Posts Tagged ‘divizibilitate’

Exerciții Rezolvate la Descompunerea În Factori Primi

“Descurajarea și înfrângerile sunt unele dintre cele mai sigure căi către succes.”

Dale Carnegie

Dragul meu părinte bine te-am regăsit! Azi îți propun să lucrăm câteva exerciții la o lecție  extrem de importanta Descompunerea în Factori Primi a unui Număr Natural.  (mai mult…)

Exercițiul 1 :

Descompuneți în produs de factori primi următoarele numere naturale:

a) 120

b) 3528;

c)36000

Rezolvare: 

  • a) Pentru că 120 se divide cu 10 (numărul 120 se termină in 0), iar 10 nu este număr prim vom împărți mai întâi prin 2\cdot 5
  • Rămâne 12 care este un număr par și se divide cu 2.
  • Deci 120 descompus în factori primi este: 120=2^3 \cdot 3^1 \cdot 5^1
  • b) 3528

  • Pentru că 3528 este un număr par de divide cu 2.
  • Pentru că 441 este un număr impar și  nu se mai divide cu 2, verificăm criteriul de divizibilitate cu 3.
  • 4+4+1=9\ \ \ \vdots\ \ \ 3
  • Mai departe împărțim prin 3.
  • Pentru că 49 nu se mai divide cu 3 și nu se divide nici cu 5 încercăm cu următorul număr prim cu 7.
  • Astfel obținem 3528 descompus în factori primi: 3528=2^3 \cdot 3^2 \cdot7^2
  • c) 36000
  • Pentru că 36000 se termină în trei cifre de 0 înseamnă că de divide cu  1000=10^3=(2\cdot5)^3=2^3 \cdot 5^3
  • Deci obținem:
  • Astfel putem scrie 36000=2^5 \cdot 3^2 \cdot 5^3

 

Exercițiul 2 :

Determinați  numerele naturale “m”, “n” și “p”astfel încât să obțineți propoziții adevărate:

a) 36=2^n \cdot 3^p

b) 360=2^n \cdot 3^p\cdot 5^m

c) 720=2^n \cdot 3^p\cdot 5^m

Rezolvare:

Descompunem în factori primi numerele 36, 360 și 720.

descompunere in factori primi

  • Obținem astfel:
  • a) 36=2^n \cdot 3^p
  •  36=2^2\cdot 3^2 \Rightarrow n=2 și  p=2
  • b) 360=2^n \cdot 3^p\cdot 5^m
  •  360=2^3 \cdot 3^2\cdot 5^1 \Rightarrow n=3 \ \ \ ; \ \ \ p=2 și m=1
  • c) 720=2^n \cdot 3^p\cdot 5^m
  •  720=2^4 \cdot 3^2\cdot 5^1\Rightarrow n=4 \ ; \ \ \ p=2 și m=1

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy”.  

Criteriile de divizibilitate

“Mintea umană este ca o parașută. E inutilă dacă nu se deschide.”

Frank Zappa

Dragul meu părinte bine te-am regăsit! În articolul anterior ți-am prezentat lecția “Divizorul unui număr natural. Multiplul unui număr natural”. Am învățat împreună care sunt divizorii unui număr, care sunt multiplii unui număr natural și cum arătăm dacă un număr natural divide sau nu un alt număr natural. Astăzi voi continua cu o noua lecție la acest capitol “Criteriile de divizibilitate” .

(mai mult…)

Criteriul de divizibilitate cu 2

  • Un număr natural este divizibil cu 2 dacă și numai dacă ultima cifră a numărului este o cifră pară.
  • numar-divizibil-cu-2

Criteriul de divizibilitate cu 5

  • Un număr natural este divizibil cu 5 dacă și numai dacă ultima cifră a numărului este 0 sau 5
  • numar-divizibil-cu-5

Criteriul de divizibilitate cu 10.

