Posts Tagged ‘geometrie’

Segment de dreaptă. Semidreapta

“Singurul lucru mai rău decât să începi ceva și să ratezi…….. este să nu începi acel ceva”

Seth Godin

Dragul meu părinte bine te-am regăsit. Azi îți propun o nouă lecție de Geometrie în Plan.  În articolele anterioare am vorbit despre Dreaptă și Plan. Azi îți propun lecția  “Segment de dreaptă. Semidreapta”.

Segment de dreaptă:

  • Este o porțiune din acea dreaptă delimitat de două puncte distincte numite extremitățile segmentului sau capetele segmentului.
  • Se notează : \left [ AB \right ]

Segmentul de dreaptă închis:

  • Se notează: \left [ AB \right ]
  • Include cele două puncte A și B

Segmentul de dreaptă deschis:

  • Se notează: \left ( AB \right )
  • nu include cele două puncte A și B.

Segmentul de dreaptă nul:

  • Este segmentul de dreaptă care are proprietatea că punctele care delimitează segmentul coincid.

Semidreapta: 

  • Este un segment de dreaptă mărginit la un singur capăt.
  • Se notează: \left [ MN
  • M se numește origine

Semidreaptă închisă: 

  • Este semidreapta care își conține originea
  • Se notează: \left [ MN

Semidreaptă deschisă:

  • Este semidreapta care nu își conține originea.
  • Se notează: \left ( MN

Semidrepte opuse:

  • Sunt două semidrepte conținute în aceeași dreaptă, care au aceeași origine și sensuri diferite.

Semidrepte identice:

  • Sunt două semidrepte de acelasi fel (închise sau deschise), conținute în aceeași dreaptă, care au aceeași origine și același sens.

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții și probleme cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematic[ Math More Easy”. 

Planul

” Dacă începi astăzi, vei vedea rezultate cu o zi mai devreme decât dacă aștepți până mâine. Începe astăzi! “

Dragul meu părinte bine te-am regăsit! Azi te invit sa parcurgem împreună încă o lecție de Geometrie: Planul. 

(mai mult…)

Planul:
  • Ni-l imaginăm ca o suprafață netedă, întinsă la nesfârșit în toate direcțiile, alcătuită din puncte.
  • Îl notăm cu o literă din alfabetul grecesc:  \alpha, \beta, \gamma, \Delta ,\Psi , \Omega ............., sau cu trei litere mari într-o paranteză rotundă cu condiția să reprezinte trei puncte necoliniare ce-i aparțin (ABC).

Pozițiile Relative A  Unui Punct Față De Un Plan:

  • Punct Interior unui plan: 

  • Punct Exterior unui plan:

Dreaptă inclusă în plan:

Dacă o dreaptă d are toate punctele într-un plan \alpha, atunci dreapta este inclusă în planul \alpha. Se notează: d \subset \alpha .

Observație: 

Dacă A \in \alpha și B \in \alpha\Rightarrow AB \subset \alpha

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor 

dacă ai întrebări sau nevoie de ajutor.

                                          Cu mare drag și mult respect Alina Nistor!

Unități de Măsură pentru Arie. Aria Pătratului și Aria dreptunghiului.

“Invatatul este asemeni navigarii in amonte: daca nu avansezi esti tras inapoi.”
Proverb chinezesc

Dragul meu părinte bine te-am regăsit.Ultimul capitol din programa la matematică de clasa a V-a este rezervat Elementelor de Geometrie.

Cele mai vechi urme ale geometriei se găsesc în Egiptul Antic și Babilon, în jurul anului 3000 î.Hr și a fost descoperită din nevoia de a măsura pământul. De aici și denumirea de Geometrie: în limba Greacă geo = pământ, metria = măsură. (mai mult…)

Dragul meu părinte, te invit azi să aprofundăm noțiunile despre: Unități de Măsură pentru Arie. Aria Pătratului și Aria dreptunghiului.

Exercițiul 1: Determinați x din: 10^4 cm^2 + 10^6 mm^2- x=1,6 m^2

Rezolvare:

Prima oară transformăm cm^2  și mm^2  în m^2 .

Pentru a face transformările desenăm scara unităților de măsură:

Scara unitati de masura pentru arie

Pentru a transforma cm^2  în m^2  urcăm 2 trepte deci împărțim la 100^2 .

 10^4 cm ^2=10^4 \div 100^2=10^4 \div (10^2)^2=10^4 \div 10^4=1 m^2

Pentru a transforma mm^2  în m^2  urcăm 3 trepte deci împărțim la 100^3.

