Posts Tagged ‘#geometrie in plan’

Exerciții rezolvate la Unghiuri opuse la vârf

” Nu e destul să știm, trebuie să și aplicăm. Nu e destul să ne dorim, trebuie să facem.”

Goethe

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas 3 Exerciții  rezolvate la Unghiuri opuse la vârf !  (mai mult…)

Exercițiul1:

Fie unghiurile  \widehat{AOB} și  \widehat{COD} două unghiuri opuse la vârf. Știind că  m(\widehat{AOB})=59^\circ aflați  m(\widehat{AOC})=? și  m(\widehat{BOD})=?

Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Din datele problemei știm că  \widehat{AOB} și  \widehat{COD} opuse la vârf \Rightarrow

 m(\widehat{COD}) \equiv m(\widehat{AOB}) =59^{\circ}

Analizând figura observăm că punctele A,\ \ \ O și D sunt coliniare:  m(\widehat{AOC}) + m(\widehat{AOB})=180^\circ \Rightarrow m(\widehat{AOC})+59^\circ=180^\circ \Rightarrow m(\widehat{AOC})=180^\circ- 59^\circ\Rightarrow m(\widehat{AOC})=121^\circ

m(\widehat{AOC})\equiv m(\widehat{BOD})\Rightarrow m(\widehat{BOD})=121^\circ

Exercițiul 2:

Fie \widehat{AOB} și \widehat{COD} opuse la vârf și dreptele AD \cap BC=\left \{ O \right \}. Știind că m(\widehat{AOC})=21^\circ+x  și m(\widehat{AOB})=97^\circ+x aflați : m(\widehat{AOB}) șim(\widehat{AOC}).

Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Din datele problemei știm că \widehat{AOB} și \widehat{COD} opuse la vârf și  AD \cap BC=\left \{ O \right \} \Rightarrow B\ \ , \ \ O și C coliniare \Rightarrow m(\widehat{BOC})=180^\circ

Dacă privim atent desenul observăm: \Rightarrow m(\widehat{BOC})=m(\widehat{AOB})+m(\widehat{AOC})\Rightarrow m(\widehat{AOB})+m(\widehat{AOC})=180^\circ \Rightarrow 97^\circ+x+21^\circ+x=180^\circ

\Rightarrow 2x+ 118^\circ=180^\circ \Rightarrow 2x=180^\circ-118^\circ \Rightarrow 2x=62^\circ \Rightarrow x=62^\circ\ \ \ :\ \ \ 2 \Rightarrow x=31^\circ

m(\widehat{AOC})=21^\circ+x \Rightarrow m(\widehat{AOC})=21^\circ+31^\circ\Rightarrow m(\widehat{AOC})=52^\circ

m(\widehat{AOB})=97^\circ+x\Rightarrow m(\widehat{AOB})=97^\circ+31^\circ  \Rightarrow m(\widehat{AOB})=128^\circ

 

Exercițiul 3:

Dacă AB\cap CD= \left \{ O \right \} și \frac{ m(\widehat{AOD})}{ m(\widehat{AOC})}=\frac{4}{{5}} află m(\widehat{BOC}) și m(\widehat{BOD}).

Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Problema ne spune că \frac{ m(\widehat{AOD})}{ m(\widehat{AOC})}=\frac{4}{{5}} \Rightarrow 5\cdot m(\widehat{AOD})}= 4\cdot m(\widehat{AOC})

\Rightarrow m(\widehat{AOD})}= \frac{4}{5}\cdot m(\widehat{AOC})

Dar AB\cap CD= \left \{ O \right \} \Rightarrow C\ \ , \ \ O \ \ și D coliniare  \Rightarrow m(\widehat{COD})= 180^\circ

Analizând desenul observăm că m(\widehat{COD})= m(\widehat{AOC})+ m(\widehat{AOD})

\Rightarrow m(\widehat{AOC})+ m(\widehat{AOD})=180^\circ \Rightarrow m(\widehat{AOC})+ \frac{4}{5}\cdot m(\widehat{AOC})=180^\circ | \ \ \ \cdot 5

\Rightarrow 5\cdot m(\widehat{AOC})+ 4\cdot m(\widehat{AOC})=5\cdot 180^\circ  \Rightarrow 9\cdot m(\widehat{AOC})=900 ^\circ | \ \ \ :\ \ \ 9  \Rightarrow m(\widehat{AOC})=100 ^\circ

