Posts Tagged ‘dividing’

Exerciții rezolvate la Mărimi direct proporționale

„Nu zi niciodată nu se poate, ci începe cu să vedem.”

Nicolae Iorga

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm și să explicăm pas cu pas câteva probleme Exerciții rezolvate la Marimi direct proporționale. (mai mult…)

Exercițiul 1:

Media aritmetică a două numere este egală cu 24.Aflați numerele știind că acestea sunt direct proporționale cu numerele 3 și 9.

Rezolvare:

Considerăm două numere a și b.

Scriem formula pentru media arithmetică a celor două numere.

M_{a}=\frac{a+b}{2}    \Rightarrow \frac{a+b}{2}=24 /\ \ \ \cdot 2   \Rightarrow a+ b=48

\left \{ a,b \right \} \overset{d.p}{\rightarrow} \left \{ 3,9 \right \}   \Rightarrow \frac{a}{{3}}=\frac{b}{{9}}=k

\Rightarrow \frac{a}{{3}}=k \Rightarrow a=3\cdot k

\Rightarrow \frac{b}{{9}}=k \Rightarrow b=9\cdot k

Înlocuim a și b în ecuația a+b=48 și obținem:

3 \cdot k + 9 \cdot k=48 \Rightarrow 12 \cdot k=48 / \ \ \ : \ \ 12  \Rightarrow k=48 \ \ \ : \ \ 12    \Rightarrow k=4

Înlocuim în  a și b și obținem:

 \Rightarrow a=3 \cdot k=3 \cdot 4  \Rightarrow a=12

 \Rightarrow b=9 \cdot k=9 \cdot 4   \Rightarrow b=36.

Exercițiul 2:

Suma a trei numere este 84. Aflați numerele știind că acestea sunt direct proporționale cu numerele: 1,(4)\ \ ; \ \ \ \ 1,(5) \ \ \ \ ; \ \ 1,(6)

Rezolvare:

Considerăm trei  numere a , b și c.

Problema ne spune ca suma lor este 84.

a+b+c=84

\left \{ a,b,c\right \} \overset {d.p }{\rightarrow} \left \{ 1,(4): \ \ 1,(5); \ \ 1,(6)\right \}

Transformăm fracțiile periodice în fracții ordinare:

 1,(4) =\frac{14-1}{{9}}= \frac{13}{{9}}

 1,(5) =\frac{15-1}{{9}}= \frac{14}{{9}}

 1,(6) =\frac{16-1}{{9}}= \frac{15}{{9}}

Și obținem:  \left \{ a,b,c\right \} \overset {d.p }{\rightarrow} \left \{ \frac{13}{{9}}; \ \ \frac{14}{{9}}; \ \ \frac{15}{{9}}\right \}  \Rightarrow

\Rightarrow \frac{a}{{\frac{13}{{9}}}}=\frac{b}{{\frac{14}{{9}}}}=\frac{c}{{\frac{15}{{9}}}}=k

Scoatem numerele a, b ;I c ]n func’ie de valoarea lui k.

\Rightarrow \frac{a}{{\frac{13}{{9}}}}=k   \Rightarrow \frac{a}{{1}} \ \ : \ \ {\frac{13}{{9}}}}=k \Rightarrow \frac{a}{{1}} \ \cdot \ \ {\frac{9}{{13}}}}=k  \Rightarrow \frac{9a}{{13}} =k  \Rightarrow a = \frac{13 \cdot k}{{9}}

\Rightarrow \frac{b}{{\frac{14}{{9}}}}=k  \Rightarrow \frac{b}{{1}} \ \ : \ \ {\frac{14}{{9}}}}=k  \Rightarrow \frac{b}{{1}} \ \cdot \ \ {\frac{9}{{14}}}}=k   \Rightarrow \frac{9\cdot b}{{14}} =k  \Rightarrow b = \frac{14 \cdot k}{{9}}

\Rightarrow \frac{c}{{\frac{15}{{9}}}}=k  \Rightarrow \frac{c}{{1}} \ \ : \ \ {\frac{15}{{9}}}}=k  \Rightarrow \frac{c}{{1}} \ \cdot \ \ {\frac{9}{{15}}}}=k  \Rightarrow \frac{9\cdot c}{{15}} =k  \Rightarrow c = \frac{15 \cdot k}{{9}}

Înlocuim a, b și c în sumă și determinăm valoarea lui k.

a+b+c=84 \Rightarrow \frac{13 \cdot k}{{9}} + \frac{14\cdot k}{{9}} + \frac{15 \cdot k}{{9}} = 84