10^6 mm ^2=10^6 \div 100^3=10^6 \div (10^2)^6=10^6 \div 10^6=1 m^2

Înlocuim în ecuația noastră și obținem:

10^4 cm^2 + 10^6 mm^2- x=1,6 m^2 \Rightarrow 1 m^2 + 1 m^2- x=1,6 m^2 \Rightarrow 2 m^2 - x=1,6 m^2 \Rightarrow x=2 m^2 - 1,6 m^2 \Rightarrow x=2,0 m^2 - 1,6 m^2 \Rightarrow x =0,4 m^2

Exercițiul 2: Determinați x din:  5 \cdot x - 3 \cdot 0,0004 Km^2= 315 m^2

Rezolvare:

Pentru a transforma Km^2 în m^2  coborâm 3 trepte deci înmulțim cu 100^3.

 0,0004 Km^2= 0,0004 \cdot 100^3 = 0,0004 \cdot 1000000   =0,000400 \cdot 1000000= 400 m^2

Înlocuim în ecuația noastră și obținem:

5 \cdot x - 3 \cdot 0,0004 Km^2= 315 m^2  \Rightarrow 5 \cdot x - 3 \cdot 400 m^2= 315 m^2  \Rightarrow 5 \cdot x - 1200 m^2= 315 m^2  \Rightarrow 5 \cdot x = 315 m^2 + 1200 m^2  \Rightarrow 5 \cdot x = 1515 m^2   >\Rightarrow 5 \cdot x = 1515 m^2 / : 5  \Rightarrow x = 1515 m^2 \div 5  \Rightarrow x = 303 m^2

Exercițiul 3: Determinați x din:  x + 23,615 ha= 2363 ari

Rezolvare:

 1 ar = 1 dam^2 \Rightarrow 2363 ari = 2363 dam ^2

 1 ha = 1 hm^2 \Rightarrow 23,615 ha = 23,615 hm ^2 \Rightarrow  23,615 hm ^2= 23,615 \cdot 10^2 = 2361,5 dam^2

Înlocuim în ecuația dată și obținem:

x + 2361,5 dam^2= 2363 dam^2

x + 2361,5 dam^2= 2363 dam^2 / -2361,5 dam^2

x = 2363 dam^2 -2361,5 dam^2

x = 1,5 dam^2

Exercițiul 4: Calculați aria unui pătrat ce are perimetrul egal cu 5,92 m.

Rezolvare:

 P_{{ ABCD}}= 4\cdot l \Rightarrow 4\cdot l = 5,92 m \Rightarrow   l = 5,92 m : 4 \Rightarrow l = 1,48 m

 A_{ABCD}= l^2 \Rightarrow A_{ABCD}= (1,48 m)^2 \Rightarrow    A_{ABCD}= 1,48 m \cdot 1,48 m \Rightarrow A_{ABCD}= 2,1904 m^2

Exercițiul 5: Câte plăci de beton în formă de pătratică având latura de 50 cm sunt necesare pentru a pava curtea unei case care are formă de dreptunghi cu dimensiunile de 47 m lungime și 21m lățime.

Rezolvare:

Pentru a rezolva problema facem mai întâi suprafața curții, adică Aria dreptunghiului.

 A_{curte}= L \cdot l \Rightarrow A_{curte}= 47m \cdot 21 m \Rightarrow A_{curte}= 987 m^2   \Rightarrow A_{curte}= 987 \cdot 10 000 \Rightarrow A_{curte}= 9870000 cm^2

Calculăm și aria plăcii de beton.

A_{placa beton}= l^2 \Rightarrow A_{placa beton}= (50 cm)^2   \Rightarrow A_{placa beton}= 2500 cm^2

 A_{curte} \div A_{placa beton}= 9870000 cm^2 : 2500 cm^2 \Rightarrow

 A_{curte} \div A_{placa beton}= 98700 : 25 \Rightarrow   A_{curte} \div A_{placa beton}= 3948  bucăți plăci beton.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

 

Probleme rezolvate cu Teorema lui Thales

Dragul meu părinte bine te-am regăsit. In articolul de ieri am discutat despre Teorema lui Thales, despre Reciproca Teoremei lui Thales, despre Teorema Bisectoarei și ți-am povestit și legenda Teoremei lui Thales. Astăzi vreau să rezolvăm împreuna câteva probleme de geometrie în care se aplică teoremele menționate mai sus.

(mai mult…)

Problema 1:

În  \Delta ABC se dau AB=52 cm, AC=72 cm și  P_{{ \Delta ABC}}=2+6+10+14+......+38 . Dacă  M \in (AB),  N \in (AC) astfel încât MN \parallel BC , și   P_{{\Delta MNP}}=50 cm  calculați lungimile segmentelor [AM], [AN] și [MN].