  • Un număr natural este divizibil cu 10 dacă și numai dacă ultima cifră a numărului este 0.
  • numar-divizibil-cu-10

Criteriul de divizibilitate cu 100(1000, 10000, etc).

  • Un număr natural este divizibil cu 100(respectiv 1000, 10000, etc) dacă și numai dacă ultimile două (respectiv trei, patru, etc) cifre ale numărului sunt egale cu 0.
  • numar-divizibil-cu-100

Criteriul de divizibilitate cu 3 (respectiv 9).

  • Un număr natural este divizibil cu 3 (respectiv 9) dacă și numai dacă suma cifrelor sale se divide cu 3 (respectiv 9).
  • numar-divizibil-cu-3

Criteriul de divizibilitate cu 4.

  • Un număr natural este divizibil cu 4  dacă și numai dacă numărul format din ultimele două cifre se divide cu 4
  • numar-divizibil-cu-4

Criteriul de divizibilitate cu 25.

  • Un număr natural este divizibil cu 25  dacă și numai dacă  ultimele două cifre ale sale sunt 00, 25, 50 sau 75.

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor  dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

Divizorul unui număr natural. Multiplul unui număr natural.

“Dimensiunea succesului tău este măsurata de puterea dorinței tale, de mărimea visului tău și de cum gestionezi dezamăgirile pe drumul către succes.”

Dragul meu părinte bine te-am regăsit! Azi revin cu o lecție pentru clasa a VI-a.

Copilul tău a învățat în clasa a V-a noțiunile de Divizor. Multiplu dar și Criteriile de divizibilitate pe care acum în clasa a VI-a le vom repeta.

(mai mult…)

Definiție:  Numărul natural “a”  este divizibil (sau se divide) cu numărul natural “b”, dacă există un număr natural “c” astfel încât: ”  a=b\cdot c” .

Observație:

Numărul natural “a”  nu este divizibil (sau nu se divide) cu numărul natural “b”, dacă există un număr natural “c” astfel încât: ”  a\neq b\cdot c” .

Divizori improprii. Divizori proprii.

Fie n \geq 2 un număr natural. Numerele 1 și n  se numesc divizori improprii ai numărului n .

Ceilalți divizori ai numărului n  (dacă există) se numesc divizori proprii.

Mulțimea divizorilor naturali ai numărului natural n este mulțimea D_{{n}} a tuturor numerelor naturale care divid pe n.

Se notează  D_{{n}}=\left \{ d \in N| n \ \vdots\ d \right \} .

Mulțimea multiplilor naturali ai numărului natural n  este mulțimea tuturor elementelor naturale care se divid cu n .

Se notează  M_{n}=\left \{ k\in N |\ \ \ \ \ \ \ k \ \vdots\ n \right \}.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Propunere Model Teza Semestriala (I) clasa a VI-a

clasa a VI-a“Succesul înseamnă a fi în stare să mergi din eșec în eșec, fără să-ți pierzi entuziasmul” spunea Winston Churchill.

Dragul meu părinte, bine te-am regăsit!Pentru că a început perioada tezelor semestriale, iar copilul tău trebuie să repete toate noţiunile învăţate în acest semestru m-am gândit să vă ajut cu un model de teză care îl va ajuta să parcurgă materia studiată pâna în acest moment.

(mai mult…)

  • Toate subiectele sunt obligatorii.
  • Se acordă 10 puncte din oficiu.
  • Timp de lucru 50 minute.

Subiectul I. Pe foaia de test se trec numai rezultatele (30p):

5p     1 . Mulțimea divizorilor lui 30 este……………………………………………………

5p     2.Rezultatul calculului \left [ 2\frac{1}{5}-0,(4)+\frac{1}{45} \right ]:(1\frac{1}{3}) ^{2} este: …………………………

5p   3. Număr mai mare decât 30 care are exact 2 divizori este:…………………..

