Etichetă: natural number

Înmulțirea și Împărțirea Fracțiilor

„Sclavul are doar un stăpân. Ambiţiosul are atâţia stăpâni câţi oameni îi pot fi de folos carierei sale.” 

Jean de la Bruyere

Dragul meu părinte bine te-am regăsit!
Azi îți propun să rezolvăm și să explicăm pas cu pas câteva exerciții  la “Înmulțirea și Împărțirea Numerelor Raționale (Fracțiilor)”

(mai mult…)

Exercițiul 1:  Efectuați următoarele înmulțiri și împărțiri:

a)  \frac{5}{34} \cdot \frac{17}{49} \cdot \frac{7}{25}

b)  2\cdot \frac{7}{4} \cdot \frac{9}{14}

c) \frac{7}{11} \ \ \ : \ \ \ \frac{14}{33}

d) 1,5 \cdot \frac{2}{3}\cdot 2,5

e) 3,5 \cdot 9\frac{1}{5}

f) 4,5 \ \ \ \ :\ \ \ \ 3\frac{1}{9}

Rezolvare:

  • a) \frac{5}{34} \cdot \frac{17}{49} \cdot \frac{7}{25}

La înmulțirea a două sau mai multe fracții înmulțim numărătorii între ei și numitorii între ei după care simplificăm fractia până obținem o fracție ireductibilă.

Astfel obținem:

\frac{5}{34} \cdot \frac{17}{49} \cdot \frac{7}{25}=\frac{5\cdot 17\cdot 7 }{34\cdot 49\cdot 25}  =\frac{595 }{41650} ^{(5}=\frac{119 }{8330} ^{(7}=\frac{17 }{1190} ^{(17}=\frac{1 }{70}

  • b)  2\cdot \frac{7}{4} \cdot \frac{9}{14}

Observăm că primul număr este un număr natural.

La înmulțirea  unui număr natural cu o fracție înmulțim numărul natural cu numărătorul și păstrăm numitorul. (Sau transformăm numărul natural în număr rațional cu numitorul 1)

Astfel obținem:

2\cdot \frac{7}{4} \cdot \frac{9}{14}=\frac{2\cdot 7}{4} \cdot \frac{9}{14}=\frac{14}{4} \cdot \frac{9}{14}=\frac{14\cdot 9}{4\cdot 14}=\frac{126}{56} ^{(2}=\frac{63}{28} ^{(7}=\frac{9}{4}

(Sau putem să mai efectuăm calculele astfel:

2\cdot \frac{7}{4} \cdot \frac{9}{14}=\frac{2}{1} \cdot \frac{7}{4} \cdot \frac{9}{14}=  \frac{2\cdot 7\cdot 9 }{1\cdot 4\cdot 14}=\frac{126}{56} ^{(2}=\frac{63}{28} ^{(7}=\frac{9}{4}  ).

  • c)  \frac{7}{11} \ \ \ : \ \ \ \frac{14}{33}

La împărțirea a două fracții pastrăm prima fracție intactă și o înmulțim cu inversa celei de-a doua fracții.

Inversa unei fracției  \frac{a}{b}  înseamnă fracția  \frac{b}{a}.

Astfel obținem:

 \frac{7}{11} \ \ \ : \ \ \ \frac{14}{33}=\frac{7}{11} \cdot \frac{33}{14}=\frac{7\cdot 33}{11\cdot 14}=\frac{231}{154} ^{(7}=\frac{33}{22}^{(11}=\frac{3}{2}

 

  • d) 1,5 \cdot \frac{2}{3}\cdot 2,5

Mai întâi transformăm fracțiile zecimale în fracții ordinare.

 1,5 \cdot \frac{2}{3}\cdot 2,5=\frac{15}{10} \cdot \frac{2}{3}\cdot \frac{25}{10}=\frac{15\cdot2 \cdot 25 }{10\cdot 3 \cdot 10 = \frac{750}{300}^{(10}= \frac{75}{30}^{(5}= \frac{15}{6}^{(3}= \frac{5}{2}

  • e) 3,5 \cdot 9\frac{1}{5}

Transformăm fractia zecimală în fracție ordinară și introducem întregul  în fracția ordinară. Astfel obținem:

3,5 \cdot 9\frac{1}{5}= \frac{35}{10} \cdot \frac{9 \cdot 5+1}{5}= \frac{35}{10} \cdot \frac{46}{5}= \frac{35 \cdot 46}{10 \cdot 5} = \frac{1610}{50}^{(10}=\frac{161}{5}

  • f) 4,5 \ \ \ \ :\ \ \ \ 3\frac{1}{9}

Transformăm fractia zecimală în fracție ordinară și introducem întregul  în fracția ordinară. Astfel obținem:

4,5 \ \ \ \ :\ \ \ \ 3\frac{1}{9}= \frac{45}{10} \ \ \ \ :\ \ \ \ \frac{3\cdot 9+1}{9}= \frac{45}{10} \ \ \ \ :\ \ \ \ \frac{28}{9}=   \frac{45}{10}\cdot \frac{9}{28}= \frac{45\cdot 9}{10\cdot 28}= \frac{405}{280}^{(5}=\frac{81}{56}

Exercițiul 2: Efectuați:

a)  (3\frac{3}{{4}}) \ \ \ : \ \ \ (5\frac{1}{{2}}+ 0,5) \cdot (1\frac{1}{{3}} )

b)  [(1,(5)-0,(5))]\cdot 1,(6)\ \ \ :\ \ \ 2\frac{1}{2} =

Rezolvare:

  • a)  (3\frac{3}{{4}}) \ \ \ : \ \ \ (5\frac{1}{{2}}+ 0,5) \cdot (1\frac{1}{{3}} )

Mai întâi introducem întregii în fracții și transformăm fracția zecimală în fracție ordinară.

Astfel obținem:

 (3\frac{3}{{4}}) \ \ \ : \ \ \ (5\frac{1}{{2}}+ 0,5) \cdot (1\frac{1}{{3}} )= (\frac{3\cdot 4+3}{{4}}) \ \ \ : \ \ \ (\frac{5\cdot 2+1}{{2}}+ \frac{5}{10}) \cdot (\frac{1\cdot 3+1}{{3}})  =  \frac{15}{{4}} \ \ \ : \ \ \ (\frac{11}{{2}}+ \frac{5}{10}) \cdot \frac{4}{{3}}

Mai întâi efectuăm adunarea din paranteza rotundă.