Rezolvare:

Această problemă se rezolvă cu teorema lui Thales.

Observăm că  P_{{ \Delta ABC}}=2+6+10+14+......+38   este o sumă Gauss. Rezolvăm Suma Gauss pentru a afla perimetrul.

 P_{{ \Delta ABC}}=2+6+10+14+......+38 .

Observăm că putem da factor comun pe 2.

 P_{{ \Delta ABC}}=2\cdot(1+3+5+7+......+19)

Calculăm numărul de termeni cu formula lui Gauss.

n=(19-1) : 2 +1

n=18 : 2 +1

n=9 +1

n=10 (termeni)

Calculăm Suma Gauss cu formula

 P_{{ \Delta ABC}}=2\cdot[10\cdot (19+1) :2]

 P_{{ \Delta ABC}}=2\cdot[10\cdot 20 :2]

 P_{{ \Delta ABC}}=2\cdot[200 :2]

 P_{{ \Delta ABC}}=2\cdot 100

 P_{{ \Delta ABC}}=200 cm .

PS: Dragul meu părinte dacă copilul tău nu a înțeles Suma Gauss sau nu-și mai amintește cum se calculează te invit sa descarci PDF-ul gratuit (special conceput cu foarte multe exemple pentru fiecare clasa de la a V-a la a-VIII-a) de aici:

http://mathmoreeasy.ro/pdf-gratuit-suma-gauss-explicatie-definitie-si-exercitii-rezolvate/

Din perimetru putem afla dimensiunea laturii BC.

 P_{{ \Delta ABC}}=AB +AC +BC

 200 cm = 52 cm + 72 cm +BC

 BC= 200 cm - 124 cm

 BC= 76 cm

Știm din datele problemei că  MN \parallel BC  deci putem aplica teorema lui Thales

 MN \parallel BC \Rightarrow \frac{AM}{{AB}}=\frac{AN}{{AC}}=\frac{MN}{{BC}}=k

\Rightarrow \frac{AM}{{52 cm}}=\frac{AN}{{72cm}}=\frac{MN}{{76cm}}=k

\Rightarrow \frac{AM}{{52 cm}}=k    \Rightarrow AM=52cm \cdot k

\Rightarrow \frac{AN}{{72cm}}=k    \Rightarrow AN= 72cm\cdot k

\Rightarrow \frac{MN}{{76cm}}=k \Rightarrow MN= 76cm\cdot k

 P_{{ \Delta MNP}}= MN +MP +NP

50 cm = 52cm \cdot k+ 72 cm \cdot k+76 cm \cdot k

50 cm = 200cm \cdot k

k = 200cm : 50 cm

k=\frac{1}{4}

\Rightarrow AM=52cm \cdot k=52cm \cdot \frac{1}{{4}}   \Rightarrow AM=13cm

\Rightarrow AN=72cm \cdot k=72cm \cdot \frac{1}{{4}}  \Rightarrow AN=18cm

\Rightarrow MN=76cm \cdot k=76cm \cdot \frac{1}{{4}}  \Rightarrow MN=19cm

Problema 2:

Un trapez ABCD, AB \parallel CD, AB \gt CD are AB = 26 cm și linia mijlocie MN = 18 cm, M \in (AD), N \in (BC).

a) Calculați lungimea bazei mici a trapezului.

b) Dacă P și Q sunt două puncte, P \in (AB), Q \in (DC) și PQ \cap MN= \left \{ R \right \}, arătați că R este mijlocul lui \left [ PQ \right ].

Rezolvare:

a) Știm că MN este linie mijlocie.

MN=\frac{AB+CD}{{2}}     \Rightarrow 2\cdot MN=AB+CD    \Rightarrow 2\cdot 18 cm=26 cm+CD  \Rightarrow 36cm -26 cm=CD   \Rightarrow CD = 10 cm

b)

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului pentru a afla la timp tot ce postez pe blog:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Teorema lui Thales

Dragul meu părinte bine te-am regăsit. Continuăm  să ne pregătim la Geometrie cu o nouă lecție la capitolul “Asemănarea triunghiurilor”. Azi discutăm despre Teorema lui Thales.

Legenda spune că Thales care a învățat matematică de la Egipteni și Babylonieni a măsurat înălţimea piramidelor din Egipt, măsurând umbra lor în momentul în care umbra unui băţ vertical era egală cu lungimea lui vezi figura de mai jos. Procedeul este, fără îndoială, ingenios, dar nu e foarte sigură utilizarea lui de către Thales. Aici este evident implicat un caz particular al „teoremei lui Thales”; dar procedeul s-ar fi putut baza pe observaţia că dacă pentru un băţ (vertical) umbra lui este egală cu lungimea sa, această relaţie are loc pentru orice obiect (de exemplu o piramidă, un obelisc etc.).