\Rightarrow \frac{13 \cdot k+14\cdot k+15\cdot k}{{9}} = 84  \Rightarrow \frac{42 \cdot k}{{9}} = 84

\Rightarrow 42 \cdot k = 84 \cdot 9 \Rightarrow 42 \cdot k = 756 \Rightarrow 42 \cdot k = 756 / \ \ \ : \ \ \ 42

\Rightarrow k = 756 \ \ \ : \ \ \ 42

\Rightarrow k = 18

Înlocuim valoarea lui k în numerele natural și determinăm valoare lui a, b și c.

 a = \frac{13 \cdot k}{{9}}   \Rightarrow a = \frac{13 \cdot 18}{{9}}  \Rightarrow a = \frac{234}{{9}}  \Rightarrow a = 26

 b = \frac{14 \cdot k}{{9}}   \Rightarrow b = \frac{14 \cdot 18}{{9}}   \Rightarrow b = \frac{252}{{9}}   \Rightarrow b = 28

 c = \frac{15 \cdot k}{{9}}   \Rightarrow c = \frac{15 \cdot 18}{{9}}  \Rightarrow c = \frac{270}{{9}}   \Rightarrow c = 30

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Mărimi direct proporționale  pentru copilul tău o gasești aici  Fisa de lucru marimi direct proportionale 

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Rapoarte.

„Nimic nu este prea dificil dacă împarți în pași mici ceea ce ai de făcut.”

Henry Ford

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas  Exerciții  rezolvate la Rapoarte! (mai mult…)

Exercițiul1: Aflați termenul necunoscut din următoarele rapoarte:

a) \frac{x}{5}=\frac{21}{3}

b) \frac{5}{x}=0,20

c) \frac{6,(4)}{x}=8

Rezolvare:

a)  \frac{x}{5}=\frac{21}{3}

Înmulțim pe diagonală și obținem :

 \Rightarrow 3 \cdot x=21\cdot5  \Rightarrow 3 \cdot x=105  \Rightarrow x=105 \ \ \ :\ \ \ 3  \Rightarrow x=35

b) \frac{5}{x}=0,20

Transformăm fracția zecimală 0,20 în fracție ordinară și obținem:

\Rightarrow \frac{5}{{x}}=\frac{20}{{10}}\Rightarrow \frac{5}{{x}}=\frac{2}{{1}} \Rightarrow 5\cdot 1=x \cdot 2 \Rightarrow 2x=5 \ \ \ \ \ /:\ \ 2\Rightarrow x=\frac{5}{{2}}

c) \frac{6,(4)}{x}=8 \Rightarrow \frac{6,(4)}{x}=\frac{8}{1}\Rightarrow 6,(4)\cdot 1=8 \cdot x

Transformăm fracția periodică  6,(4) în fracție ordinară  astfel 6,(4)=\frac{64-6}{{9}}=\frac{58}{{9}} și obținem:

\Rightarrow 6,(4)\cdot 1=8 \cdot x  \Rightarrow \frac{58}{{9}}\cdot \frac{1}{{1}}=\frac{8\cdot x}{{1}} \Rightarrow \frac{58}{{9}}=\frac{8\cdot x}{{1}} \Rightarrow 58 \cdot 1 =9 \cdot 8\cdot x \Rightarrow 58=72\cdot x \Rightarrow 58=72\cdot x \ \ \ /\ \ \ \ :\ \ 72  \Rightarrow x = \frac{58}{{72}}^{{(2}}

 \Rightarrow x = \frac{29}{{36}}

Exercițiul 2: Se consideră numerele a= 1+2+3+.........................+2018 și b = 2+4+6+.........................+4036. Calculați :

a) Raportul dintre a și b;

b) Raportul dintre suma și diferența numerelor b și a;

Rezolvare:

Calculăm mai întâi numărul a ca să îl aducem la o formă mai simplă. Recunoaștem suma Gauss a primelor 2018 numere naturale consecutive și aplicăm formula lui Gauss.

a = 1+2+3+.........................+2018

 a = 2018\cdot(2018+1) \ \ \ : \ \ \ 2

 a = 2018\cdot 2019 \ \ \ : \ \ \ 2

 a = 2018 \ \ \ : \ \ \ 2 \cdot 2019

 a = 1009 \cdot 2019

PS: Dacă nu îți mai amintești Suma lui Gauss găsești aici PDF-ul gratuit : Suma Gauss

Calculăm și numărul b pentru a obține o formă mai simplă.

b = 2+4+6+.........................+4036.

