Posts Tagged ‘natural number’

Transformarea unei fracții ordinare într-o fracție periodică

„Trebuie să încerci necontenit să urci foarte sus, dacă vrei să poți să vezi foarte departe.”

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva exerciții la transformarea unei fracții ordinare în fracție periodică.

(mai mult…)

Exercițiul 1: Transformați următoarele fracții ordinare în fracții zecimale periodice simple:

a) \frac{31}{9}   ;   b)  \frac{517}{99}  ;

Rezolvare:

Pentru a transforma fracțiile ordinare în fracții zecimale periodice simple trebuie să împărțim numărătorul la numitor astfel:

a) \frac{31}{9}   Împărțim 31 la 9 și obținem:

Observăm că dacă am continua împărțirea se va repeat numărul 4. În aceste cazuri spunem că rezultatul    \frac{31}{9}=3,(4) și citim trei virgulă perioadă patru.

b)   \frac{517}{99}=

Observăm că dacă am continua împărțirea se va repeat numărul 4. În aceste cazuri spunem că rezultatul    \frac{517}{99}=5,(2) .

Exercițiul 2 : Transformați următoarele fracții ordinare în fracții zecimale periodice mixte:

a) \frac{233}{45} ;   b) \frac{553}{60}  ;

Rezolvare:

Pentru a transforma fracțiile ordinare în fracții zecimale periodice simple trebuie să împărțim numărătorul la numitor astfel:

a)  \frac{233}{45}

Observăm că dacă am continua împărțirea se va repeat numărul 7. În aceste cazuri spunem că rezultatul    \frac{233}{45}=5,1(7) și citim cinci virgulă unu perioadă șapte.

b) \frac{553}{60}

Observăm că dacă am continua împărțirea se va repeat numărul 6. În aceste cazuri spunem că rezultatul     \frac{553}{60}=9,21(6).

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Procente.

” Tăria minții vine prin exercițiu nu prin repaos”.

Alexander Pope

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas câteva Exerciții  rezolvate la Procente. (mai mult…)

Exercițiul 1:  Calculați:

a) 75 % din 1600

b) 1,25 % din 2000

c) 25 % din 16 % din 750

d) 4,(2) % din 7200 .

Rezolvare:

a)  75 % din 1600 =  \frac{75}{{100}} \cdot 1600=  \frac{75\cdot 16\emptyset\emptyset}{{1\emptyset\emptyset}}=  75\cdot 16=  1200

b) 1,25 % din 2000 = \frac{1,25}{100} \cdot 2000=  \frac{1,25\cdot 20\emptyset\emptyset}{1\emptyset\emptyset}= 1,25\cdot 20=25

c) 25 % din 16 % din 750 =  25% \cdot (\frac{16}{{100}} \cdot 750)= \frac{25}{{100}} \cdot (\frac{16 \cdot 75\emptyset}{{10\emptyset}})= \frac{25}{{100}} \cdot (\frac{16 \cdot 75}{{10}})= \frac{25}{{100}} \cdot (\frac{1200}{{10}})= \frac{25}{{100}} \cdot (\frac{120\emptyset}{{1\emptyset}})= \frac{25}{{100}} \cdot 120= \frac{25}{{10\emptyset}} \cdot 12\emptyset= \frac{25\cdot 12}{{10}}= \frac{300}{{10}}= \frac{30\emptyset}{{1\emptyset}}= \frac{30}{{1}}=30

d) 4,(2) % din 7200 =  \frac{4,(2)}{{100}} \cdot 7200 =  \frac{4,(2)\cdot 72\emptyset\emptyset}{{1\emptyset\emptyset}} =  4,(2)\cdot 72 =   \frac{42-4}{{9}} \cdot 72=  \frac{38}{{9}} \cdot 72= \frac{38 \cdot 72}{{9}} = \frac{2736}{{9}} =304

Exercițiul 2:   Aflați un număr x știind că :

a)  20% din el este 80;

b) 2,75 % din el este 3,30;

c) 3,(6)% din el este 36,3.

Rezolvare:

a)  20% din x este 80  \Rightarrow \frac{20}{{100}} \cdot x = 80 \Rightarrow \frac{20}{{100}} \cdot x = 80 / \ \ \ \cdot 100 \Rightarrow 20 \cdot x = 80 \cdot 100 \Rightarrow 20 \cdot x = 8000 / \ \ \ :\ \ 20 \Rightarrow x = 8000 \ \ :\ \ 20 \Rightarrow x = 400

b) 2,75 % din el este 3,30 \Rightarrow \frac{2,75}{{100}} \cdot x = 3,30  \Rightarrow \frac{2,75}{{100}} \cdot x = 3,30 / \cdot100  \Rightarrow 2,75 \cdot x = 3,30 \cdot100  \Rightarrow 2,75 \cdot x = 330

\Rightarrow \frac{275}{{100}} \cdot x = 330 \Rightarrow \frac{275}{{100}} \cdot x = 330 /\cdot 100 \Rightarrow {275}\cdot x = 330 \cdot 100

\Rightarrow {275}\cdot x = 33000 \Rightarrow {275}\cdot x = 33000 / \ \ \ : \ \ 275\Rightarrow x = 33000 \ \ : \ \ 275

\Rightarrow x = 120

c) 3,(6)% din x este 36,3 \Rightarrow \frac{3,(6)}{{100}} \cdot x = 36,3 \Rightarrow \frac{3,(6)}{{100}} \cdot x = 36,3 / \cdot 100 \Rightarrow 3,(6) \cdot x = 36,3 \cdot 100

\Rightarrow \frac{36-3}{{9}} \cdot x = 3630

\Rightarrow \frac{33}{{9}} \cdot x = 3630 / \cdot 9 \Rightarrow 33\cdot x = 3630 \cdot 9

\Rightarrow 33\cdot x = 32670 / \ \ \ : \ \ \ 33 \Rightarrow x = 32670 \ \ \ : \ \ \ 33

\Rightarrow x = 990

PS: Dragul meu părinte am pregătit si o fișă de lucru pentru copilul tău o gasești aici:Fișă de lucru Procente

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Rapoarte.

„Nimic nu este prea dificil dacă împarți în pași mici ceea ce ai de făcut.”