Thales ar fi folosit cazul general al teoremei de asemănare „După ce ai aşezat toiagul perpendicular pe pământ, la capătul umbrei aruncate de piramidă, a arătat că prin căderea razei de lumină s-au format două triunghiuri; raportul existent între o umbră şi cealaltă era identic cu cel dintre înălţimea piramidei şi lungimea toiagului.

Theorema lui Thales:

O paralelă dusă la una dintre laturile unui triunghi determină pe celelalte două laturi sau prelungirile lor, segmente proporționale.

 

Reciproca Teoremei lui Thales:

Fie triunghiul ABC și punctele E \in AB, F \in AC , aflate în același semiplan determinat de paralela prin A la BC.

Dacă:\frac{AE}{AB}=\frac{AF}{AC}  \Rightarrow EF \parallel BC

  • OBSERVAȚIE:  Dacă \frac{AE}{AB}\neq \frac{AF}{AC}   \Rightarrow EF \not \parallel BC

Aplicații ale Teoremei lui Thales:

  • Teorema Paralelelor Neechidistante:

Mai multe drepte paralele determină pe două secante oarecare segmente proporționale.

 

 

Dacă:  d_{1}\parallel d_{2}\parallel d_{3}\parallel d_{4}\parallel.............  \Rightarrow \frac{A_{{1}}A_{{2}}}{{B_{{1}}B_{{1}}}}=\frac{A_{{2}}A_{{3}}}{{B_{{2}}B_{{3}}}}=\frac{A_{{3}}A_{{4}}}{{B_{{3}}B_{{4}}}}=..................

  • Teorema Bisectoarei:

Într-un triunghi bisectoarea unui unghi determină pe latura opusă două segmente proporționale cu celelalte două laturi.

  •  Pentru unghiul exterior:

  • Împărțirea unui segment în părți proporționale cu numerele (segmentele) date:

Pentru a împărți un segment [AB] în părți proporționale cu numerele 2,3 și 5 procedăm astfel. Considerăm semidreapta [AX și pe ea, cu ajutorul compasului construim 10 segmente congruente (2+3+5=10)  astfel A_{{1}}A_{{2}}=2u, A_{{2}}A_{{5}}=3u, A_{{5}}A_{{10}}=5u. Unim A_{{10}} cu B și apoi ducem A_{{5}}N \parallel A_{{10}}B  și A_{{2}}M \parallel A_{{10}}B.  Cu ajutortul paralelelor echidistante obținem:

\frac{AM}{2}=\frac{MN}{3}=\frac{NB}{5}

Dacă dorești să ai acces la mai multe exemple de exerciții cu un grad de dificultate ridicat rezolvate și explicate pas cu pas te invit alături de mine in Clubul de Matematică “Math More Easy” sau accesează link-ul de mai jos:http://mathmoreeasy.ro/probleme-rezolvate-cu-teorema-lui-thales/

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

 

 

 

 

 

 

 

 

Raportul a două segmente

Dragul meu părinte bine te-am regăsit. Azi deschid un capitol nou și foarte important al Geometriei:  “Asemănarea triunghiurilor”. Este unul dintre cele mei importante capitole din geometria în plan și se bazează pe Teorema lui Thales.

Thales din Milet (624 – 546 î.Hr.), ar fi cunoscut teoremele privitoare la triunghiurile asemenea, cu ajutorul cărora a măsurat depărtarea unui vas de la țărmul mării. De asemenea, tot cu ajutorul lor  el ar fi măsurat înălțimea Marii Piramide a lui Keops.

(mai mult…)

Segmente proporționale:

Def: Raportul a două segmente este raportul lungimilor lor, exprimate cu aceeași unitate de măsură.

Definiție:  Patru segmente se numesc proporționale dacă se poate forma o proporție cu lungimile acestora.

Teorema paralelelor echidistante:

Dacă mai multe drepte paralele determină pe o secantă segmente congruente, atunci ele determină pe orice altă decantă segmente congruente.

 

 

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Proiecții ortogonale pe o dreaptă. Teorema Înălțimii

Dragul meu părinte bine te-am regăsit. Azi deschid un capitol nou și foarte important al Geometriei în plan : ” Relații Metrice în Triunghiul Dreptunghic”. Acest capitol este foarte important  în studiul Geometriei în Plan (geometria de clasa a VII-a), dar și în Geometria în Spațiu (geometria de clasa a VIII-a).  Prima lecție din acest capitol “Proiecții ortogonale pe o dreaptă. Teorema Înălțimii.” (mai mult…)

Proiecția ortogonală a unui punct pe o dreaptă este piciorul perpendicularei duse din acel punct pe dreaptă.