 = (\frac{15}{{4}}) \ \ \ : \ \ \ (\frac{11}{{2}}+ \frac{5}{10}^{(5} )\cdot (\frac{4}{{3}})

 = \frac{15}{{4}} \ \ \ : \ \ \ (\frac{11}{{2}}+ \frac{1}{2})\cdot \frac{4}{{3}}

 = \frac{15}{{4}}\ \ \ : \ \ \ \frac{12}{{2}}\cdot \frac{4}{{3}}

 = \frac{15}{{4}}\cdot \frac{2}{{12}}\cdot \frac{4}{{3}}

 = \frac{15\cdot 2\cdot 4}{{4\cdot 12\cdot 3}} = \frac{120}{{144}}^{(2} = \frac{60}{{72}}^{(2} = \frac{30}{{36}}^{(2} = \frac{5}{{6}}

  •  [(1,(5)-0,(5))]\cdot 1,(6)\ \ \ :\ \ \ 2\frac{1}{2} =

Mai întâi transformăm fracțiile zecimale în fracții ordinare și  introducem întregii în fracție.

Astfel obținem:

 [(1,(5)-0,(5))]\cdot 1,(6)\ \ \ :\ \ \ 2\frac{1}{2} = [(\frac{15-1}{9} -\frac{5}{9})]\cdot \frac{16-1}{9}\ \ \ :\ \ \ \frac{2\cdot2+ 1}{2} =

 (\frac{14}{9} -\frac{5}{9})\cdot \frac{15}{9}\ \ \ :\ \ \ \frac{5}{2} =  \frac{6}{9} \cdot \frac{15}{9}\ \ \ :\ \ \ \frac{5}{2} =   \frac{6 \cdot 15}{9\cdot 9}\ \ \ :\ \ \ \frac{5}{2} =

 \frac{90}{81}\ \ \ :\ \ \ \frac{5}{2} =   \frac{90}{81} \cdot \frac{2}{5} =

 \frac{90\cdot 2}{81\cdot 5} =  \frac{180}{405}^{(5} =  \frac{36}{81}^{(9} =  \frac{4}{9}

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții Ușoare la Înmulțirea și Împărțirea Numerelor Raționale   pentru copilul tău, pe care o gasești aici: Fisa de lucru Inmultirea

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Cel Mai Mic Multiplu Comun (c.m.m.m.c)

„Un om educat se deosebeşte de un om needucat, asa cum un om viu se deosebeşte de un om mort.”

 Aristotel

Dragul meu părinte bine te-am regăsit!
Azi îți propun să rezolvăm și să explicăm pas cu pas câteva exerciții  la Cel  Mai  Mic Multiplu Comun (c.m.m.m.c).

(mai mult…)

Exercițiul 1: Aflați cel mai mic multiplu comun al următoarelor numere:

a) 24,\ \ \ \ 12, \ \ \ 18

b) 28,\ \ \ \ 147, \ \ \ 63

c) 120,\ \ \ \ 240, \ \ \ 360

d) 121,\ \ \ \ 330, \ \ \ 49

Rezolvare:   Pentru a putea determina c.m.m.m.c-ul numerelor mai întâi le descompunem în factori primi și apoi le scriem ca produs de puteri.

a) 24,\ \ \ \ 12, \ \ \ 18

24=2^3\cdot 3

12=2^2\cdot 3

18=2^1\cdot 3^2

Cel mai mic multiplu comun este produsul tuturor factorilor comuni și necomuni luați o singură dată la puterea cea mai mare.

[24, 12, 18]=2^3\cdot 3^2=8 \cdot 9=72

  • b) 28,\ \ \ \ 147, \ \ \ 63

Descompunem numerele în factori primi și apoi le scriem ca produs de puteri.

28=2^2\cdot 7

147=3\cdot 7^2

63=3^2\cdot 7

[28, 147, 63]=2^2\cdot 3^2 \cdot 7^2=4\cdot 9\cdot 49=1764

  • c) 120,\ \ \ \ 240, \ \ \ 360

Descompunem numerele în factori primi și apoi le scriem ca produs de puteri.

120=2^3\cdot 3\cdot 5

240= 2^4\cdot 3\cdot 5

360= 2^3\cdot 3^2\cdot 5

[120, 240, 360]= 2^4\cdot 3^2\cdot 5=16 \cdot 9\cdot 5=720

  • d) 121,\ \ \ \ 330, \ \ \ 49

Descompunem numerele în factori primi și apoi le scriem ca produs de puteri.

121= 11^2

330= 2\cdot 3\cdot 5\cdot 11

49= 7^2

[121, 330, 49]= 2\cdot 3\cdot 5\cdot 7^2\cdot 11^2=2\cdot 3\cdot 5\cdot 49\cdot 121= 177870

Exercițiul 2: Aflați cel mai mic număr natural de trei cifre care împărțit pe rând la 6, 16 și 12 dă de fiecare dată restul 5.

Rezolvare:

Din enunțul problemei știm că:

x\ \ \ :\ \ \ 6=c_{{1}}\ \ \ rest \ \ \ 5 . Aplicăm teorema împărțirii cu rest și obținem: x =6\cdot c_{{1}} + 5

Mai știm: x\ \ \ :\ \ \ 16=c_{{2}}\ \ \ rest \ \ \ 5  \Rightarrow x=16\cdot c_{{2}}+ 5

x\ \ \ :\ \ \ 12=c_{{3}}\ \ \ rest \ \ \ 5  \Rightarrow x=12\cdot c_{{3}}+ 5.

Scădem din fiecare relație câte un 5 și obținem:

\Rightarrow x-5=6\cdot c_{{1}}

\Rightarrow x-5=16\cdot c_{{2}}

\Rightarrow x-5=12\cdot c_{{3}}

Calculăm c.m.m.m.c-ul numerelor 6, 16 și 12.

Mai întâi descompunem în factori primi numerele:

6=2\cdot 3

16=2^4

12=2^2 \cdot 3

\left [ 6,16,12 \right ]= 2^4 \cdot 3=16\cdot 3=48

Obținem astfel:

 x-5 = 48 | \ \ \ +5   \Rightarrow x=48+5  \Rightarrow x=53

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții Ușoare la Cel  Mai  Mic Multiplu Comun pentru copilul tău, pe care o gasești aici:Fisa de lucru CMMMC

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exercitii rezolvate la Mărimi Invers Proporționale

„Fără educaţie, ce este omul? Un splendid sclav, un sălbatic al raţiunii.”

Joseph Addison 

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm și să explicăm pas cu pas câteva Exerciții rezolvate la marimi invers proporționale.