Henry Ford

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas  Exerciții  rezolvate la Rapoarte! (mai mult…)

Exercițiul1: Aflați termenul necunoscut din următoarele rapoarte:

a) \frac{x}{5}=\frac{21}{3}

b) \frac{5}{x}=0,20

c) \frac{6,(4)}{x}=8

Rezolvare:

a)  \frac{x}{5}=\frac{21}{3}

Înmulțim pe diagonală și obținem :

 \Rightarrow 3 \cdot x=21\cdot5  \Rightarrow 3 \cdot x=105  \Rightarrow x=105 \ \ \ :\ \ \ 3  \Rightarrow x=35

b) \frac{5}{x}=0,20

Transformăm fracția zecimală 0,20 în fracție ordinară și obținem:

\Rightarrow \frac{5}{{x}}=\frac{20}{{10}}\Rightarrow \frac{5}{{x}}=\frac{2}{{1}} \Rightarrow 5\cdot 1=x \cdot 2 \Rightarrow 2x=5 \ \ \ \ \ /:\ \ 2\Rightarrow x=\frac{5}{{2}}

c) \frac{6,(4)}{x}=8 \Rightarrow \frac{6,(4)}{x}=\frac{8}{1}\Rightarrow 6,(4)\cdot 1=8 \cdot x

Transformăm fracția periodică  6,(4) în fracție ordinară  astfel 6,(4)=\frac{64-6}{{9}}=\frac{58}{{9}} și obținem:

\Rightarrow 6,(4)\cdot 1=8 \cdot x  \Rightarrow \frac{58}{{9}}\cdot \frac{1}{{1}}=\frac{8\cdot x}{{1}} \Rightarrow \frac{58}{{9}}=\frac{8\cdot x}{{1}} \Rightarrow 58 \cdot 1 =9 \cdot 8\cdot x \Rightarrow 58=72\cdot x \Rightarrow 58=72\cdot x \ \ \ /\ \ \ \ :\ \ 72  \Rightarrow x = \frac{58}{{72}}^{{(2}}

 \Rightarrow x = \frac{29}{{36}}

Exercițiul 2: Se consideră numerele a= 1+2+3+.........................+2018 și b = 2+4+6+.........................+4036. Calculați :

a) Raportul dintre a și b;

b) Raportul dintre suma și diferența numerelor b și a;

Rezolvare:

Calculăm mai întâi numărul a ca să îl aducem la o formă mai simplă. Recunoaștem suma Gauss a primelor 2018 numere naturale consecutive și aplicăm formula lui Gauss.

a = 1+2+3+.........................+2018

 a = 2018\cdot(2018+1) \ \ \ : \ \ \ 2

 a = 2018\cdot 2019 \ \ \ : \ \ \ 2

 a = 2018 \ \ \ : \ \ \ 2 \cdot 2019

 a = 1009 \cdot 2019

PS: Dacă nu îți mai amintești Suma lui Gauss găsești aici PDF-ul gratuit : Suma Gauss

Calculăm și numărul b pentru a obține o formă mai simplă.

b = 2+4+6+.........................+4036.

Dăm factor comun pe 2 și obținem din nou Suma Gauss a primelor 2018 numere naturale consecutive.

 b =2 \cdot (1+2+3+...............+2018)

 b =2 \cdot [2018\cdot (2018+1) \ \ :\ \ \ 2]

 b =2 \cdot [2018\ \ :\ \ \ 2 \cdot (2018+1) ]

 b =2 \cdot [2018\ \ :\ \ \ 2 \cdot 2019 ]

 b =2 \cdot 1009 \cdot 2019

 b =2018 \cdot 2019

  • a) Facem raportul   \frac{a}{b} = \frac{1009 \cdot 2019}{2018 \cdot 2019} ^{{(1009 \cdot 2019}}  \Rightarrow \frac{a}{b} = \frac{1}{2}
  • b) Calculăm raportul     \frac{a+b}{b-a}=  \frac{1009\cdot 2019+2018\cdot 2019}{2018\cdot 2019-1009\cdot 2019}=

Observăm că putem da factor comun pe 1009\cdot2019 și la numărător și la numitor și obținem:

 \frac{1009\cdot 2019\cdot (1+2)}{1009\cdot 2019\cdot(2-1)}= \frac{1009\cdot 2019\cdot 3}{1009\cdot 2019\cdot 1}=

Observăm că putem simplifica raportul prin 1009\cdot2019 și obținem:

 \frac{1009\cdot 2019\cdot 3}{1009\cdot 2019\cdot 1}^{{(1009\cdot 2019}} =\frac{3}{1}=3

Exercițiul 3:

Știind că  \frac{a}{b} = \frac{7}{2}  calculați valoarea raportului:

a)  \frac{12\cdot a+6\cdot b}{6\cdot a-b} = ?

b) \frac{3\cdot a+5\cdot b}{2\cdot a+b} = ?

Rezolvare:

a) Știind raportul  \frac{a}{b} = \frac{7}{2}  înmulțim pe diagonală și scoatem a în funcție de b

 \Rightarrow 2\cdot a= 7 \cdot b \Rightarrow a=\frac{7\cdot b }{{2}}

Înlocuim a în raportul pe care îl avem de calculat și obținem:

 

\Rightarrow \frac{12\cdot \frac{7\cdot b }{{2}}+6\cdot b}{6\cdot \frac{7\cdot b }{{2}}-b} =  \frac{ \frac{84\cdot b }{{2}}+6\cdot b}{ \frac{42\cdot b }{{2}}-b} =

\frac{ {42\cdot b }+6\cdot b}{ 21\cdot b -b} =  \frac{ {48\cdot b }}{ 20\cdot b } ^{(4\cdot b} =  \frac{ {12 }}{ 5 }

b) Știind raportul  \frac{a}{b} = \frac{7}{2}  înmulțim pe diagonală și scoatem a în funcție de b

 \Rightarrow 2\cdot a= 7 \cdot b \Rightarrow a=\frac{7\cdot b }{{2}}

Înlocuim a în raportul pe care îl avem de calculat și obținem:

\frac{3\cdot a+5\cdot b}{2\cdot a+b} =  \frac{3\cdot \frac{7\cdot b }{{2}} +5\cdot b}{2\cdot \frac{7\cdot b }{{2}}+b} =  \frac{\frac{21\cdot b }{{2}} + 5\cdot b}{ \frac{14\cdot b }{{2}}+b} =  \frac{\frac{21\cdot b }{{2}} + _{{}}^{2)}{5\cdot b}}{ \frac{14\cdot b }{{2}}+_{{}}^{2)}{ b}} =  \frac{\frac{21\cdot b }{{2}} + {\frac{10\cdot b }{{2}}} }{ \frac{14\cdot b }{2}+{{{\frac{2\cdot b }{{2}}}}  = \frac{\frac{31\cdot b }{{2}} }{ \frac{16\cdot b }{2}} =  {\frac{31\cdot b }{{2}} }\ \ \ :\ \ \ { \frac{16\cdot b }{2}} =   {\frac{31\cdot b }{{2}} } \cdot { \frac{2}{16\cdot b}} =  {\frac{31 }{{16}} }

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Unghiuri opuse la vârf

” Nu e destul să știm, trebuie să și aplicăm. Nu e destul să ne dorim, trebuie să facem.”

Goethe

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas 3 Exerciții  rezolvate la Unghiuri opuse la vârf !  (mai mult…)

Exercițiul1:

Fie unghiurile  \widehat{AOB} și  \widehat{COD} două unghiuri opuse la vârf. Știind că  m(\widehat{AOB})=59^\circ aflați  m(\widehat{AOC})=? și  m(\widehat{BOD})=?

Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Din datele problemei știm că  \widehat{AOB} și  \widehat{COD} opuse la vârf \Rightarrow

 m(\widehat{COD}) \equiv m(\widehat{AOB}) =59^{\circ}

Analizând figura observăm că punctele A,\ \ \ O și D sunt coliniare:  m(\widehat{AOC}) + m(\widehat{AOB})=180^\circ \Rightarrow m(\widehat{AOC})+59^\circ=180^\circ \Rightarrow m(\widehat{AOC})=180^\circ- 59^\circ\Rightarrow m(\widehat{AOC})=121^\circ

m(\widehat{AOC})\equiv m(\widehat{BOD})\Rightarrow m(\widehat{BOD})=121^\circ

Exercițiul 2:

Fie \widehat{AOB} și \widehat{COD} opuse la vârf și dreptele AD \cap BC=\left \{ O \right \}. Știind că m(\widehat{AOC})=21^\circ+x  și m(\widehat{AOB})=97^\circ+x aflați : m(\widehat{AOB}) șim(\widehat{AOC}).

Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Din datele problemei știm că \widehat{AOB} și \widehat{COD} opuse la vârf și  AD \cap BC=\left \{ O \right \} \Rightarrow B\ \ , \ \ O și C coliniare \Rightarrow m(\widehat{BOC})=180^\circ

Dacă privim atent desenul observăm: \Rightarrow m(\widehat{BOC})=m(\widehat{AOB})+m(\widehat{AOC})\Rightarrow m(\widehat{AOB})+m(\widehat{AOC})=180^\circ \Rightarrow 97^\circ+x+21^\circ+x=180^\circ

\Rightarrow 2x+ 118^\circ=180^\circ \Rightarrow 2x=180^\circ-118^\circ \Rightarrow 2x=62^\circ \Rightarrow x=62^\circ\ \ \ :\ \ \ 2 \Rightarrow x=31^\circ

m(\widehat{AOC})=21^\circ+x \Rightarrow m(\widehat{AOC})=21^\circ+31^\circ\Rightarrow m(\widehat{AOC})=52^\circ

m(\widehat{AOB})=97^\circ+x\Rightarrow m(\widehat{AOB})=97^\circ+31^\circ  \Rightarrow m(\widehat{AOB})=128^\circ

 

Exercițiul 3:

Dacă AB\cap CD= \left \{ O \right \} și \frac{ m(\widehat{AOD})}{ m(\widehat{AOC})}=\frac{4}{{5}} află m(\widehat{BOC}) și m(\widehat{BOD}).

Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Problema ne spune că \frac{ m(\widehat{AOD})}{ m(\widehat{AOC})}=\frac{4}{{5}} \Rightarrow 5\cdot m(\widehat{AOD})}= 4\cdot m(\widehat{AOC})

\Rightarrow m(\widehat{AOD})}= \frac{4}{5}\cdot m(\widehat{AOC})

Dar AB\cap CD= \left \{ O \right \} \Rightarrow C\ \ , \ \ O \ \ și D coliniare  \Rightarrow m(\widehat{COD})= 180^\circ

Analizând desenul observăm că m(\widehat{COD})= m(\widehat{AOC})+ m(\widehat{AOD})

\Rightarrow m(\widehat{AOC})+ m(\widehat{AOD})=180^\circ \Rightarrow m(\widehat{AOC})+ \frac{4}{5}\cdot m(\widehat{AOC})=180^\circ | \ \ \ \cdot 5

\Rightarrow 5\cdot m(\widehat{AOC})+ 4\cdot m(\widehat{AOC})=5\cdot 180^\circ  \Rightarrow 9\cdot m(\widehat{AOC})=900 ^\circ | \ \ \ :\ \ \ 9  \Rightarrow m(\widehat{AOC})=100 ^\circ

Știm că  m(\widehat{AOD})}= \frac{4}{5}\cdot m(\widehat{AOC})\Rightarrow m(\widehat{AOD})}= \frac{4}{5}\cdot 100^\circ \Rightarrow m(\widehat{AOD})}= \frac{4\cdot 100^\circ}{5}\Rightarrow m(\widehat{AOD})}= \frac{400^\circ}{5}\Rightarrow m(\widehat{AOD})}= 80^\circ

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții Rezolvate la Unghiuri complementare. Unghiuri Suplementare

Cel mai mare neajuns al nostru este că renunțăm prea repede. Cel mai corect drum către succes este să mai încerci o dată.” Thomas Edison

Dragul meu părinte bine te-am regăsit! Azi îți propun o nouă lecție de geometrie în plan și te invit să rezolvăm și să explicăm pas cu pas împreună câteva exerciții la “Unghiuri Complementare. Unghiuri Suplementare”. (mai mult…)

Exercițiul 1 :

Unghiul  \widehat{MON} și  \widehat{NOP} sunt adiacente și complementare. Știind că  m(\widehat{MON}) este \frac{3}{2} din  m(\widehat{NOP}) să se calculeze   m(\widehat{NOP})   și  m(\widehat{MON}) ..

