu părinte, dacă primele lecţii din clasa aV-a au avut noţiuni recapitulative din anii anteriori de studiu, iatădiuai copilului tău, uată că a sosit timpul ca să apară şi lecţii în care noţiunile sunt complet noi pentru copilul tău.

Cei drept aceste noţiuni se bazează pe cunoştinţe aprofundate în anii anteriori de studiu, cum ar fi împărţirea şi înmulţirea numerelor naturale, dar în această lecţie copilul tău ia contact cu noţiuni complet noi cum ar fi termenul de divizor sau termenul de multiplu.

(more…)

  • Dar hai să vedem, dragul meu parinte, ce este un divizor ?

Pentru a introduce noţiunea de divizor, să luăm întâi un exempu bazat pe cunoştinţele învăţate anterior de copilul tău.

  • Exemplu:    Într-o tabără merg 290 copii. Aceştia vor fi transportaţi cu autocare de 45 de locuri. De câte autocare ar fi nevoie?

  • Rezolvare:    290 : 45 = 6 (autocare)

                             290 = 45 · 6

Spunem în acest caz că:

  • 290 se divide cu 45 sau
  • 290 este divizibil cu 45, sau
  • 290 este multiplu de 45.

Dar să vedem, dragul meu părinte, cum se notează matematic aceste notiuni.

poza 1 divizor

poza 2 divizor

Să observăm:

poza 3 divizor

În general :

  • Numărul natural „b” divide numărul natural „a”, dacă există numărul natural „c”, astfel încât a = b · c.

poa 4 divizor

  • Numărul natural „b” nu divide numărul natural „a”, dacă pentru orice număr natural „c”, a = b · c.

poza 5 divizor

Exemplu:

  • Divizorii numărului 6 sunt: 1, 2, 3, 6.

  • Multiplii numărului 2 sunt: 0, 2, 4, 6, 8, ………………

Pentru m, d, c ϵ N care satisfac relaţia de mai jos, folosim denumirile:

poza 6 divizor

Dar să vedem, dragul meu părinte cum putem afla dacă un număr este divizibil cu altul?

Exemplu:

  • verificăm dacă 154 14322 ?

Efectuăm împărţirea: 14322 : 154 = 93

                                  14322 = 154 93

                                  Deci 154 14322.

  • verificăm dacă 3727 25 ?

Efectuăm împărţirea: 3727 : 25 = 149 rest 2

                                  3727 = 149 25 + 2

                                   Deci 3727 nu divide 25.

Dragul meu părinte, observăm că:

Pentru a afla dacă un număr natural „a” este divizibil cu un număr natural nenul „b” , împărţim „a” la „b” şi obţinem numerele naturale „c” şi „r”, astfel încât: a = b c + r, unde

r < b.

  • Dacă restul împărţirii lui „a” la „b” este 0, obţinem a = b c, deci a este divizibil cu b.

  • Dacă restul împărţirii lui „a” la „b” este diferit de 0, atunci a nu este divizibil cu b.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:mathmoreeasy@yahoo.com

De asemenea, te invit şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy?ref=hl

 

Exerciții rezolvate la Ordinea Efectuarii Operațiilor

Clasa a V-a

Dragul meu părinte, în postarea anterioară am vorbit despre „Ordinea Efectuării Operaţiilor”.

Ţi-am reamintit care sunt operaţiile de gradul I, operaţiile de gradul al II-lea şi am vorbit despre ordinea efectuării operaţiilor într-un exerciţiu în care apar parantezele rotunde, pătrate şi acoladele.

Hai să vedem, dragul meu părinte şi câteva exerciţii la această lecţie.

Voi aborda câteva exemple de exerciţii cu grad diferit de dificultate şi pe care le voi explica pas cu pas, astfel încât ţie, dragul meu părinte, îţi va fii foarte uşor să le explici copilului tău.

(more…)

  • Exerciţiul 1: Să se efectueze:

                        1320 +[48 · 23 +(340 · 11 – 60 ·5) – 235 ·7]=

Rezolvare:

  • Primul pas: efectuăm operaţiile de înmultire din paranteza rotundă

    1320 +[48 · 23 +(340 · 1160 ·5) – 235 ·7]=

     1320 + [ 48 · 23 + (3740300) – 235 ·7]=

  • Pasul doi:efectuăm operatia de scădere din paranteza rotundă, iar paranteza pătrată devine rotundă.

    1320 + [ 48 · 23 + (3740300) – 235 ·7]=

               1320 + ( 48 · 23 + 3440 – 235 ·7)=

  • Pasul trei:efectuăm operatiile de înmulţire din paranteza rotundă.