Exercițiul 1:   Suma a trei numere este egală cu 20.Aflați numerele știind că acestea sunt invers proporționale cu numerele 3; 2,(4); și 11.

Rezolvare:

Considerăm trei numere a; b și c.

Știm din enunțul problemei că suma celor trei numere este egală cu 20 \Rightarrow a+b+c=20

Tot din enunțul problemei știm:

\left \{ a;\ \ \ b;\ \ \ c \right \} \overset{i.p}{\rightarrow} \left \{ 3;\ \ \ \ 2,(4);\ \ \ \ 11 \right \}

 \Rightarrow a\cdot 3=b\cdot 2,(4)=c \cdot 11=k

 \Rightarrow a\cdot 3=k \Rightarrow a=\frac{k}{{3}}

 \Rightarrow b\cdot 2,(4)=k

Transformăm fracția periodică în fracție ordinară astfel:

2,(4)=\frac{24-2}{{9}}=\frac{22}{{9}}  . Astfel obținem:

 \Rightarrow b\cdot \frac{22}{{9}}=k \ \ \ |\ \ \ : \ \ \ \frac{22}{{9}}   \Rightarrow b=k \ \ \ : \ \ \ \frac{22}{{9}}   \Rightarrow b=k \cdot \frac{9}{{22}}     \Rightarrow b=\frac{9k}{{22}}

 \Rightarrow c\cdot 11=k \Rightarrow c=\frac{k}{{11}}

Înlocuim a, b și c  în relația a+b+c=20  și aflăm valoarea lui k. Astfel obținem:

\frac{k}{{3}} + \frac{9k}{{22}} +\frac{k}{{11}}=20

Aducem fracția la același numitor calculând c.m.m.m.c-ul numerelor de la numitor.

3=3

22=2 \cdot 11

11=11

\left [3,22,11 \right ]=3\cdot 2 \cdot 11=66. Astfel obținem:

 {22)}^_{{\frac{k}{{3}}}}+ 3)^_{{\frac{9k}{{22}}}}+ 6)^_{{\frac{k}{{11}}}}=66)^_{{\frac{20}{{1}}}}

22k+27k+6k=1320   \Rightarrow 55k=1320 | \ \ \ : \ \ \ 55 \Rightarrow k=1320 \ \ : \ \ \ 55   \Rightarrow k=24

Înlocuim k și aflăm valorile lui a, b și c. Astfel obținem:

\Rightarrow a= \frac{24}{{3}}\Rightarrow a= 8

 \Rightarrow b= \frac{9\cdot 24}{{22}}\Rightarrow b= \frac{216}{{22}}^{(2}\Rightarrow b= \frac{108}{{11}}

 \Rightarrow c= \frac{ 24}{{11}}

Exercițiul 2:    Produsul a trei numere este egal cu 1. Aflați numerele știind că acestea sunt invers proporționale cu numerele 4; 16; și 27.

Rezolvare:

Considerăm trei numere a; b și c.

Știm din enunțul problemei că produsul celor trei numere este egal cu 1.\Rightarrow a \cdot b \cdot c =1

Tot din enunțul problemei știm:

\left \{ a;\ \ \ b;\ \ \ c \right \} \overset{i.p}{\rightarrow} \left \{ 4;\ \ \ \ 16;\ \ \ \ 27 \right \} \Rightarrow a \cdot 4= b \cdot 16= c \cdot 27 = k

 \Rightarrow a\cdot 4 = k \Rightarrow a=\frac{k}{{4}}

\Rightarrow b \cdot 16 = k \Rightarrow b=\frac{k}{{16}}

\Rightarrow c \cdot 27 = k \Rightarrow c =\frac{k}{{27}}

Înlocuim a, b și c  în relația a \cdot b \cdot c =1 și aflăm valoarea lui k. Astfel obținem:

\frac{k}{{4}} \cdot \frac{k}{{16}} \cdot \frac{k}{{27}} =1  \Rightarrow \frac{k^3}{{1728}} =1 |\ \ \ \cdot 1728

 \Rightarrow k^3 = 1728    \Rightarrow k^3 = 12^3 \Rightarrow k=12

Înlocuim k și aflăm valorile lui a, b și c. Astfel obținem:

\Rightarrow a=\frac{12}{{4}} \Rightarrow a= 3

\Rightarrow b=\frac{12}{{16}}^{(4 }\Rightarrow b=\frac{3}{{4}}

\Rightarrow c=\frac{12}{{27}}^{(3 }\Rightarrow c=\frac{4}{{9}}

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții Ușoare la Mărimi invers proporționale  pentru copilul tău, pe care o gasești aici: Fisa usoara marimi invers proportionale

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la modulul unui număr întreg

“Inteligența nu înseamnă să nu faci greșeli, ci să vezi repede cum poți să le îndrepți”

Brelot Breckt

Dragul meu părinte bine te-am regăsit! Azi te invit să rezolvăm și să explicăm pas cu pas  împreună cateva exerciții la “Modulul unui număr intreg”. (mai mult…)

Exercițiul 1: Completați pentru a obține propoziții adevarate:

a) \left \ | -11 \right \ |=?

b) \left \ | 13 \right \ |=?

c) \left \ | 0 \right \ |=?

d) \left \ | (-2)^2 \right \ |=?

e) \left \ | -3^4 \right \ |=?

f) \left \ | -7 +11 \right \ |=?

g) \left \ | -15 -6 \right \ |=?

h) \left \ | -2^2+3^2 \right \ |=?

i) \left \ | 2^{164}-3^{123} \right \ |=?

Rezolvare: 

Știm că modulul sau valoarea absolută  a unui număr întreg este valoarea pozitivă a acelui număr.

a) \left \| -11 \right \ |=11   ;     b) \left \ | 13 \right \ |=13   ;    c) \left \ | 0 \right \ |=0    ;        

d) \left \ | (-2)^2 \right \ |=?

Știm că semnul minus la putere pară obținem semnul + , astfel  (-2)^2=+ 4. Astfel obținem:

\left \ | (-2)^2 \right \ |=\left \ | 4 \right \ |=4

e)  \left \ | -3^4 \right \ |=?

Știm că semnul minus la putere impară obținem semnul – , astfel   -3^4=-81. Astfel obținem:

\left \ | -3^4 \right \ |=\left \ | -81 \right \ |=81

f) \left \ | -7 +11 \right \ |=?

Efectuăm calculele din modul după care explicităm modulul.