  • Rezolvare: 
  • Scriem datele problemei:
  • Realizăm desenul:
  • Analizând desenul observăm că  m(\widehat{MON})+ m(\widehat{NOP})=90^\circ
  • Știm că  m(\widehat{MON})=\frac{3}{{2}}\cdot m(\widehat{NOP})  \Rightarrow \frac{3}{{2}}\cdot m(\widehat{NOP})+m(\widehat{NOP})=90^\circ \ \ \ | \ \ \cdot \ \ 2
  •  \Rightarrow 3\cdot m(\widehat{NOP})+2 \cdot m(\widehat{NOP})=2\cdot 90^\circ
  •  \Rightarrow 5\cdot m(\widehat{NOP})=180^\circ \ \ \ | \ \ \ \cdot \ \ \ 5
  •  \Rightarrow m(\widehat{NOP})=180^\circ\ \ \ : \ \ \ 5
  •  \Rightarrow m(\widehat{NOP})=36^\circ
  • Înlocuim și  aflăm și măsura unghiului  \widehat{MON}
  •  m(\widehat{MON})=\frac{3}{{2}}\cdot m(\widehat{NOP}) \Rightarrow m(\widehat{MON})=\frac{3}{{2}}\cdot 36^\circ \Rightarrow m(\widehat{MON})=\frac{3\cdot36^\circ}{{2}} \Rightarrow m(\widehat{MON})=\frac{108^\circ}{{2}}=54^\circ
  • m(\widehat{MOP})= m(\widehat{MON})+ m(\widehat{NOP})
  •  m(\widehat{MOP})=36^\circ+54^\circ=90^\circ

Exercițiul 2:

Măsura m(\widehat{XOY}) este \frac{7}{8} din măsura suplementului său unghiul m(\widehat{YOZ}). Aflați măsura m(\widehat{XOY}) și m(\widehat{YOZ}).

  • Rezolvare:
  • Scriem datele problemei:
  • Realizăm desenul:
  • Analizând desenul observăm că: m(\widehat{XOY})+m(\widehat{YOZ})=180^\circ
  • Știm că m(\widehat{XOY})=\frac{7}{{8}}\cdot m(\widehat{YOZ})
  • \Rightarrow\frac{7}{{8}}\cdot m(\widehat{YOZ})+m(\widehat{YOZ})= 180^\circ \ \ \ | \ \ \cdot8
  • \Rightarrow 7\cdot m(\widehat{YOZ})+8\cdot m(\widehat{YOZ})=8\cdot180^\circ
  • \Rightarrow 15 \cdot m(\widehat{YOZ})= 1440^\circ
  • \Rightarrow 15 \cdot m(\widehat{YOZ})= 1440^\circ \ \ \ | \ \ : \ \ \ 15
  • \Rightarrow m(\widehat{YOZ})= 1440^\circ \ \ : \ \ \ 15
  • \Rightarrow m(\widehat{YOZ})= 96^\circ
  • Înlocuim și aflăm măsura  m(\widehat{XOY}):
  • m(\widehat{XOY})=\frac{7}{{8}}\cdot m(\widehat{YOZ}) \Rightarrow m(\widehat{XOY})=\frac{7}{{8}}\cdot 96^\circ \Rightarrow m(\widehat{XOY})=\frac{7\cdot 96^\circ}{{8}}\Rightarrow m(\widehat{XOY})=\frac{672^\circ}{{8}}=84^\circ

Exercițiul 3: 

Determinați măsura unghiului m(\widehat{MON}) știind că măsura complementului suplementului său este de 63^\circ.

  • Rezolvare:
  • Dacă citim atent enunțul problemei aceasta ne precizează că complementul suplementului unghiului  \widehat{MON} este 63^\circ . Scriem matematic această informație:
  • Notăm suplementul unghiului \widehat{MON} cu \widehat{NOP} și obținem informația:
  • m(\widehat{MON})+m(\widehat{NOP})=180^\circ
  • Notăm complementul unghiului \widehat{NOP} cu \widehat{NOQ} și obținem informația:
  • m(\widehat{NOP})+m(\widehat{NOQ})=90^\circ
  • Scriem datele problemei:
  • Realizăm desenul:
  • Plecăm de la informația furnizată de enunțul problemei că:
  • m(\widehat{NOP})+m(\widehat{NOQ})=90^\circ
  • Știm că m(\widehat{NOQ})=63^\circ \Rightarrow m(\widehat{NOP})+63 ^\circ=90^\circ \ \ \ | \ \ -63^\circ \Rightarrow m(\widehat{NOP})=90^\circ -63^\circ \Rightarrow m(\widehat{NOP})=27^\circ
  • Mai știm din enunțul problemei că: m(\widehat{MON})+m(\widehat{NOP})=180^\circ
  • Înlocuim m(\widehat{NOP})=27^\circ și obținem:
  • m(\widehat{MON})+27^\circ=180^\circ \ \ \ | \ \ -27^\circ
  • \Rightarrow m(\widehat{MON})=180^\circ -27^\circ
  • \Rightarrow m(\widehat{MON})=153^\circ

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în Clubul de “Matematică Math More Easy”.

Exerciții rezolvate la Factorul Comun la Puteri

“Un ratat nu știe ce va face dacă pierde, dar vorbește despre ce va face dacă va castiga. Un învingător nu vorbește despre ce va face dacă va caștiga, dar știe ce va face dacă pierde.”
Eric Berne
Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună cateva exerciții la “Factorul comun la Puteri”.

(mai mult…)

Exercițiul 1:

Efectuați calculele, folosind factorul comun:

a) 3^{96}+3^{98}+3^{100}

b) 2\cdot2^{47}+3\cdot2^{48}+2^{50}

c) 8^{300}-24\cdot8^{298}-64\cdot8^{297}

d) 3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}

e) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

  • Rezolvare: 
  • a) 3^{96}+3^{98}+3^{100}
  • Adunarea este o operație de gradul I și ridicarea la putere este o operație de gradul III, iar ordinea efectuării operațiilor ne spune că trebuie să facem mai întâi operațiile de gradul III și apoi cele de gradul I

Observăm că avem puteri foarte mari și nu putem ridica la putere așa că ne vom folosi de factorul comun și vom da factor comun puterea cea mai mică.