Observație:  Vom nota :  pr_{d}M=M^{{'}}

  • Teoremă:   Proiecția unui segment pe o dreaptă este un segment sau un punct.

  • Observație:  Dacă proiecția segmentului [AB] pe dreapta d este segmentul  \left [ A ^{'}B^{'} \right ] , atunci proiecția mijlocului segmentului [AB] pe dreapta d este mijlocul segmentului  \left [ A ^{'}B^{'} \right ] .

Teorema înălțimii:  Într-un triunghi dreptunghic lungimea înălțimii corespunzătoare ipotenuzei este media geometrică a lungimilor proiecțiilor catetelor pe ipotenuză.

  • Observație:  Lungimea înălțimii corespunzătoare ipotenuzei este raportul dintre produsul lungimilor catetelor și lungimea ipotenuzei.

  • Reciproca Teoremei Înălțimii :  Fie triunghiul ABC și D \epsilon (BC) astfel încât AD \perp BC și  AD^{{2}}=DC \cdot DB. Atunci  m(\widehat{BAC})=90 ^{\circ} .

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăti în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

Propunere Model Teza Semestriala (I) clasa a VI-a

clasa a VI-a“Succesul înseamnă a fi în stare să mergi din eșec în eșec, fără să-ți pierzi entuziasmul” spunea Winston Churchill.

Dragul meu părinte, bine te-am regăsit!Pentru că a început perioada tezelor semestriale, iar copilul tău trebuie să repete toate noţiunile învăţate în acest semestru m-am gândit să vă ajut cu un model de teză care îl va ajuta să parcurgă materia studiată pâna în acest moment.

(mai mult…)

  • Toate subiectele sunt obligatorii.
  • Se acordă 10 puncte din oficiu.
  • Timp de lucru 50 minute.

Subiectul I. Pe foaia de test se trec numai rezultatele (30p):

5p     1 . Mulțimea divizorilor lui 30 este……………………………………………………

5p     2.Rezultatul calculului \left [ 2\frac{1}{5}-0,(4)+\frac{1}{45} \right ]:(1\frac{1}{3}) ^{2} este: …………………………

5p   3. Număr mai mare decât 30 care are exact 2 divizori este:…………………..

5p   4. Suplementul unghiului de masura  115^{{\circ}}  este ………………………………

5p    5. Complementul unui unghi cu măsura de  31^{{\circ}} are măsura de         ……………………………………………………

  • Subiectul II. Pe foaia de teză se alege răspunsul corect prin încercuire (20p):

 5p      1.   Aflați c.m.m.m.c al numerelor 12, 20.

10p     2. Dacă punctele A , B , C sunt coliniare (în această ordine); AB=12cm; AC=22cm atunci

a) BC=………………………………………………………………………….

b)Distanța dintre mijloacele segmentelor AB și BC este……………………

5P     3. Determinți x dacă

59x2

  • Subiectul III. Pe foaia de test se trec rezolvările complete(30p):

10p       1.  Arătaţi că numărul : A=1+3+5+7+……………..+2015 se divide cu 7.

8 p       2.   Determinați măsurile unghiurilor formate de două drepte concurente știind că unul din unghiurile formate este cu  30^{{\circ}} mai mare decât alt unghi format.

10p         3.   Determinaţi valorile naturale ale lui x pentru care \frac{9}{2x-1}} este număr natural.

12p.        4.  Fie unghiurile AOB şi BOC adiacente suplementare  cu m(\widehat{AOB})=70 ^{\circ}   iar [OE   bisectoarea  \widehat{AOB} si [OF bisectoarea  \widehat{BOC} . Calculati:

a) m(\widehat{BOC})=?

b) m(\widehat{EOF})=?

c) m(\widehat{AOF})=?

Ps: Dragul meu părinte, dacă copilultău nu a înteles foarte bine Suma lui Gauss poţi descărca acest PDF gratuit  pe care l-am conceput special pentru copii care au dificultăţi la aceste noţiuni  şi care  vă va ajuta să stăpâniţi la perfecţie aceste noţiuni matematice dificile .

Mult succes la rezolvarea acestei teze  dar mai ales mult succes la teza de la şcoală! 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Poţi descărca teza în format pdf de aici: teza-de-evaluare-vi-semestriala-la-matematica