Știm că la adunarea a două numere întregi păstrăm semnul celui mai mare și efectuăm scădere între termini. Astfel obținem:

\left \ | -7 +11 \right \ |= \left \ | +4 \right \ |= 4

g) \left \ | -15 -6 \right \ |= ?

Efectuăm calculele din modul după care explicităm modulul.

Știm că la scăderea a două numere întregi negative păstrăm semnul  și efectuăm adunare între termini. Astfel obținem:

\left \ | -15 -6 \right \ |= \left \ | - 21 \right \ | = 21

h) \left \ | -2^2+3^2 \right \ |= ?

Mai întâi ridicăm numerele întregi la putere, apoi facem calculele după care explicităm modulul. Astfel obținem:

\left \ | -2^2+3^2 \right \ |= \left \ | - 4+9\right \ | = \left \ | +5\right \ | = 5

i) \left \ | 2^{164}-3^{123} \right \ |= ?

Pentru a putea explicita modului trebuie mai întâi să comparăm puterile:

Comparăm 2^{164}   cu  3^{123} .

Observăm că 164=4 \cdot 41 ,  iar  123= 3\cdot 41. Astfel obținem:

2^{4\cdot 41}   comparat cu 3^{3\cdot 41}. Aplicăm regulile de calcul cu puteri și obținem:

(2^{4})^{41} comparat cu  (3^{3})^{41}  \Rightarrow 16^{41} comparat cu  \Rightarrow 27^{41} .

Pentru că am obținut același exponent, comparăm bazele iar numărul cu baza mai mare va fii mai mare. Obținem astfel că : 2^{164} \lt 3^{123} \Rightarrow semnul rezultatului din modul va fii negative. În acest caz vom scoate termenii de sub modul cu semen schimbate.

\left \ | 2^{164}-3^{123} \right \ |= - 2^{164}+3^{123}

Pentru că avem puteri foarte mari lăsăm așa răspunsul final.

Exercițiul 2:  Rezolvați în Z ecuațiile:

a)   \left \| x \right \|=5

b) \left \| 2x-17 \right \|=21

c) 29-3\cdot \left \ | 2x-7 \right \ | \geq -4

d) 3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]-8=7

Rezolvare: 

a)  \left \| x \right \|=5 \Rightarrow x= \pm 5

b)  \left \| 2x-17 \right \|=21

Egalăm pe rând valoarea din modul cu 21 și cu -21.

  • \left \| 2\cdot x-17 \right \|=21 \Rightarrow 2\cdot x-17=21  \Rightarrow 2\cdot x=21+17 \Rightarrow 2\cdot x=38 \Rightarrow x=38 \ \ \ : \ \ \ 2 \Rightarrow x=19
  • \left \| 2x-17 \right \|=21\Rightarrow 2x-17=-21 \Rightarrow 2\cdot x=- 21+17 \Rightarrow 2\cdot x=- 4 \Rightarrow x=-4 \ \ \ : \ \ \ 2 \Rightarrow x=-2

x\in \left \{-2 \ \ ; \ \ 19 \right \}

d) 3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]-8=7

Aplicăm metoda mersului invers.

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]-8=7 \ \ \ \ \ \ | \ \ +8

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]=7+8

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]=15

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]=15\ \ \ \ \ \ | \ \ : \ \ 3

 2 \cdot \left \ | 2x- 3 \right \ | -9=15 \ \ : \ \ 3

 2 \cdot \left \ | 2x- 3 \right \ | -9=5 \ \ \ \ \ \ | \ \ +9

 2 \cdot \left \ | 2x- 3 \right \ | =5 +9

 2 \cdot \left \ | 2x- 3 \right \ | =14 \ \ \ \ \ \ | \ \ :2

 \left \ | 2x- 3 \right \ | =14 \ \ \ :\ \ \ 2

 \left \ | 2x- 3 \right \ | = 7

Egalăm pe rând valoarea din modul cu 7 și cu -7.

 \left \ | 2x- 3 \right \ | = 7\Rightarrow 2\cdot x-3=-7 \ \ \ | \ \ \ +3\Rightarrow 2\cdot x=-4 \ \ \ | \ \ \ : \ \ \ \ 2 \Rightarrow x=-2

 \left \ | 2x- 3 \right \ | = 7\Rightarrow 2\cdot x-3=7 \ \ \ | \ \ \ +3  \Rightarrow 2\cdot x=10 \ \ \ | \ \ \ : \ \ \ \ 2 \Rightarrow x=5

x\in \left \{ -2\ \ \ ;\ \ \ 5 \right \}

Exercițiul 3 :  Rezolvați în mulțimea numerelor întregi inecuațiile:

a) \left \| x \right \|\leq 5

b) \left \| x-6 \right \|\ \ \ \lt \ \ \ 3

c) 29- 3\cdot \left \| 2x-7 \right \| \geq -4

Rezolvare: 

a) \left \| x \right \|\leq 5 \Rightarrow -5 \leq x\leq 5 \Rightarrow x\in \left \{ -5\ ;\ \ \ -4\ ; \ \ \ -3;\ -2;\ -1;\ \ \ \ 0;\ \ \ \ 1;\ \ \ \ 2;\ \ \ 3;\ \ \ \ 4;\ \ \ \ 5 \right \}

b) \left \| x-6 \right \|\ \ \ \lt \ \ \ 3 \Rightarrow -3\ \ \ \ \lt \ \ \ \ x-6\ \ \ \ \lt \ \ \ \3\ \ \ \ | \ \ \ +6\Rightarrow -3+6\ \ \ \ \lt \ \ \ \ x\ \ \ \ \lt \ \ \ \3+6\ \  \Rightarrow 3\ \ \ \ \lt \ \ \ \ x\ \ \ \ \lt \ \ \ \9\ \\Rightarrow x\in \left \{ 4 \ ;\ \ \ \5\ ;\ \ \ \6\ ;\ \ \ \7\ ;\ \ \ \8 \right \}

c) 29-3\cdot \left \ | 2x-7 \right \ | \geq -4\ \ \ | \ \ \ -29

-3\cdot \left \ | 2x-7 \right \ | \geq -4-29

-3\cdot \left \ | 2x-7 \right \ | \geq -33 \ \ \ | \ \ \ \ :(-3)

În momentul în care înmulțim o inecuație cu un număr negativ se schimbă semnul. Astfel obținem:

\left \ | 2x-7 \right \ | \leq -33 \ \ \ \ :\ \ \ (-3)