Știm că  m(\widehat{AOD})}= \frac{4}{5}\cdot m(\widehat{AOC})\Rightarrow m(\widehat{AOD})}= \frac{4}{5}\cdot 100^\circ \Rightarrow m(\widehat{AOD})}= \frac{4\cdot 100^\circ}{5}\Rightarrow m(\widehat{AOD})}= \frac{400^\circ}{5}\Rightarrow m(\widehat{AOD})}= 80^\circ

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Segment de dreaptă. Semidreapta

“Singurul lucru mai rău decât să începi ceva și să ratezi…….. este să nu începi acel ceva”

Seth Godin

Dragul meu părinte bine te-am regăsit. Azi îți propun o nouă lecție de Geometrie în Plan.  În articolele anterioare am vorbit despre Dreaptă și Plan. Azi îți propun lecția  “Segment de dreaptă. Semidreapta”.

Segment de dreaptă:

  • Este o porțiune din acea dreaptă delimitat de două puncte distincte numite extremitățile segmentului sau capetele segmentului.
  • Se notează : \left [ AB \right ]

Segmentul de dreaptă închis:

  • Se notează: \left [ AB \right ]
  • Include cele două puncte A și B

Segmentul de dreaptă deschis:

  • Se notează: \left ( AB \right )
  • nu include cele două puncte A și B.

Segmentul de dreaptă nul:

  • Este segmentul de dreaptă care are proprietatea că punctele care delimitează segmentul coincid.

Semidreapta: 

  • Este un segment de dreaptă mărginit la un singur capăt.
  • Se notează: \left [ MN
  • M se numește origine

Semidreaptă închisă: 

  • Este semidreapta care își conține originea
  • Se notează: \left [ MN

Semidreaptă deschisă:

  • Este semidreapta care nu își conține originea.
  • Se notează: \left ( MN

Semidrepte opuse:

  • Sunt două semidrepte conținute în aceeași dreaptă, care au aceeași origine și sensuri diferite.

Semidrepte identice:

  • Sunt două semidrepte de acelasi fel (închise sau deschise), conținute în aceeași dreaptă, care au aceeași origine și același sens.

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții și probleme cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematic[ Math More Easy”. 

Probleme rezolvate cu Teorema lui Thales

Dragul meu părinte bine te-am regăsit. In articolul de ieri am discutat despre Teorema lui Thales, despre Reciproca Teoremei lui Thales, despre Teorema Bisectoarei și ți-am povestit și legenda Teoremei lui Thales. Astăzi vreau să rezolvăm împreuna câteva probleme de geometrie în care se aplică teoremele menționate mai sus.

(mai mult…)

Problema 1:

În  \Delta ABC se dau AB=52 cm, AC=72 cm și  P_{{ \Delta ABC}}=2+6+10+14+......+38 . Dacă  M \in (AB),  N \in (AC) astfel încât MN \parallel BC , și   P_{{\Delta MNP}}=50 cm  calculați lungimile segmentelor [AM], [AN] și [MN].

Rezolvare:

Această problemă se rezolvă cu teorema lui Thales.

Observăm că  P_{{ \Delta ABC}}=2+6+10+14+......+38   este o sumă Gauss. Rezolvăm Suma Gauss pentru a afla perimetrul.

 P_{{ \Delta ABC}}=2+6+10+14+......+38 .

Observăm că putem da factor comun pe 2.

 P_{{ \Delta ABC}}=2\cdot(1+3+5+7+......+19)

Calculăm numărul de termeni cu formula lui Gauss.

n=(19-1) : 2 +1

n=18 : 2 +1

n=9 +1

n=10 (termeni)

Calculăm Suma Gauss cu formula

 P_{{ \Delta ABC}}=2\cdot[10\cdot (19+1) :2]

 P_{{ \Delta ABC}}=2\cdot[10\cdot 20 :2]

 P_{{ \Delta ABC}}=2\cdot[200 :2]

 P_{{ \Delta ABC}}=2\cdot 100

 P_{{ \Delta ABC}}=200 cm .

PS: Dragul meu părinte dacă copilul tău nu a înțeles Suma Gauss sau nu-și mai amintește cum se calculează te invit sa descarci PDF-ul gratuit (special conceput cu foarte multe exemple pentru fiecare clasa de la a V-a la a-VIII-a) de aici:

http://mathmoreeasy.ro/pdf-gratuit-suma-gauss-explicatie-definitie-si-exercitii-rezolvate/

Din perimetru putem afla dimensiunea laturii BC.