    1320 + ( 48 · 23 + 3440235 ·7)=

    1320 + ( 1104 + 34401645)=

  • Pasul patru:efectuăm operatia de adunare din paranteza rotundă.

    1320 + ( 1104 + 34401645)=

    1320 + ( 45441645)=

  • Pasul cinci:efectuăm operatia de scădere din paranteza rotundă.

               1320 + ( 45441645)=

              1320 + 2899=

  • Pasul şase: efectuăm operatia de adunare.

    1320 + 2899=

  • 4219   Răspuns corect

  • Exerciţiul 2: Să se efectueze:

                                   2307 + {3702 + [270 : 3 +3 · (280· 53 · 230)]}=

Rezolvare:

  • Primul pas: efectuăm operaţiile de înmultire din paranteza rotundă

    2307 + {3702 + [270 : 3 +3 · (280· 53 · 230)]}=

     2307 + {3702 + [270 : 3 +3 · (1400690)]}=

  • Pasul doi: efectuăm operatia de scădere din paranteza rotundă, iar paranteza pătrată devine rotundă, în timp ce acolada va devenii paranteză pătrată.

    2307 + {3702 + [270 : 3 +3 · (1400690)]}=

               2307 + [3702 + (270 : 3 +3 · 710)]=

  • Pasul trei: efectuăm operatiile de împărţire şi înmulţire din paranteza rotundă.

    2307 + [3702 + (270 : 3 +3 · 710)]=

     2307 + [3702 + ( 90+ 2130)]=

  • Pasul patru: efectuăm operatia de adunare din paranteza rotundă, iar paranteza pătrată va devenii paranteză rotundă.

    2307 + [3702 + ( 90 + 2130)]=

     2307 + (3702 + 2220)=

  • Pasul cinci: efectuăm operatia adunare din paranteza rotundă.

    2307 + (3702 + 2220)=

     2307 + 5922=

  • Pasul şase: efectuăm operatia de adunare.

    2307 + 5922=

  • 8229   Răspuns corect

  • Exerciţiul 3: Determinaţi numărul natural „x” pentru care are loc egalitatea        (320 + x) · 15 = 5100

Rezolvare:

  • Primul pas: împărţim întreaga egalitate la 15.

    (320 + x) · 15 = 5100 / : 15

    (320 + x) · 15 : 15= 5100 :15

     (320 + x ) · 1= 340

  • Pasul doi: efectuăm operatia de înmulţire din partea stângă a egalităţii si scăpăm de paranteza rotundă

                (320 + x ) · 1= 340

                 320 + x= 340

  • Pasul trei :scădem numărul natural 320 din ambele părţi ale egalităţii.

                320 + x= 340 / (- 320 )

                320 + x – 320= 340- 320

  • Pasul patru: efectuăm operatiiile de scădere din ambele părţi ale egalităţii.

    320 + x – 320= 340- 320

  •  x = 20

            x = 20    Răspuns corect

  • Exerciţiul 4: Determinaţi numărul natural „x” pentru care are loc egalitatea:
  • [15 · (10 · x – 11 ) – 120 ] · 10 – 125 = 25

Acest gen de exerciţiu se poate rezolva în 2 moduri.

  • Rezolvare primul mod:
  • Pentru a rezolva acest exerciţiu, în care ni se cere să-l aflăm pe x, trebuie să începem rezolvarea exerciţiului de la coadă la cap, astfel.
  • [15 · (10 · x – 11 ) – 120 ] · 10 – 125 = 25
  • Primul pas: adunăm în ambele părţi ale egalităţii pe 125.
  • [15 · (10 · x – 11 ) – 120 ] · 10 – 125 = 25 / (+125)
  • [15 · (10 · x – 11 ) – 120 ] · 10 – 125 +125 = 25 +125
  • [15 · (10 · x – 11 ) – 120 ] · 10 = 150
  • Pasul doi: împărţim întreaga egalitate la 10 .