Dăm factor comun pe 2 și obținem din nou Suma Gauss a primelor 2018 numere naturale consecutive.

 b =2 \cdot (1+2+3+...............+2018)

 b =2 \cdot [2018\cdot (2018+1) \ \ :\ \ \ 2]

 b =2 \cdot [2018\ \ :\ \ \ 2 \cdot (2018+1) ]

 b =2 \cdot [2018\ \ :\ \ \ 2 \cdot 2019 ]

 b =2 \cdot 1009 \cdot 2019

 b =2018 \cdot 2019

  • a) Facem raportul   \frac{a}{b} = \frac{1009 \cdot 2019}{2018 \cdot 2019} ^{{(1009 \cdot 2019}}  \Rightarrow \frac{a}{b} = \frac{1}{2}
  • b) Calculăm raportul     \frac{a+b}{b-a}=  \frac{1009\cdot 2019+2018\cdot 2019}{2018\cdot 2019-1009\cdot 2019}=

Observăm că putem da factor comun pe 1009\cdot2019 și la numărător și la numitor și obținem:

 \frac{1009\cdot 2019\cdot (1+2)}{1009\cdot 2019\cdot(2-1)}= \frac{1009\cdot 2019\cdot 3}{1009\cdot 2019\cdot 1}=

Observăm că putem simplifica raportul prin 1009\cdot2019 și obținem:

 \frac{1009\cdot 2019\cdot 3}{1009\cdot 2019\cdot 1}^{{(1009\cdot 2019}} =\frac{3}{1}=3

Exercițiul 3:

Știind că  \frac{a}{b} = \frac{7}{2}  calculați valoarea raportului:

a)  \frac{12\cdot a+6\cdot b}{6\cdot a-b} = ?

b) \frac{3\cdot a+5\cdot b}{2\cdot a+b} = ?

Rezolvare:

a) Știind raportul  \frac{a}{b} = \frac{7}{2}  înmulțim pe diagonală și scoatem a în funcție de b

 \Rightarrow 2\cdot a= 7 \cdot b \Rightarrow a=\frac{7\cdot b }{{2}}

Înlocuim a în raportul pe care îl avem de calculat și obținem:

 

\Rightarrow \frac{12\cdot \frac{7\cdot b }{{2}}+6\cdot b}{6\cdot \frac{7\cdot b }{{2}}-b} =  \frac{ \frac{84\cdot b }{{2}}+6\cdot b}{ \frac{42\cdot b }{{2}}-b} =

\frac{ {42\cdot b }+6\cdot b}{ 21\cdot b -b} =  \frac{ {48\cdot b }}{ 20\cdot b } ^{(4\cdot b} =  \frac{ {12 }}{ 5 }

b) Știind raportul  \frac{a}{b} = \frac{7}{2}  înmulțim pe diagonală și scoatem a în funcție de b

 \Rightarrow 2\cdot a= 7 \cdot b \Rightarrow a=\frac{7\cdot b }{{2}}

Înlocuim a în raportul pe care îl avem de calculat și obținem:

\frac{3\cdot a+5\cdot b}{2\cdot a+b} =  \frac{3\cdot \frac{7\cdot b }{{2}} +5\cdot b}{2\cdot \frac{7\cdot b }{{2}}+b} =  \frac{\frac{21\cdot b }{{2}} + 5\cdot b}{ \frac{14\cdot b }{{2}}+b} =  \frac{\frac{21\cdot b }{{2}} + _{{}}^{2)}{5\cdot b}}{ \frac{14\cdot b }{{2}}+_{{}}^{2)}{ b}} =  \frac{\frac{21\cdot b }{{2}} + {\frac{10\cdot b }{{2}}} }{ \frac{14\cdot b }{2}+{{{\frac{2\cdot b }{{2}}}}  = \frac{\frac{31\cdot b }{{2}} }{ \frac{16\cdot b }{2}} =  {\frac{31\cdot b }{{2}} }\ \ \ :\ \ \ { \frac{16\cdot b }{2}} =   {\frac{31\cdot b }{{2}} } \cdot { \frac{2}{16\cdot b}} =  {\frac{31 }{{16}} }

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții Rezolvate la Unghiuri complementare. Unghiuri Suplementare

Cel mai mare neajuns al nostru este că renunțăm prea repede. Cel mai corect drum către succes este să mai încerci o dată.” Thomas Edison

Dragul meu părinte bine te-am regăsit! Azi îți propun o nouă lecție de geometrie în plan și te invit să rezolvăm și să explicăm pas cu pas împreună câteva exerciții la “Unghiuri Complementare. Unghiuri Suplementare”. (mai mult…)

Exercițiul 1 :

Unghiul  \widehat{MON} și  \widehat{NOP} sunt adiacente și complementare. Știind că  m(\widehat{MON}) este \frac{3}{2} din  m(\widehat{NOP}) să se calculeze   m(\widehat{NOP})   și  m(\widehat{MON}) ..