 P_{{ \Delta ABC}}=AB +AC +BC

 200 cm = 52 cm + 72 cm +BC

 BC= 200 cm - 124 cm

 BC= 76 cm

Știm din datele problemei că  MN \parallel BC  deci putem aplica teorema lui Thales

 MN \parallel BC \Rightarrow \frac{AM}{{AB}}=\frac{AN}{{AC}}=\frac{MN}{{BC}}=k

\Rightarrow \frac{AM}{{52 cm}}=\frac{AN}{{72cm}}=\frac{MN}{{76cm}}=k

\Rightarrow \frac{AM}{{52 cm}}=k    \Rightarrow AM=52cm \cdot k

\Rightarrow \frac{AN}{{72cm}}=k    \Rightarrow AN= 72cm\cdot k

\Rightarrow \frac{MN}{{76cm}}=k \Rightarrow MN= 76cm\cdot k

 P_{{ \Delta MNP}}= MN +MP +NP

50 cm = 52cm \cdot k+ 72 cm \cdot k+76 cm \cdot k

50 cm = 200cm \cdot k

k = 200cm : 50 cm

k=\frac{1}{4}

\Rightarrow AM=52cm \cdot k=52cm \cdot \frac{1}{{4}}   \Rightarrow AM=13cm

\Rightarrow AN=72cm \cdot k=72cm \cdot \frac{1}{{4}}  \Rightarrow AN=18cm

\Rightarrow MN=76cm \cdot k=76cm \cdot \frac{1}{{4}}  \Rightarrow MN=19cm

Problema 2:

Un trapez ABCD, AB \parallel CD, AB \gt CD are AB = 26 cm și linia mijlocie MN = 18 cm, M \in (AD), N \in (BC).

a) Calculați lungimea bazei mici a trapezului.

b) Dacă P și Q sunt două puncte, P \in (AB), Q \in (DC) și PQ \cap MN= \left \{ R \right \}, arătați că R este mijlocul lui \left [ PQ \right ].

Rezolvare:

a) Știm că MN este linie mijlocie.

MN=\frac{AB+CD}{{2}}     \Rightarrow 2\cdot MN=AB+CD    \Rightarrow 2\cdot 18 cm=26 cm+CD  \Rightarrow 36cm -26 cm=CD   \Rightarrow CD = 10 cm

b)

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului pentru a afla la timp tot ce postez pe blog:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Teorema lui Thales

Dragul meu părinte bine te-am regăsit. Continuăm  să ne pregătim la Geometrie cu o nouă lecție la capitolul “Asemănarea triunghiurilor”. Azi discutăm despre Teorema lui Thales.

Legenda spune că Thales care a învățat matematică de la Egipteni și Babylonieni a măsurat înălţimea piramidelor din Egipt, măsurând umbra lor în momentul în care umbra unui băţ vertical era egală cu lungimea lui vezi figura de mai jos. Procedeul este, fără îndoială, ingenios, dar nu e foarte sigură utilizarea lui de către Thales. Aici este evident implicat un caz particular al „teoremei lui Thales”; dar procedeul s-ar fi putut baza pe observaţia că dacă pentru un băţ (vertical) umbra lui este egală cu lungimea sa, această relaţie are loc pentru orice obiect (de exemplu o piramidă, un obelisc etc.).

Thales ar fi folosit cazul general al teoremei de asemănare „După ce ai aşezat toiagul perpendicular pe pământ, la capătul umbrei aruncate de piramidă, a arătat că prin căderea razei de lumină s-au format două triunghiuri; raportul existent între o umbră şi cealaltă era identic cu cel dintre înălţimea piramidei şi lungimea toiagului.

Theorema lui Thales:

O paralelă dusă la una dintre laturile unui triunghi determină pe celelalte două laturi sau prelungirile lor, segmente proporționale.

 

Reciproca Teoremei lui Thales:

Fie triunghiul ABC și punctele E \in AB, F \in AC , aflate în același semiplan determinat de paralela prin A la BC.

Dacă:\frac{AE}{AB}=\frac{AF}{AC}  \Rightarrow EF \parallel BC

  • OBSERVAȚIE:  Dacă \frac{AE}{AB}\neq \frac{AF}{AC}   \Rightarrow EF \not \parallel BC

Aplicații ale Teoremei lui Thales:

  • Teorema Paralelelor Neechidistante:

Mai multe drepte paralele determină pe două secante oarecare segmente proporționale.