\left \ | 2x-7 \right \ | \leq 11  \Rightarrow -11\leq 2x-7 \leq 11 \ \ \ | \ \ \ +7 \Rightarrow -11+7 \leq \ \ \ 2x \leq \ \ \ \ 11+7  \Rightarrow -4 \leq \ \ \ 2x \leq \ \ \ \ 18 \ \ \ | \ \ \ :\ \ 2  \Rightarrow -4\ \ \ :\ \ \ 2 \leq \ \ \ x \leq \ \ \ \ 18 \ \ \ :\ \ 2\Rightarrow - 2 \leq \ \ \ x \leq \ \ \ \ 9

\Rightarrow x\in \left \{ -2 \ ;\ \ \ \ -1\ ;\ \ \ \ 0 \ ;\ \ \ \ 1 \ ;\ \ 2 \ \ ;\ \ \ 3 \ ;\ \ \ \ 4\ ;\ \ \ \ 5\ ;\ \ \ \ 6\ ;\ \ \ \ 7\ ;\ \ \ \ 8\ ;\ \ \ \ 9\ \right \}

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Adunarea și Scăderea Fracțiilor

“Învată tot ce poți, în orice moment disponibil, de la oricine și întotdeuna va veni o vreme când te vei simți recompensat pentru ceea ce ai învațat”

Sarah Caldwel

Dragul meu părinte bine te-am regăsit! Azi te invit să rezolvăm și să explicăm pas cu pas  împreună cateva exerciții la “Adunarea și Scăderea Fracțiilor”. (mai mult…)

Exercițiul 1:        Calculați:

a) \frac{7}{13}+\frac{2}{13}+\frac{5}{13}=

b) -\frac{10}{9}+\frac{11}{9}+(-\frac{7}{9})=

c) -\frac{3}{{5}}+(-\frac{5}{{6}})+(+\frac{1}{{2}})+(+\frac{4}{{15}})=

d)-\frac{13}{{18}}+(-\frac{5}{{108}})+(-\frac{14}{{5}})+(-\frac{7}{{36}})=

Rezolvare:

  • a) \frac{7}{13}+\frac{2}{13}+\frac{5}{13}=

Observăm că cele 3 fracții au acelasi numitor, în acest caz efectuez calculele între numărători și pastrez numitorul.

  • -\frac{7}{13}+\frac{2}{13}+\frac{5}{13}= \frac{7+2+5}{13}= \frac{14}{13}

 

  • b) -\frac{10}{9}+\frac{11}{9}+(-\frac{7}{9})=\frac{-10+11-7}{9}=

Avem la numărător -10+11-7 numere întregi cu semne diferite așa că vom respecta regula de adunare dacă termenii au semne diferite pastrăm semnul celui mai mare și efectuăm scădere. Noi avem -10+11   păstrăm semnul + și efectuîm 11-10

\frac{-10+11-7}{9}=\frac{+1-7}{9}=\frac{-6}{9}= \frac{-6}{9}^{(3}= \frac{-2}{3}

  • c) -\frac{3}{{5}}+(-\frac{5}{{6}})+(+\frac{1}{{2}})+(+\frac{4}{{15}})=

Observăm că în acest exercițiu fracțiile au numitor diferit așa că trebuie să determinăm numitorul comun.

Pentru a determina numitorul comun trebuie să calculăm c.m.m.m.c-ul numerelor de la numitor 5, 6, 2, 15.

Descompunem în factori primi cele 4 numere:

5=5

6=2\cdot3

2=2

15=3\cdot5

Calculăm c.m.m.m.c\left [ 5,6,2,15 \right ]=2\cdot3\cdot5=30

Deci numitorul comun este 30.

Trebuie să amplificăm fiecare fracție astfel încât să obținem  numitorul 30.

-_{{}}^{6)}\textrm{\frac{3}{{5}}}+(-_{{}}^{5)}\textrm{\frac{5}{{6}}})+ (+_{{}}^{15)}\textrm{\frac{1}{{2}}})+(+_{{}}^{2)}\textrm{\frac{4}{{15}}}) =

-\frac{18}{{30}}}+(-{\frac{25}{{30}}})+ (+{\frac{15}{{30}}})+(+{\frac{8}{{30}}})=

Știm că semnul (+) înmulțit cu semnul (-) obținem (-) , iar semnul (+) înmulțit cu semnul (+) obținem (+) . Astfel obținem:

  • -\frac{18}{{30}}}+(-{\frac{25}{{30}}})+ (+{\frac{15}{{30}}})+(+{\frac{8}{{30}}})=
  • -\frac{18}{{30}}}-{\frac{25}{{30}}}+ {\frac{15}{{30}}}+{\frac{8}{{30}}}=
  • \frac{-18-25+15+8}{{30}}}=
  •   \frac{-43+15+8}{{30}}}=
  •  \frac{- 28+8}{{30}}}=  \frac{- 20}{{30}}}^{(10} =- \frac{ 2}{{3}}}

d)      -\frac{13}{{18}}+(-\frac{5}{{108}})+(-\frac{14}{{5}})+(-\frac{7}{{36}})=

Determinăm numitorul comun:

18= 2\cdot 3^2

108= 2^2\cdot 3^3

5=5

36= 2^2\cdot 3^2

[18, 108, 5, 36]= 2^2\cdot 3^3\cdot 5=4\cdot 27\cdot 5=540

Trebuie să amplificăm fiecare fracție astfel încât să obținem  numitorul 540.

-_^{30)}\textrm{\frac{13}{{18}}}+(-_^{5)}\textrm{\frac{5}{{108}}})+(-_^{108)}\textrm{\frac{14}{{5}}})+(-_^{15)}\textrm{\frac{7}{{36}}})=

-{\frac{13\cdot30}{{18\cdot 30}}}+(-{\frac{5\cdot 5}{{108\cdot 5}}})+(-{\frac{14\cdot 108}{{5\cdot 108}}})+(-{\frac{7\cdot 15}{{36\cdot 15}}})=

-{\frac{390}{{540}}}+(-{\frac{25}{{540}}})+(-{\frac{1512}{{540}}})+(-{\frac{105}{{540}}})=

{\frac{-390-25-1512-105}{{540}}}=  {\frac{-(390+25+1512+105)}{{540}}}=  {\frac{-2032}{{540}}}^{(2}=  {\frac{-1016}{{270}}}^{(2}=  {\frac{-508}{{135}}}

 

Exercițiul 2:  Efectuați calculele:

a) [-3\frac{1}{{2}} +1\frac{1 }{{15}} ] + [-1\frac{1}{{7}}+2\frac{7 }{{3}} ]=

Introducem întregii în fracție:

(-\frac{3\cdot2+1}{{2}} +\frac{1\cdot 15+1 }{{15}} ) + (-\frac{1\cdot7+1}{{7}}+\frac{2\cdot3+7 }{{3}} )=

(-\frac{7}{{2}} +\frac{16 }{{15}} ) + (-\frac{8}{{7}}+\frac{13}{{3}} )=

Determinăm numitorul comun și aducem fracțiile la același numitor:

Știm că 2,3,7 și 5 sunt numere prime între ele. Numitorul comun este 2\cdot 3\cdot 5\cdot 7= 210

Amplificăm fracțiile și obținem:

(-_{{}}^{105)}\textrm{\frac{7}{{2}}}+_{{}}^{14)}\textrm{\frac{16}{{15}}})+(-_{{}}^{30)}\textrm{\frac{8}{{7}}}+_{{}}^{70)}\textrm{\frac{13}{{3}}})=  (-{\frac{735}{{210}}}+{\frac{224}{{210}}})+(-{\frac{240}{{210}}}+{\frac{910}{{210}}})=

{\frac{-735+224}{{210}}}+{\frac{-240+910}{{210}}}=  {\frac{-511}{{210}}}+{\frac{670}{{210}}}=  {\frac{-511+670}{{210}}}= {\frac{159}{{210}}}^{(3}= {\frac{53}{{70}}}

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate Divizorul unui Număr Natural. Multiplul unui Număr Natural

“Educaţia ar fi mult mai eficientă dacă scopul acesteia ar fi ca la ieşirea din şcoală, fiecare copil să conştientizeze cât de multe lucruri nu ştie şi să fie cuprins de o dorinţă permanentă să le afle. – William Haley

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm și să explicăm pas cu pas câteva exerciții la lecția Divizorul unui Număr Natural. Multiplul unui Număr Natural. (mai mult…)

Exercițiul 1: Scrieți divizorii proprii și divizorii improprii ai numărului 21.

Rezolvare: 

Divizorii proprii ai lui 21 sunt: 3 și 7.

Divizorii improprii ai lui 21 sunt: 1 și 21.

Exercițiul 2 :

Determinați numărul natural x știind că x-3 este divizorul numărului natural 15. 

Rezolvare: 

 x-3 \in D_{15} \Rightarrow x-3 \in \left \{ 1,3,5,15 \right \}

Deoarece pe noi ne interesează valorile pe care le poate lua x vom egala cu fiecare număr si vom afla multimea valorilor lui x.

 x-3=1 \ \ \ /+3 \Rightarrow x=1+3 \Rightarrow x=4

 x-3=3 \ \ \ /+3 \Rightarrow x=3+3 \Rightarrow x=6

 x-3=5 \ \ \ /+3 \Rightarrow x=5+3 \Rightarrow x=8

 x-3=15 \ \ \ /+3 \Rightarrow x=15+3 \Rightarrow x=18

Soluție: x\in \left \{ 4, 6, 8, 18 \right \}

Exercițiul 3:  Determinați: 

a)  D_{{28}} \cup D_{{12}}

b)  D_{{28}} \cap D_{{12}};

Rezolvare: 

Scriem mulțimea divizorilor lui 28.

D_{{28}}=\left \{ 1\ \ \ ;\ \ \ 2\ \ \ ;\ \ \ 4\ \ \ ;\ \ \ 7\ \ \ ;\ \ \ 14\ \ \ ;\ \ \ 28 \right \}

Scriem mulțimea divizorilor lui 12.

D_{{12}}=\left \{ 1\ \ \ ;\ \ \ 2\ \ \ ;\ \ \ 3\ \ \ ;\ \ \ 4\ \ \ ;\ \ \ 6\ \ \ ;\ \ \ 12\ \ \right \}

a) Reunim cele două mulțimi și obținem: D_{{28}} \cup D_{{12}}=\left \{ 1\ \ \ ;\ \ \ 2\ \ \ ;\ \ \ 3\ \ \ ;\ \ \ 4\ \ \ ;\ \ \ 6\ \ \ ;\ \ \ 7\ \ \ ;\ \ \ 12\ \ \ ;\ \ \ 14\ \ \ ;\ \ \ 28 \right \}

  • Reamintim că Reuniunea a două mulțimi A și B este mulțimea notată A \cup B, formată din toate elementele celor două mulțimi comune și necomune, luate o singură dată.

b)  Intersectăm cele două mulțimi și obținem: D_{{28}} \cap D_{{12}}=\left \{ 1\ \ \ ;\ \ \ 2\ \ \ ;\ \ \ 4\ \ \right \}

  • Reamintim că  Intersecția: a două mulțimi A și B este mulțimea notată A\cap B , formată din toate elementele comune celor două mulțimi, luate o singură data.

Exercițiul 4:  Se consider inecuația 4\cdot x -1 \leq 39-x

a) Care dintre soluțiile inecuației sunt divizori ai numărului natural 12?

b) Care dintre soluțiile inecuației sunt multiplii lui 3?

Rezolvare: 

Rezolvăm inecuația: 4\cdot x -1 \leq 39-x.

Mutăm toți termenii care îl conțin pe x într-o parte iar ceilalti termini în cealaltă parte având grijă să schimbăm semnele.

4\cdot x +x \leq 39 +1

5\cdot x \leq 40

5\cdot x \leq 40 \ \ \ /\ \ \ :\ \ 5

x \leq 40 \ \ \ :\ \ 5 \Rightarrow x \leq 8  \Rightarrow x \in \left \{ 0\ \ \ ;\ \ \ 1\ \ \ ;\ \ \ 2\ \ \ ;\ \ \ 3\ \ \ \ ;\ \ \ \ 4\ \ \ ; \ \ \ 5\ \ \ ;\ \ \ 6\ \ \ ;\ \ \ 7\ \ \ ;\ \ \ 8\ \ \ \right \}

a) Scriem mulțimea divizorilor lui 12:

D_{{12}}= \left \{ 1\ \ \ ;\ \ \ 2\ \ \ ;\ \ \ 3\ \ \ ;\ \ \ 4\ \ \ ;\ \ \ 6\ \ \ ;\ \ \ 12\ \ \right \}

Acum intersectăm cele două mulțimi și obținem mulțimea

 \left \{ 1\ \ \ ;\ \ \ 2\ \ \ ;\ \ \ 3\ \ \ ;\ \ \ 4\ \ \ ;\ \ \ 6\ \ \right \}

b) Scriem mulțimea multiplilor lui 3

M_{3} =\left \{ 3\ \ \ ;\ \ \ 6\ \ \ ;\ \ \ 9\ \ \ ;\ \ \ 12\ \ \ ;\ \ \ 18\ ............ \right \}

Intersectăm mulțimea valorilor lui x cu mulțimea multiplilor lui 3 și obținem mulțimea: \left \{ 3\ \ \ ;\ \ \ 6\ \ \right \}

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Aducerea fracțiilor la același numitor

„Învățătorii îți deschid ușa, însă numai tu însuți poți trece dincolo de ea.”