  • [15 · (10 · x – 11 ) – 120 ] · 10 = 150 / :10
  • [15 · (10 · x – 11 ) – 120 ] ·10 : 10= 150 :10
  • [15 · (10 · x – 11 ) – 120 ] · 1 = 15
  • Pasul trei: efectuăm înmulţirea din partea stângă a egalităţii şi scăpăm de paranteza pătrată.
  • [15 · (10 · x – 11 ) – 120 ] · 1 = 15
  • 15 · (10 · x – 11 ) – 120 = 15
  • Pasul patru:adunăm în ambele părţi ale egalităţii pe 120.
  • 15 · (10 · x – 11 ) – 120 = 15 / (+120)
  • 15 · (10 · x – 11 ) – 120 + 120 = 15 + 120
  • 15 · (10 · x – 11 ) = 135

  • Pasul cinci:împărţim în ambele părţi ale egalităţii cu 15.
  • 15 · (10 · x – 11 ) = 135 / :15
  • 15 · (10 · x – 11 ) : 15 = 135 : 15
  • 1 · (10 · x – 11 ) = 9

  • Pasul şase: efectuăm înmulţirea din partea stângă a egalităţii şi scăpăm de paranteza rotundă.
  • 10 · x – 11 = 9

  • Pasul şapte:adunăm în ambele părţi ale egalităţii pe 11.
  • 10 · x – 11 = 9 / (+11)
  • 10 · x – 11 + 11= 9 + 11
  • 10 · x = 20

  • Pasul opt: împărţim în ambele părţi ale egalităţii cu 10.

  • 10 · x = 20 / :10
  • 10 · x :10 = 20 :10
  • x = 2
  •  x = 2 Răspuns corect

Rezolvare al doilea mod:

  • Pentru a rezolva acest exerciţiu, în care ni se cere să-l aflăm pe x, notăm paranteza (10 · x – 11 ) = a şi obţinem:[15 · a – 120 ] · 10 – 125 = 25, după care rezolvăm ecuaţia în necunoscuta „a” astfel:
  • [15 · a – 120 ] · 10 – 125 = 25
  • Primul pas: adunăm în ambele părţi ale egalităţii pe 125.
  • [15 · a – 120 ] · 10 – 125 = 25 / (+125)
  • [15 · a – 120 ] · 10 – 125 +125 = 25 +125
  • [15 · a – 120 ] · 10 = 150
  • Pasul doi:împărţim întreaga egalitate la 10 .

  • [15 · a – 120 ] · 10 = 150 / :10
  • [15 · a – 120 ] ·10 : 10= 150 :10
  • [15 · a – 120 ] · 1 = 15
  • Pasul trei: efectuăm înmulţirea din partea stângă a egalităţii şi scăpăm de paranteza pătrată.
  • [15 · a – 120 ] · 1 = 15
  • 15 · a – 120 = 15
  • Pasul patru:adunăm în ambele părţi ale egalităţii pe 120.
  • 15 · a – 120 = 15 / (+120)
  • 15 · a– 120 + 120 = 15 + 120
  • 15 · a = 135

  • Pasul cinci:împărţim în ambele părţi ale egalităţii cu 15.
  • 15 · a = 135 / :15
  • 15 · a : 15 = 135 : 15
  • 1 · a = 9
  • a = 9

  • Pasul şase:revenim la notaţia (10 · x – 11 ) = a ştiind căa = 9 şi obţinem egalitatea:
  • 10 · x – 11 = 9

  • Pasul şapte:adunăm în ambele părţi ale egalităţii pe 11.
  • 10 · x – 11 = 9 / (+11)
  • 10 · x – 11 + 11= 9 + 11
  • 10 · x = 20

  • Pasul opt: împărţim în ambele părţi ale egalităţii cu 10.
  • 10 · x = 20 / :10
  • 10 · x :10 = 20 :10
  • x = 2
  •  x = 2 Răspuns corect

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăti în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

MULŢIMI DE NUMERE

Dragul meu părinte, această lecţie „Mulţimi de numere” este o lecţie recapitulativă.

Copilul tău a învăţat în clasele anterioare noţiunile folosite la această lecţie, însă este necesară recapitularea lor deoarece pe parcursul clasei a VIII-a vor fi des utilizate. (more…)

La această lecţie copilul tău îşi va reaminti că:

  • Mulţimea „Numerelor Întregi” se notează cu Z şi

  • Z={-3,-2,-1,0,1,2,3,…….,…}.

  • Dacă adunăm, scădem sau înmulţim două sau mai multe numere întregi obţinem tot un număr întreg.

  •   \subseteq Z

Dragul meu părinte, tot la această lecţie copilul tau trebuie să-şi amintească şi „Relaţia de Divizibilitate în Z”.

Def: Un număr întreg „a” se numeşte „divizor” al unui număr întreg „b”, dacă există un număr întreg „c” astfel încât: b = a·c.