Observăm că 3^{96} este puterea cea mai mică asa ca îl dăm factor comun pe 3^{96} și obținem:

3^{96}\cdot(3^{96-96}+3^{98-96}+3^{100-96})

Scădem puterile și obținem:

3^{96}\cdot(3^{0}+3^{2}+3^{4})

Ridicăm la putere termenii din paranteza rotundă:

3^{96}\cdot(1+9+81)=3^{96}\cdot91

  • b)      2\cdot2^{47}+3\cdot2^{48}+2^{50}

Observăm că  2^{47} este puterea cea mai mică așa că îl dăm factor comun pe 2^{47} și obținem:

2^{47}\cdot(2\cdot2^{47-47}+3\cdot2^{48-47}+2^{50-47})

Scădem puterile și obținem:

2^{47}\cdot(2\cdot2^{0}+3\cdot2^{1}+2^{3})

Ridicăm la putere termenii din paranteza rotundă și obținem:

2^{47}\cdot(2\cdot 1+3\cdot2+8)

Efectuăm  înmulțirile și obținem:

2^{47}\cdot(2+6+8)=

Efectuăm adunarea din paranteză și obținem:

2^{47}\cdot 16=

Știm că 16 îl putem scrie în baza 2 ca 2^{4} și obținem

2^{47}\cdot2^{4}=

Aplicăm Regulile de calcul cu puteri și scriem baza și adunam exponenții:

2^{47+4}=2^{51}

  • c)   8^{300}-24\cdot8^{298}-64\cdot8^{297}

Observăm că 8^{297} este cea mai mică putere, îl dăm factor comun pe 8^{297} și obținem:

8^{297}\cdot(8^{300-297}-24\cdot8^{298-297}-64\cdot8^{297-297})

Scădem puterile și obținem:

8^{297}\cdot(8^{3}-24\cdot8^{1}-64\cdot8^{0})

Ridicăm la putere termenii din paranteză și obținem:

8^{297}\cdot(512-24\cdot8-64\cdot1) =

Efectuăm înmulțirile din paranteză și obținem:

  • 8^{297}\cdot(512-192-64) =

Efectuăm scăderea din paranteza rotundă și obținem:

8^{297}\cdot 256 =

Știm că putem scrie 8=2^3 și 256=2^8 și obținem:

(2^3)^{297}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri înmulțim puterile și obținem:

2^{3\cdot297}\cdot 2^8=2^{891}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri, scriem baza și adunam puterile și obținem astfel:

2^{891+8}=2^{899}

  • d)  3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}=

Aplicăm Regulile de calcul cu puteri și obținem:

3^{2n}\cdot3^2+7\cdot 3^{2n}\cdot3^1-6\cdot3^{2n}=

Observăm că se repetă în fiecare termen al adunării 3^{2n},  îl dăm factor comun și obținem:

3^{2n}\cdot(3^2+7\cdot3^1-6\cdot1)=

Ridicăm la putere termenii din paranteza rotundă și obținem:

3^{2n}\cdot(9+7\cdot3-6)=

Efectuăm Înmulțirea din paranteză și obținem:

3^{2n}\cdot(9+21-6)=

Efectuăm calculele din paranteza rotundă și obținem:

3^{2n}\cdot 24=3^{2n}\cdot 3\cdot8=

Aplicăm Regulile de calcul cu puteri scriem baza și adunăm exponenții și obținem:

3^{2n+1}\cdot8

  • d) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri  transformăm bazele pe 6 îl scriem 6=2\cdot3 , pe 4=2^2, 9=3^2 , pe  18=2\cdot3^2  și obținem:

(2\cdot3)^{2n+1}+6\cdot (2^2)^{n+1}\cdot (3^2)^{n+2}+(2\cdot3^2)^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri, distribuim puterea și obținem:

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2\cdot(n+1)}\cdot 3^{2\cdot(n+2)}+2^{n+1}\cdot3^{2(n+1)}\cdot2^{n+1}

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2n+2}\cdot 3^{2n+4}+2^{n+1}\cdot3^{2n+2}\cdot2^{n+1}

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n}\cdot2^1\cdot3^{2n}\cdot3^2\cdot2^{n}\cdot2^1

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n+n}\cdot2^{1+1}\cdot3^{2n}\cdot3^2

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{2n}\cdot2^{2}\cdot3^{2n}\cdot3^2

Observăm că se repeta 2^{2n}\cdot3^{2n} și îl dăm factor comun, astfel obținem:

2^{2n}\cdot3^{2n}\cdot(2^1\cdot3^1+6\cdot2^2\cdot3^4+2^{2}\cdot3^2)

Ridicăm la putere termenii din paranteza rotundă:

2^{2n}\cdot3^{2n}\cdot(2\cdot3+6\cdot4\cdot81+4\cdot9)

Efectuăm înmulțirile din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot(6+1944+36)

Efectuăm calculele din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot 1986=(2\cdot3)^{2n}\cdot 6\cdot331=(6)^{2n}\cdot 6^1\cdot331=(6)^{2n+1}\cdot331

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în Clubul de “Matematică Math More Easy.” 

Exerciții Rezolvate la Descompunerea În Factori Primi

“Descurajarea și înfrângerile sunt unele dintre cele mai sigure căi către succes.”