Dacă:  d_{1}\parallel d_{2}\parallel d_{3}\parallel d_{4}\parallel.............  \Rightarrow \frac{A_{{1}}A_{{2}}}{{B_{{1}}B_{{1}}}}=\frac{A_{{2}}A_{{3}}}{{B_{{2}}B_{{3}}}}=\frac{A_{{3}}A_{{4}}}{{B_{{3}}B_{{4}}}}=..................

  • Teorema Bisectoarei:

Într-un triunghi bisectoarea unui unghi determină pe latura opusă două segmente proporționale cu celelalte două laturi.

  •  Pentru unghiul exterior:

  • Împărțirea unui segment în părți proporționale cu numerele (segmentele) date:

Pentru a împărți un segment [AB] în părți proporționale cu numerele 2,3 și 5 procedăm astfel. Considerăm semidreapta [AX și pe ea, cu ajutorul compasului construim 10 segmente congruente (2+3+5=10)  astfel A_{{1}}A_{{2}}=2u, A_{{2}}A_{{5}}=3u, A_{{5}}A_{{10}}=5u. Unim A_{{10}} cu B și apoi ducem A_{{5}}N \parallel A_{{10}}B  și A_{{2}}M \parallel A_{{10}}B.  Cu ajutortul paralelelor echidistante obținem:

\frac{AM}{2}=\frac{MN}{3}=\frac{NB}{5}

Dacă dorești să ai acces la mai multe exemple de exerciții cu un grad de dificultate ridicat rezolvate și explicate pas cu pas te invit alături de mine in Clubul de Matematică “Math More Easy” sau accesează link-ul de mai jos:http://mathmoreeasy.ro/probleme-rezolvate-cu-teorema-lui-thales/

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Raportul a două segmente

Dragul meu părinte bine te-am regăsit. Azi deschid un capitol nou și foarte important al Geometriei:  “Asemănarea triunghiurilor”. Este unul dintre cele mei importante capitole din geometria în plan și se bazează pe Teorema lui Thales.

Thales din Milet (624 – 546 î.Hr.), ar fi cunoscut teoremele privitoare la triunghiurile asemenea, cu ajutorul cărora a măsurat depărtarea unui vas de la țărmul mării. De asemenea, tot cu ajutorul lor  el ar fi măsurat înălțimea Marii Piramide a lui Keops.

(mai mult…)

Segmente proporționale:

Def: Raportul a două segmente este raportul lungimilor lor, exprimate cu aceeași unitate de măsură.

Definiție:  Patru segmente se numesc proporționale dacă se poate forma o proporție cu lungimile acestora.

Teorema paralelelor echidistante:

Dacă mai multe drepte paralele determină pe o secantă segmente congruente, atunci ele determină pe orice altă decantă segmente congruente.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Proiecții ortogonale pe o dreaptă. Teorema Înălțimii

Dragul meu părinte bine te-am regăsit. Azi deschid un capitol nou și foarte important al Geometriei în plan : ” Relații Metrice în Triunghiul Dreptunghic”. Acest capitol este foarte important  în studiul Geometriei în Plan (geometria de clasa a VII-a), dar și în Geometria în Spațiu (geometria de clasa a VIII-a).  Prima lecție din acest capitol “Proiecții ortogonale pe o dreaptă. Teorema Înălțimii.” (mai mult…)

Proiecția ortogonală a unui punct pe o dreaptă este piciorul perpendicularei duse din acel punct pe dreaptă.

Observație:  Vom nota :  pr_{d}M=M^{{'}}

  • Teoremă:   Proiecția unui segment pe o dreaptă este un segment sau un punct.

  • Observație:  Dacă proiecția segmentului [AB] pe dreapta d este segmentul  \left [ A ^{'}B^{'} \right ] , atunci proiecția mijlocului segmentului [AB] pe dreapta d este mijlocul segmentului  \left [ A ^{'}B^{'} \right ] .

Teorema înălțimii:  Într-un triunghi dreptunghic lungimea înălțimii corespunzătoare ipotenuzei este media geometrică a lungimilor proiecțiilor catetelor pe ipotenuză.

  • Observație:  Lungimea înălțimii corespunzătoare ipotenuzei este raportul dintre produsul lungimilor catetelor și lungimea ipotenuzei.

  • Reciproca Teoremei Înălțimii :  Fie triunghiul ABC și D \epsilon (BC) astfel încât AD \perp BC și  AD^{{2}}=DC \cdot DB. Atunci  m(\widehat{BAC})=90 ^{\circ} .

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăti în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!