-Proverb chinezesc

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții rezolvate  la Aducerea fracțiilor la același numitor!

(mai mult…)

Exercițiul 1: Se consider fracțiile:    \frac{3}{48}\frac{7}{72} ;  \frac{5}{56} ;  \frac{1}{45};

a) Calculați c.m.m.m.c-ul numitorilor fractiilor de mai sus;

b) Aduce-ți fracțiile la acelasi numitor.

Rezolvare:

a)  \frac{3}{48}\frac{7}{72} ;  \frac{5}{56} ;  \frac{1}{45};

Descompunem in factori primi numitorii:

Scriem numitorii ca produs de puteri:

48=2^{4} \cdot 3

72=2^{3} \cdot 3^{2}

56=2^{3} \cdot 7

45=3^{2} \cdot 5

Pentru a determina  c. m.m.m.c- ul luăm toate bazele la puterea cea mai mare.  [48; 72; 56; 45]=2^{4}\cdot 3^{2}\cdot 5^{1}\cdot 7^{1}   \Rightarrow [48; 72; 56; 45]=16 \cdot 9\cdot 5\cdot 7   \Rightarrow [48; 72; 56; 45]=5140

b) Pentru a aduce la același numitor fracțiile de mai sus trebuie sa le amplificam astfel incăt la numitor să obținem valoarea c.m.m.m.c-ului.Pentru a afla cu cat trebuie să amplificăm fiecare fracție împărțim valoarea c.m.m.m.c-ului la fiecare numitor.

5140 \ \ \ : \ \ \ 48=105 \Rightarrow Prima fracție o amplificăm cu 105.

5140 \ \ \ : \ \ \ 72=70  \Rightarrow A doua  fracție o amplificăm cu 70

5140 \ \ \ : \ \ \ 56 = 90  \Rightarrow A treia  fracție o amplificăm cu 90

5140 \ \ \ : \ \ \ 45 = 112 \Rightarrow A patra  fracție o amplificăm cu 112.

Astfel obținem:

_{}^{105)}\frac{3}{48}\ \ \ \ ; \ \ _{}^{70)}\frac{7}{72}\ \ \ \ ; \ \ _{}^{90)}\frac{5}{56}\ \ \ ; \ \ _{}^{112)}\frac{1}{45}\ \ \ \ ;     \Rightarrow \frac{105 \cdot 3}{{105 \cdot 48}}\ \ \ ; \ \ \frac{70 \cdot 7}{{70 \cdot 72}}\ \ \ ; \ \ \frac{90 \cdot 5}{{90 \cdot 56}}\ \ \ ; \ \ \frac{112 \cdot 1}{{112 \cdot 45}}

\Rightarrow \frac{315}{{5140}}\ \ \ ; \ \ \frac{490}{{5140}}\ \ \ ; \ \ \frac{450}{{5140}}\ \ \ ; \ \ \frac{112}{{5140}}

Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Aducerea fracțiilor la același numitor pentru copilul tău, pe care o gasești aici: Fisa de lucru Aducerea fractiilor la acelasi numitor

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

 

 

 

 

Exerciții rezolvate la Metoda Mersului Invers

“Învingătorii nu renunță, iar cei care renunță nu ajung învingători!”

Aristotel

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții rezolvate  la Metoda Mersului Invers! (mai mult…)

Exercițiul 1:     3(x+2) - 7=14

Rezolvare:  Știm din clasele mici că într-un exerciţiu în care sunt folosite paranteze rotunde, atunci efectuăm întâi operaţiile din paranteze după care efectuam restul operaţiilor în ordinea în care sunt scrise. Analizând exercițiul nostru observăm că nu putem efectua calculele din paranteza rotunda deoarece avem o necunoscută. În acest caz pentru a-l afla pe x prima oară îl mutăm pe 7 cu semn schimbat în partea dreaptă a egalului.

3(x+2) - 7=14   / +7  \Rightarrow   3(x+2)=14+7 \Rightarrow

3(x+2)=21/ :\ \ \ \ 3  \Rightarrow   x+2=21 \ \ \ :\ \ \ 7  \Rightarrow

x+2=3/ -2  \Rightarrow   x=3-2   \Rightarrow   x=1

Exercițiul 2:    100\cdot [25-6\cdot (x-3)+2]\ \ \ : \ \ \ 3=300

Rezolvare: 

100\cdot[25-6\cdot (x-3)+3] \ \ \ : \ \ \ 3=300   / \ \ \ \cdot 3

100\cdot[25-6\cdot (x-3)+3] = 300 \cdot 3

100\cdot[25-6\cdot (x-3)+3] = 900 / \ \ \ : \ \ \ 100

25-6\cdot (x-3)+3 = 900\ \ \ : \ \ \ 100

25-6\cdot (x-3)+3 = 9   / - 3

25- 6\cdot (x-3) = 9 - 3

25- 6\cdot (x-3) = 6

Deoarece necunoscuta mea este în pozitia scăzătorului atunci vom scrie:

 6\cdot (x-3) =25 - 6  \Rightarrow    6\cdot (x-3) =18     / \ \ \ :\ \ \ 6  \Rightarrow

x-3 =18\ \ \ :\ \ \ 6  \Rightarrow   x-3 =3   /+3  \Rightarrow   x =3+3  \Rightarrow   x =6

Exercițiul 3:  90+[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=212

Rezolvare: De data aceasta primul termen mutat cu semn schimbat este 90 cu semnul –

90+[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=212    /-90

[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=212-90

[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=122    /\cdot 4

[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] =122 \cdot 4

(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18 =488 / - 18

(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2=488-18

(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2=470   / \ \ \ :\ \ \ 2

(420\ \ \ :\ \ \ 4 +5\cdot a)=470 \ \ \ :\ \ \ 2   \Rightarrow (420\ \ \ :\ \ \ 4 +5\cdot a)=235

\Rightarrow (205+5\cdot a)=235   / - 205

\Rightarrow 5\cdot a=235 -205   \Rightarrow 5\cdot a=30  / \ \ \ : \ \ \ 5

\Rightarrow a=30 \ \ \ :\ \ \ 5   \Rightarrow a=6

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Metoda Mersului  Invers  pentru copilul tău, pe care o gasești aici: Fisa de lucru Metoda Mersului Invers

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.” 