Dale Carnegie

Dragul meu părinte bine te-am regăsit! Azi îți propun să lucrăm câteva exerciții la o lecție  extrem de importanta Descompunerea în Factori Primi a unui Număr Natural.  (mai mult…)

Exercițiul 1 :

Descompuneți în produs de factori primi următoarele numere naturale:

a) 120

b) 3528;

c)36000

Rezolvare: 

  • a) Pentru că 120 se divide cu 10 (numărul 120 se termină in 0), iar 10 nu este număr prim vom împărți mai întâi prin 2\cdot 5
  • Rămâne 12 care este un număr par și se divide cu 2.
  • Deci 120 descompus în factori primi este: 120=2^3 \cdot 3^1 \cdot 5^1
  • b) 3528

  • Pentru că 3528 este un număr par de divide cu 2.
  • Pentru că 441 este un număr impar și  nu se mai divide cu 2, verificăm criteriul de divizibilitate cu 3.
  • 4+4+1=9\ \ \ \vdots\ \ \ 3
  • Mai departe împărțim prin 3.
  • Pentru că 49 nu se mai divide cu 3 și nu se divide nici cu 5 încercăm cu următorul număr prim cu 7.
  • Astfel obținem 3528 descompus în factori primi: 3528=2^3 \cdot 3^2 \cdot7^2
  • c) 36000
  • Pentru că 36000 se termină în trei cifre de 0 înseamnă că de divide cu  1000=10^3=(2\cdot5)^3=2^3 \cdot 5^3
  • Deci obținem:
  • Astfel putem scrie 36000=2^5 \cdot 3^2 \cdot 5^3

 

Exercițiul 2 :

Determinați  numerele naturale “m”, “n” și “p”astfel încât să obțineți propoziții adevărate:

a) 36=2^n \cdot 3^p

b) 360=2^n \cdot 3^p\cdot 5^m

c) 720=2^n \cdot 3^p\cdot 5^m

Rezolvare:

Descompunem în factori primi numerele 36, 360 și 720.

descompunere in factori primi

  • Obținem astfel:
  • a) 36=2^n \cdot 3^p
  •  36=2^2\cdot 3^2 \Rightarrow n=2 și  p=2
  • b) 360=2^n \cdot 3^p\cdot 5^m
  •  360=2^3 \cdot 3^2\cdot 5^1 \Rightarrow n=3 \ \ \ ; \ \ \ p=2 și m=1
  • c) 720=2^n \cdot 3^p\cdot 5^m
  •  720=2^4 \cdot 3^2\cdot 5^1\Rightarrow n=4 \ ; \ \ \ p=2 și m=1

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy”.  

Segment de dreaptă. Semidreapta

“Singurul lucru mai rău decât să începi ceva și să ratezi…….. este să nu începi acel ceva”

Seth Godin

Dragul meu părinte bine te-am regăsit. Azi îți propun o nouă lecție de Geometrie în Plan.  În articolele anterioare am vorbit despre Dreaptă și Plan. Azi îți propun lecția  “Segment de dreaptă. Semidreapta”.

Segment de dreaptă:

  • Este o porțiune din acea dreaptă delimitat de două puncte distincte numite extremitățile segmentului sau capetele segmentului.
  • Se notează : \left [ AB \right ]

Segmentul de dreaptă închis:

  • Se notează: \left [ AB \right ]
  • Include cele două puncte A și B

Segmentul de dreaptă deschis:

  • Se notează: \left ( AB \right )
  • nu include cele două puncte A și B.

Segmentul de dreaptă nul:

  • Este segmentul de dreaptă care are proprietatea că punctele care delimitează segmentul coincid.

Semidreapta: 

  • Este un segment de dreaptă mărginit la un singur capăt.
  • Se notează: \left [ MN
  • M se numește origine

Semidreaptă închisă: 

  • Este semidreapta care își conține originea
  • Se notează: \left [ MN

Semidreaptă deschisă:

  • Este semidreapta care nu își conține originea.
  • Se notează: \left ( MN

Semidrepte opuse:

  • Sunt două semidrepte conținute în aceeași dreaptă, care au aceeași origine și sensuri diferite.

Semidrepte identice:

  • Sunt două semidrepte de acelasi fel (închise sau deschise), conținute în aceeași dreaptă, care au aceeași origine și același sens.

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții și probleme cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematic[ Math More Easy”. 

Exerciții rezolvate la Compararea puterilor

“Educația nu e cât de mult ai memorat sau cât știi. E capacitatea de a face diferența între ce știi și ce nu știi”.

Anatole France 

Dragul meu părinte bine te-am regăsit! Azi revin cu o lecție nouă la capitolul Numere Naturale: Exerciții rezolvate la Compararea Puterilor.

(mai mult…)

Exercițiul 1: Comparați numerele:

  • a) 4 ^{17} și 2 ^{34}
  • b) 3 ^{27} și 9 ^{13}
  • c) 8 ^{17} și  2^{52}

Rezolvare: 

  • 4 ^{17} și 2 ^{34}
  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că putem să-l scriem pe 4 ca bază 2 ^2.
  • ({2 ^2})^{17}    și 2 ^{34}
  • Aplicăm Regulile de Calcul cu Puteri pentru primul număr, înmulțim exponenții și obținem:
  • 2 ^{2\cdot 17}  și 2 ^{34} \Rightarrow 2 ^{34}   = 2 ^{34}

b) 3 ^{27}   și 9 ^{13}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că  putem modifica bazele atunci îl vom scrie pe 9=3 ^{2} și obținem:
  • 3 ^{27} și (3 ^{2}) ^{13} \Rightarrow 3 ^{27} și  3 ^{2\cdot 13}  \Rightarrow 3 ^{27}   \gt \ \ \ 3 ^{26}

c)  8 ^{17} și  2 ^{52}

    • Observăm că  putem modifica bazele atunci îl vom scrie pe 8= 2^{3} și obținem:
    • (2^{3})^{17} și 2^{52 \Rightarrow 2^{3\cdot 17} și  2^{52}  \Rightarrow 2^{51} \lt 2^{52}
Exercițiul 2:  Comparați numerele:
  • a)  2 ^{48}  și   3 ^{32}
  • b)  2 ^{60}  și  3 ^{36}
  • c)  3 ^{42}  și  5 ^{28}
  • d) { 2^2}^3  și (2^2)^3

Rezolvare: 

a) 2^{48} și 3^{32}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel  48=3\cdot16 și 32=2\cdot16. Obținem:
  • 2^{3\cdot16} și 3^{2\cdot16}  \Rightarrow (2^3)^{16} și  (3^2)^{16}
  • Ridicăm la putere știind că  2^3=8 și  3^2=9 obținem:
  •  8^{16} \lt 9^{16}
  • Numărul cu baza mai mică este mai mic.