5p   4. Suplementul unghiului de masura  115^{{\circ}}  este ………………………………

5p    5. Complementul unui unghi cu măsura de  31^{{\circ}} are măsura de         ……………………………………………………

  • Subiectul II. Pe foaia de teză se alege răspunsul corect prin încercuire (20p):

 5p      1.   Aflați c.m.m.m.c al numerelor 12, 20.

10p     2. Dacă punctele A , B , C sunt coliniare (în această ordine); AB=12cm; AC=22cm atunci

a) BC=………………………………………………………………………….

b)Distanța dintre mijloacele segmentelor AB și BC este……………………

5P     3. Determinți x dacă

59x2

  • Subiectul III. Pe foaia de test se trec rezolvările complete(30p):

10p       1.  Arătaţi că numărul : A=1+3+5+7+……………..+2015 se divide cu 7.

8 p       2.   Determinați măsurile unghiurilor formate de două drepte concurente știind că unul din unghiurile formate este cu  30^{{\circ}} mai mare decât alt unghi format.

10p         3.   Determinaţi valorile naturale ale lui x pentru care \frac{9}{2x-1}} este număr natural.

12p.        4.  Fie unghiurile AOB şi BOC adiacente suplementare  cu m(\widehat{AOB})=70 ^{\circ}   iar [OE   bisectoarea  \widehat{AOB} si [OF bisectoarea  \widehat{BOC} . Calculati:

a) m(\widehat{BOC})=?

b) m(\widehat{EOF})=?

c) m(\widehat{AOF})=?

Ps: Dragul meu părinte, dacă copilultău nu a înteles foarte bine Suma lui Gauss poţi descărca acest PDF gratuit  pe care l-am conceput special pentru copii care au dificultăţi la aceste noţiuni  şi care  vă va ajuta să stăpâniţi la perfecţie aceste noţiuni matematice dificile .

Mult succes la rezolvarea acestei teze  dar mai ales mult succes la teza de la şcoală! 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Poţi descărca teza în format pdf de aici: teza-de-evaluare-vi-semestriala-la-matematica

Propunere Model Teza Semestriala (I) clasa a V-a

Clasa a V-a“Succesul înseamnă a fi în stare să mergi din eșec în eșec, fără să-ți pierzi entuziasmul” spunea Winston Churchill.

Dragul meu părinte, bine te-am regăsit!Pentru că de mâine începe perioada tezelor semestriale, iar copilul tău trebuie să repete toate noţiunile învăţate în acest semestru m-am gândit să vă ajut cu un model de teză care îl va ajuta să parcurgă materia studiată pâna în acest moment.

(mai mult…)

  • Toate subiectele sunt obligatorii.
  • Se acordă 20 puncte din oficiu.
  • Timp de lucru 50 minute.

Subiectul I. Pe foaia de test se trec numai rezultatele (30p):

  • 5p     1 Rezultatul calculului 12 – 12 : 2  este………….
  • 5p     2. Dacă   2x + 3 = 7 , atunci x= ………………5p     3. Dintre numerele :  a=2 ^{72} şi b=4 ^{37} mai mare este numărul:                 …………………………………….5p    4. Rotunjind prin lipsă la sute numărul 5247 obţinem:  ……………….5p    5. Restul împărţirii numărului natural 177 la 18 , este….…………….

    5p    6. Numărul divizorilor numărului natural 16 , este………………..