Transformarea unei fracții ordinare într-o fracție periodică

„Trebuie să încerci necontenit să urci foarte sus, dacă vrei să poți să vezi foarte departe.”

Constantin Brâncusi

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva exerciții la transformarea unei fracții ordinare în fracție periodică.

(mai mult…)

Exercițiul 1: Transformați următoarele fracții ordinare în fracții zecimale periodice simple:

a) \frac{31}{9}   ;   b)  \frac{517}{99}  ;

Rezolvare:

Pentru a transforma fracțiile ordinare în fracții zecimale periodice simple trebuie să împărțim numărătorul la numitor astfel:

a) \frac{31}{9}   Împărțim 31 la 9 și obținem:

Observăm că dacă am continua împărțirea se va repeat numărul 4. În aceste cazuri spunem că rezultatul    \frac{31}{9}=3,(4) și citim trei virgulă perioadă patru.

b)   \frac{517}{99}=

Observăm că dacă am continua împărțirea se va repeat numărul 4. În aceste cazuri spunem că rezultatul    \frac{517}{99}=5,(2) .

Exercițiul 2 : Transformați următoarele fracții ordinare în fracții zecimale periodice mixte:

a) \frac{233}{45} ;   b) \frac{553}{60}  ;

Rezolvare:

Pentru a transforma fracțiile ordinare în fracții zecimale periodice simple trebuie să împărțim numărătorul la numitor astfel:

a)  \frac{233}{45}

Observăm că dacă am continua împărțirea se va repeat numărul 7. În aceste cazuri spunem că rezultatul    \frac{233}{45}=5,1(7) și citim cinci virgulă unu perioadă șapte.

b) \frac{553}{60}

Observăm că dacă am continua împărțirea se va repeat numărul 6. În aceste cazuri spunem că rezultatul     \frac{553}{60}=9,21(6).

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Procente.

” Tăria minții vine prin exercițiu nu prin repaos”.

Alexander Pope

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas câteva Exerciții  rezolvate la Procente. (mai mult…)

Exercițiul 1:  Calculați:

a) 75 % din 1600

b) 1,25 % din 2000

c) 25 % din 16 % din 750

d) 4,(2) % din 7200 .

Rezolvare:

a)  75 % din 1600 =  \frac{75}{{100}} \cdot 1600=  \frac{75\cdot 16\emptyset\emptyset}{{1\emptyset\emptyset}}=  75\cdot 16=  1200

b) 1,25 % din 2000 = \frac{1,25}{100} \cdot 2000=  \frac{1,25\cdot 20\emptyset\emptyset}{1\emptyset\emptyset}= 1,25\cdot 20=25

c) 25 % din 16 % din 750 =  25% \cdot (\frac{16}{{100}} \cdot 750)= \frac{25}{{100}} \cdot (\frac{16 \cdot 75\emptyset}{{10\emptyset}})= \frac{25}{{100}} \cdot (\frac{16 \cdot 75}{{10}})= \frac{25}{{100}} \cdot (\frac{1200}{{10}})= \frac{25}{{100}} \cdot (\frac{120\emptyset}{{1\emptyset}})= \frac{25}{{100}} \cdot 120= \frac{25}{{10\emptyset}} \cdot 12\emptyset= \frac{25\cdot 12}{{10}}= \frac{300}{{10}}= \frac{30\emptyset}{{1\emptyset}}= \frac{30}{{1}}=30

d) 4,(2) % din 7200 =  \frac{4,(2)}{{100}} \cdot 7200 =  \frac{4,(2)\cdot 72\emptyset\emptyset}{{1\emptyset\emptyset}} =  4,(2)\cdot 72 =   \frac{42-4}{{9}} \cdot 72=  \frac{38}{{9}} \cdot 72= \frac{38 \cdot 72}{{9}} = \frac{2736}{{9}} =304

Exercițiul 2:   Aflați un număr x știind că :

a)  20% din el este 80;

b) 2,75 % din el este 3,30;

c) 3,(6)% din el este 36,3.

Rezolvare:

a)  20% din x este 80  \Rightarrow \frac{20}{{100}} \cdot x = 80 \Rightarrow \frac{20}{{100}} \cdot x = 80 / \ \ \ \cdot 100 \Rightarrow 20 \cdot x = 80 \cdot 100 \Rightarrow 20 \cdot x = 8000 / \ \ \ :\ \ 20 \Rightarrow x = 8000 \ \ :\ \ 20 \Rightarrow x = 400

b) 2,75 % din el este 3,30 \Rightarrow \frac{2,75}{{100}} \cdot x = 3,30  \Rightarrow \frac{2,75}{{100}} \cdot x = 3,30 / \cdot100  \Rightarrow 2,75 \cdot x = 3,30 \cdot100  \Rightarrow 2,75 \cdot x = 330

\Rightarrow \frac{275}{{100}} \cdot x = 330 \Rightarrow \frac{275}{{100}} \cdot x = 330 /\cdot 100 \Rightarrow {275}\cdot x = 330 \cdot 100

\Rightarrow {275}\cdot x = 33000 \Rightarrow {275}\cdot x = 33000 / \ \ \ : \ \ 275\Rightarrow x = 33000 \ \ : \ \ 275

\Rightarrow x = 120

c) 3,(6)% din x este 36,3 \Rightarrow \frac{3,(6)}{{100}} \cdot x = 36,3 \Rightarrow \frac{3,(6)}{{100}} \cdot x = 36,3 / \cdot 100 \Rightarrow 3,(6) \cdot x = 36,3 \cdot 100

\Rightarrow \frac{36-3}{{9}} \cdot x = 3630

\Rightarrow \frac{33}{{9}} \cdot x = 3630 / \cdot 9 \Rightarrow 33\cdot x = 3630 \cdot 9

\Rightarrow 33\cdot x = 32670 / \ \ \ : \ \ \ 33 \Rightarrow x = 32670 \ \ \ : \ \ \ 33

\Rightarrow x = 990

PS: Dragul meu părinte am pregătit si o fișă de lucru pentru copilul tău o gasești aici:Fișă de lucru Procente

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”