b)  2^{60} și  3^{36}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel: 60=10\cdot 6 și 36=6\cdot 6. Obținem:
  • 2^{10\cdot 6} și 3^{6\cdot 6} \Rightarrow (2^{10})^ 6 și (3^{6})^ 6
  • Ridicăm la putere știind că 2^{10}=1024 și 3^{6}=729. Obținem:
  •  1024^{6} \gt 729^6
  • Numărul cu baza mai mare este mai mare.

c) 3^{42} și 5^{28}

  • Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel: 42=3\cdot 14  și 28=2 \cdot 14. Obținem:
  • 3^{3\cdot14} și 5^{2\cdot14}   \Rightarrow (3^3)^{14} și  (5^2)^{14}
  • Ridicăm la putere știind că  3^3= 27 și  5^2= 25 obținem:
  •  27^{14}\ \ \gt\ \ 25^{14}.

d) { 2^2}^3 și (2^2)^3

  • Observăm că la primul număr avem puterea unei puteri cu alte cuvinte exponentul este tot o putere 2^3. Mai întâi ridicăm la putere exponentul știind că 2^3 = 8 și obținem: { 2^2}^3=2^8.
  • La cel de-al doilea număr aplicăm Regulile de calcul cu puteri,  înmulțim puterile și obținem: (2^3)^2=2^{3\cdot 2}= 2^6
  • { 2^2}^3 și (2^2)^3\Rightarrow 2^8 \ \ \gt \ \ 2^6

Exercițiul 3: Comparați numerele:

a) 8^{18} - 7\cdot 8^{17} și 16^{14} - 15\cdot 16^{13}

c) (9^{15}\cdot 3^{14})^4  și (81^{3}\cdot 27^{7})^3 \cdot 243 ^{15}

Rezolvare:

a) 8^{18} - 7\cdot 8^{17} și 16^{14} - 15\cdot 16^{13}

  • Pentru a putea compara cele două numere trebuie să le aducem la o formă mai simplă. Pentru că avem operația de scădere între termenii celor două numere trebuie să dam factor comun baza care se repetă la puterea cea mai mică
  • 8^{17}\cdot (8^{18-17} - 7\cdot 8^{17-17}) și 16^{13}\cdot (16^{14-13} - 15\cdot 16^{13-13})
  • 8^{17}\cdot (8^{1} - 7\cdot 8^{0})   și 16^{13}\cdot (16^{1} - 15\cdot 16^{0})
  • Știm că orice număr la puterea 0 este egal cu 1  \Rightarrow 8^0=1 și \Rightarrow 16^0=1
  • Obținem:
  • 8^{17}\cdot (8 - 7\cdot 1) și 16^{13}\cdot (16 - 15\cdot 1)
  • 8^{17}\cdot (8 - 7) și 16^{13}\cdot (16 - 15)
  • 8^{17}\cdot 1 și 16^{13}\cdot 1 \Rightarrow 8^{17} și 16^{13}
  • Pentru a putea compara cele două numere trebuie să le aducem la aceeași bază.
  • Știm că putem scrie:8=2^{3} și 16=2^{4} astfel obținem:
  • (2^{3})^{17} și (2^{4})^{13} \Rightarrow 2^{3\cdot 17} și 2^{4\cdot 13} \Rightarrow 2^{51} \lt 2^{52}

b) (9^{15}\cdot 3^{14})^4 și (81^{3}\cdot 27^{7})^3 \cdot 243 ^{15}

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy”.  

Model Rezolvat Teza clasa a VIII-a Semestrul II

Şcoala trebuie să te înveţe a fi propriul tău dascăl, cel mai bun şi cel mai aspru.

Nicolae Iorga

Dragul meu părinte bine te-am regăsit!  A început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(mai mult…)

Model Propus Teza clasa a VIII-a Semestrul II

 

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului: \sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  este:……………………………

Rezolvare:

\sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  =\sqrt{2\cdot 3}-3\sqrt{6} =\sqrt{6}-3\sqrt{6} =-2\sqrt{6}

Exercițiul 2 (1 punct):

Simplificând cu x^2+1  raportul : \frac{x^4-1}{{x^2+1}} se obține:……………………………….

Rezolvare:

Aplicăm formulele de calcul prescurtat pentru expresia: x^4-1 și se obține:

\frac{x^4-1}{{x^2+1}}=\frac{(x^2)^2-1^2}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}^{(x^2+1}=\frac{x^2-1}{1}=x^2-1.

Exercițiul 3 (1 punct):

Soluția ecuației: x-\sqrt{3}=0 este: ………………………………….

Rezolvare:

x-\sqrt{3}=0 \Rightarrow x-\sqrt{3}=0 /-\sqrt{3} \Rightarrow x=-\sqrt{3}

Exercițiul 4 (1 punct):

Se considera funcția f : R \to R  ,  f (x)=x-3. Valoarea funcției în punctul x=3 este egală cu: …………………….

Rezolvare:

Pentru a afla valoarea functiei în punctul x=3 calculăm  f (3) (îl înlocuim pe x cu 3 în funcție.

 f (3)=3-3=0

Exercițiul 5 (1punct):

Volumul cubului cu lungimea diagonalei de \sqrt{12}cm este: ……………………

Rezolvare:

Știm că diagonala cubului este egală cu:

 d=l\sqrt{3}\Rightarrow  l\sqrt{3}=\sqrt{12}\Rightarrow   l\sqrt{3}=\sqrt{4\cdot3}\Rightarrow   l\sqrt{3}=2\sqr{3}\Rightarrow  l\sqrt{3}=2\sqr{3} / :\sqr{3} \Rightarrow   l=2 cm

Știm că volumul cubului are formula:  V= l^3  ; înlocuim latura cu 2 cm și obținem:

 V= l^3 \Rightarrow  V= (2cm)^3 \Rightarrow V= 8cm^3 .

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete.

Exercițiul 1 (1,5 puncte):

Se consideră expresia: E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}.

a) Determina’i valorile reale ale lui x pentru care expresia E(x) este bine definită.

b) Demonstrați că E(x)=1,  (\forall ) x \in R \setminus \left \{ -2; 1\right \}.