 

  •  Notăm:               Citim:
  • a | b”                  „a” divide „b” sau „a” este un divizor al lui „b”

  • b ⁞ a”                  „b” se divide cu „a” sau „b” este multiplu de „a”.

  • a | b”                  „a” nu divide pe „b” sau

                                       „b” nu este multiplu de „a”.

Pentru numere întregi nenule, relaţia de divizibilitate se poate exprima cu ajutorul relaţiei de împărţire astfel:

  • Dacă  a·b = c , atunci c : b=a şi c : a=b .

Însă, ce se întâmplă dacă deîmpărţitul nu este multiplu al împărţitorului?

Observăm în acest caz că rezultatul nu mai este un număr întreg.

Dragul meu părinte, copilul tău a învăţat în anii anteriori şi fracţiile, pe care este necesar să le amintim în această lecţie.

  • Mulţimea numerelor raţionale se notează cu Q şi

  • Q={x/ x=  \frac{m}{n}, m,  \in N }

  • Numerele raţionale se pot scrie în două forme echivalente: cu ajutorul liniei de fracţie (reprezentare fracţionară   \frac{m}{n} ) sau cu ajutorul virgulei (reprezentare zecimală m,n)

  •   \subseteq Q

  •   \subseteq   \subseteq Q

Dragul meu părinte, copilul tău a mai învăţat în anii anteriori şi „Numerele Iraţionale”.

  • Numerele Iraţionale nu pot fi reprezentate de fracţii în care numărătorul şi numitorul sunt numere întregi.

  • In scrierea cu virgulă, numerele iraţionale au o infinitate de zecimale care nu se repetă periodic.

  • Numerele raţionale împreună cu cele iraţionale formează „Mulţimea Numerelor Reale”.

  • Mulţimea Numerelor Reale” se notează cu R.

  • Suma, diferenţa şi produsul a două sau mai multe numere naturale sunt tot numere reale.

  • Rezultatul împărţirii a două sau mai multe numere reale nenule este tot un număr real.

  • N   \subseteq Z   \subseteq Q   \subseteq R.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:mathmoreeasy@yahoo.com    mathmoreeasy@yahoo.com

De asemenea, te invit şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy?ref=hl.

Adunarea și Scăderea Numerelor Naturale

Clasa a V-a

Dragul meu părinte,

copilul tău trebuie să reţină că:

(more…)

  • Adunarea a două sau mai multe numere naturale este un număr numit suma numerelor naturale şi se notează:

    a + b = c 

  • unde „a” şi „b” se numesc termenii sumei iar „c” se numeşte suma numerelor naturale.

De asemenea, este esenţial să reţină proprietăţile adunării:

  • Comutativitatea:(dacă schimbăm poziţia termenilor rezultatul rămâne neschimbat).

a+b=b+a

 

  • Exemplu:
  • 3+4 = 4+3 = 7

  • 3+4 = 42+3+5 = 3+5+2 = 5+3+2 = 10
  • Asociativitatea:

 (a+b)+c=a+(b+c)

  • Exemplu:
  • (2+3)+5 = 2+(3+5) = 10
  • Element neutru: pe 0.

    Elementul neutru este un număr natural care adunat la un număr, suma celor 2 numere este egală cu numărul natural dat.

a+0=0+a=a

  • Exemplu:
  • 3+0 = 0+3 = 3.

SCĂDEREA NUMERELOR NATURALE:

Scăderea a două (sau mai multe) numere naturale este un număr natural unic, numit diferenţă şi se notează: „a -b” cu proprietatea că a>b ;

  • a” şi „b” se numesc termenii diferenţei.
a – b = c, 
  • unde:  „a” se numeşte descăzut;
  • „b”  se numeste scăzător;
  • „c” se numeşte diferenţă;

 

  • Scăderea nu este comutativă, nu este asociativă şi nu are element neutru.

O greşeală frecventă facută de elevi la această lecţie este confuzia între denumirea termenilor adunării şi scăderii numerelor naturale.

De asemenea, elevii mai fac frecvent greşeala de a spune că scăderea are proprietăţi de:

  • asociativitate;
  • comutativitate;
  • element neutru.

 

Dacă dorești să ai acces la mai multe exemple de exerciții cu un grad de dificultate ridicat rezolvate și explicate pas cu pas accesează link-ul de mai jos:

http://mathmoreeasy.ro/exercitii-rezolvate-la-adunarea-numerelor-naturale-suma-gauss/

 

§ Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

§ De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului

§https://www.facebook.com/MathMoreEasy.

§ Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

 

Cu mare drag şi mult respect Alina Nistor!