  • Subiectul II. Pe foaia de teză se alege răspunsul corect prin încercuire (20p):

 5p   7.Numărul natural divizibil cu 2, dar care nu este divizibil cu 5, este :

80                            ‚82                       ƒ85                     „ 87

5p   8.Media aritmetică a două numere natural este 14, atunci numerele sunt :

12 şi 18                    ‚18 şi 14              ƒ14 şi 16             „12 şi 16

5p   9. Soluţia inecuaţiei   x \in N^{\star} , 7x + 12 < 26 , este:

1                               ‚ 2                ƒ 3                    „   4

5p   10.Numărul natural 25487 aproximat , prin adaos la sute de unităţi este :

 25000                 ‚ 25400       ƒ 25500     „ 30000

  • Subiectul III. Pe foaia de test se trec rezolvările complete(30p):

5p     9. O persoană cumpără de la piaţă 12 kg cartofi, 16 kg roşii şi 18 kg castraveţi. Ştiind că 1kg de cartofi costă 2 lei , 1 kg de roşii costă 6 lei , iar 1 kg de castraveţi costă 4 lei, determinaţi ce rest a primit persoana la o bacnotă de 200 lei.

10p   10. Efectuaţi:  102\cdot [ 4 + 5\cdot 3^{2} - 2^{7} + 4^{2}\cdot (49-3^{2}) : 2^{3} ] ^{}

5p    11. Trei elevi au împreună 200 de timbre. Primul are 35 de timbre mai mult decât al doilea , iar al treilea are cu 45 de timbre mai mult decât al doilea . Calculaţi câte timbre are fiecare.

10p  Arătaţi că numărul : b=1+3+5+7+……………..+2011 este pătrat perfect.

Ps: Dragul meu părinte,dacă copilultău nu a înteles foarte bine Suma lui Gauss poţi descărca acest PDF gratuit  pe care l-am conceput special pentru copii care au dificultăţi la aceste noţiuni  şi care  vă va ajuta să stăpâniţi la perfecţie aceste noţiuni matematice dificile .

Mult succes la rezolvarea acestei teze  dar mai ales mult succes la teza de la şcoală! 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Poţi descărca teza în format pdf de aici: teza-de-evaluare-semestriala-la-matematica

Criterii de divizibilitate

Clasa a V-aBine te-am regăsit dragul meu părinte! În articolul anterior   ţi-am prezentat lecţia “Divizor.Multiplu”. Am învăţat împreună care sunt divizorii unui număr, care sunt multiplii unui număr natural şi cum arătăm dacă un număr natural divide sau nu un alt număr natural. Astăzi voi continua cu o noua lecţie la acest capitol “Criterii de divizibilitate” .

(mai mult…)

Criteriul de divizibilitate cu 2

  •  Un număr natural este divizibil cu 2 dacă şi numai dacă ultima cifră a numărului este o cifră pară.
  • numar-divizibil-cu-2

Criteriul de divizibilitate cu 5

  •  Un număr natural este divizibil cu 5 dacă şi numai dacă ultima cifră a numărului este 0 sau 5
  • numar-divizibil-cu-5

Criteriul de divizibilitate cu 10.

  • Un număr natural este divizibil cu 10 dacă şi numai dacă ultima cifră a numărului este 0.
  • numar-divizibil-cu-10

Criteriul de divizibilitate cu 100(1000, 10000, etc).

  • Un număr natural este divizibil cu 100(respectiv 1000, 10000, etc) dacă şi numai dacă ultimile două )respectiv trei, patru, etc) cifre ale numărului sunt egale cu 0.
  • numar-divizibil-cu-100

 

Criteriul de divizibilitate cu 3 (respectiv 9).

  • Un număr natural este divizibil cu 3 (respectiv 9) dacă şi numai dacă suma cifrelor sale se divide cu 3 (respectiv 9).
  • numar-divizibil-cu-3

Criteriul de divizibilitate cu 4.

  • Un număr natural este divizibil cu 4  dacă şi numai dacă numărul format din ultimele două cifre se divide cu 4
  • numar-divizibil-cu-4

Criteriul de divizibilitate cu 25.

  • Un număr natural este divizibil cu 25  dacă şi numai dacă  ultimele două cifre ale sale sunt 00, 25, 50 sau 75.
  • numar-divizibil-cu-25

    Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

    De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

    https://www.facebook.com/MathMoreEasy.

    Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

    Cu mare drag şi mult respect Alina Nistor!