Rezolvare:

E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

  • a)Punem condițiile de existență ale fracțiilor (numitorul fracției trebuie să fie diferit de 0):

 x-2 \neq 0 \Rightarrow x \neq 2

 3x-1 \neq 0 \Rightarrow 3x \neq 1 \Rightarrow 3x \neq \frac{1}{{3}}

 \Rightarrow x \in R\setminus \left \{ \frac{1}{{3}} , 2 \right \}

  • E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2

Înmulțim cu a doua fracție răsturnată.

  •  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

Aducem la același numitor în paranteză.

  •  \Rightarrow E(x)=(_{{}}^{x-2)}\textrm{1}- _{{}}^{x-2)}\textrm{x}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}    \Rightarrow E(x)=(\frac{x-2}{x-2}- \frac{x(x-2)}{x-2}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=(\frac{x-2-x^2+2x+x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=\frac{3x-1}{x-2}\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=1

Exercițiul 2 (1,5 puncte):

Se consideră funcția  f : R \to R , f(x)= -x+2 .

a) Calculați media aritmetică a numerelor a=f(0)  și b=f(2) .

b) Reprezentați grafic funcția f(x).

c) Calculați aria triunghiului determinat de graficul funcției f(x) și axele de coordonate OX și OY.

Rezolvare:

  • a) f(0)=0+2=2

f(2)=-2+2=0

 M_{a}=\frac{f(0)+f(2)}{{2}} \Rightarrow  M_{a}=\frac{2+0}{{2}} \Rightarrow  M_{a}=\frac{2}{{2}} \Rightarrow M_{a}= 1

  • b) Pentru a reprezenta grafic funcția f(x) facem intersecția cu cele două axe OX și OY
  • \cap OX : y=0 \Rightarrow f(x)=0   \Rightarrow -x+2=0   \Rightarrow -x=-2  \Rightarrow x=2  \Rightarrow A(2;0)
  • \cap OY:   x=0 \Rightarrow f(0)=0+2=2\Rightarrow B(0;2)

Exercițiul 3 (1,5 puncte):

O piramidă triunghiulară regulată VABC are latura AB=4\sqrt{6} cm și VO=2\sqrt{6} cm, unde O este centrul bazei ABC. Calculați:

a) aria laterală a piramidei;

b) distanța de la O la planul (VBC)

c) distanța de la punctul A la planul (VBC)

d) măsura unghiului format de planele (VBC) și (ABC).

Rezolvare:

Scriem datele problemei și apoi le analizăm:

Realizăm și desenul:

  • a)  Știm formula arie laterale:  A_{l}= \frac{P_{b}\cdot a_{p}}{2}.

Pentru a calcula A_{{l}} trebuie să aflăm mai întâi apotema piramidei a_{{p}}=VM.

VABC este piramidă triunghiulară regulată  \Rightarrow \bigtriangleup ABC  echilateral   \Rightarrow  AM înălțimea \bigtriangleup ABC  \Rightarrow AM=\frac{l\sqrt{3}}{{2}}  \Rightarrow AM=\frac{AB\sqrt{3}}{{2}}   \Rightarrow AM=\frac{4\sqrt{6}\cdot \sqrt{3}}{{2}}  \Rightarrow AM=\frac{4\sqrt{6\cdot 3}}{{2}}    \Rightarrow AM=\frac{4\cdot 3\sqrt{2}}{{2}}   \Rightarrow AM=\frac{12\sqrt{2}}{{2}}   \Rightarrow AM=6\sqrt{2} cm

Știm că OM= \frac{1}{{3}}\cdot AM \Rightarrow OM= \frac{1}{{3}}\cdot 6\sqrt{2} cm \Rightarrow OM= \frac{6\sqrt{2}}{{3}} cm \Rightarrow OM= 2\sqrt{2}} cm.

Aplicăm Teorema lui Pitagora în \bigtriangleup VOM pentru a afla apotema VM.

\bigtriangleup VOM((\widehat{VOM})=90^\circ )\RightarrowT.P \Rightarrow VM^2=VO^2+OM^2  \Rightarrow VM^2= (2\sqrt{6} cm)^2 + (2\sqrt{2} cm)^2

\Rightarrow VM^2= 2^2\cdot (\sqrt{6})^2 cm^2 + 2^2\cdot (\sqrt{2})^2 cm^2

\Rightarrow VM^2= 4\cdot 6 cm^2 + 4\cdot 2 cm^2

\Rightarrow VM^2= 24 cm^2 + 8 cm^2

\Rightarrow VM^2= 32 cm^2   \Rightarrow VM= \sqrt{32 cm^2}  \Rightarrow VM= \sqrt{16 \cdot2} cm

 \Rightarrow VM= 4\sqrt{2} cm

Aflăm și perimetrul bazei. Pentru ca \bigtriangleup ABC  este echilateral  \Rightarrow P_{b}= 3 \cdot l  \Rightarrow P_{b}= 3 \cdot AB

 \Rightarrow P_{b}= 3 \cdot 4\sqrt{6} cm  \Rightarrow P_{b}= 12\sqrt{6} cm.

Înlocuim în aria laterală și obținem:

 A_{l}= \frac{P_{b}\cdot a_{p}}{2}  \Rightarrow A_{l}= \frac{12\sqrt{6} cm\cdot 4\sqrt{2} cm}{2}   \Rightarrow A_{l}= \frac{12 \cdot 4 \sqrt{6\cdot 2} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{12} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{4 \cdot 3} cm^2}{2}  \Rightarrow A_{l}= \frac{48\cdot 2 \sqrt{ 3} cm^2}{2}  \Rightarrow A_{l}= 48\sqrt{ 3} cm^2

  • b) d(O; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]  și  \left \{ O \right \} \in AM\Rightarrow \left [ OM \right ]\perp \left [ BC \right ]

  • OM=2\sqrt{2}cm

 

  • c) d(A; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]

  • d) m(\widehat{ (VOM),(ABC)} )=?

\bigtriangleup VOM((\widehat{VOM})=90^\circ ) : sin (\widehat{VMO})= \frac{VO}{{VM}} =\frac{2\sqrt{6}cm}{4\sqrt{2}cm} =\frac{\sqrt{3}}{2}   \Rightarrow m((\widehat{VMO})= 60^\circ)  \Rightarrow m((\widehat{VMA})= 60^\circ).

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

1 2