  • Rezolvare: 
  • Scriem datele problemei:
  • Realizăm desenul:
  • Analizând desenul observăm că  m(\widehat{MON})+ m(\widehat{NOP})=90^\circ
  • Știm că  m(\widehat{MON})=\frac{3}{{2}}\cdot m(\widehat{NOP})  \Rightarrow \frac{3}{{2}}\cdot m(\widehat{NOP})+m(\widehat{NOP})=90^\circ \ \ \ | \ \ \cdot \ \ 2
  •  \Rightarrow 3\cdot m(\widehat{NOP})+2 \cdot m(\widehat{NOP})=2\cdot 90^\circ
  •  \Rightarrow 5\cdot m(\widehat{NOP})=180^\circ \ \ \ | \ \ \ \cdot \ \ \ 5
  •  \Rightarrow m(\widehat{NOP})=180^\circ\ \ \ : \ \ \ 5
  •  \Rightarrow m(\widehat{NOP})=36^\circ
  • Înlocuim și  aflăm și măsura unghiului  \widehat{MON}
  •  m(\widehat{MON})=\frac{3}{{2}}\cdot m(\widehat{NOP}) \Rightarrow m(\widehat{MON})=\frac{3}{{2}}\cdot 36^\circ \Rightarrow m(\widehat{MON})=\frac{3\cdot36^\circ}{{2}} \Rightarrow m(\widehat{MON})=\frac{108^\circ}{{2}}=54^\circ
  • m(\widehat{MOP})= m(\widehat{MON})+ m(\widehat{NOP})
  •  m(\widehat{MOP})=36^\circ+54^\circ=90^\circ

Exercițiul 2:

Măsura m(\widehat{XOY}) este \frac{7}{8} din măsura suplementului său unghiul m(\widehat{YOZ}). Aflați măsura m(\widehat{XOY}) și m(\widehat{YOZ}).

  • Rezolvare:
  • Scriem datele problemei:
  • Realizăm desenul:
  • Analizând desenul observăm că: m(\widehat{XOY})+m(\widehat{YOZ})=180^\circ
  • Știm că m(\widehat{XOY})=\frac{7}{{8}}\cdot m(\widehat{YOZ})
  • \Rightarrow\frac{7}{{8}}\cdot m(\widehat{YOZ})+m(\widehat{YOZ})= 180^\circ \ \ \ | \ \ \cdot8
  • \Rightarrow 7\cdot m(\widehat{YOZ})+8\cdot m(\widehat{YOZ})=8\cdot180^\circ
  • \Rightarrow 15 \cdot m(\widehat{YOZ})= 1440^\circ
  • \Rightarrow 15 \cdot m(\widehat{YOZ})= 1440^\circ \ \ \ | \ \ : \ \ \ 15
  • \Rightarrow m(\widehat{YOZ})= 1440^\circ \ \ : \ \ \ 15
  • \Rightarrow m(\widehat{YOZ})= 96^\circ
  • Înlocuim și aflăm măsura  m(\widehat{XOY}):
  • m(\widehat{XOY})=\frac{7}{{8}}\cdot m(\widehat{YOZ}) \Rightarrow m(\widehat{XOY})=\frac{7}{{8}}\cdot 96^\circ \Rightarrow m(\widehat{XOY})=\frac{7\cdot 96^\circ}{{8}}\Rightarrow m(\widehat{XOY})=\frac{672^\circ}{{8}}=84^\circ

Exercițiul 3: 

Determinați măsura unghiului m(\widehat{MON}) știind că măsura complementului suplementului său este de 63^\circ.

  • Rezolvare:
  • Dacă citim atent enunțul problemei aceasta ne precizează că complementul suplementului unghiului  \widehat{MON} este 63^\circ . Scriem matematic această informație:
  • Notăm suplementul unghiului \widehat{MON} cu \widehat{NOP} și obținem informația:
  • m(\widehat{MON})+m(\widehat{NOP})=180^\circ
  • Notăm complementul unghiului \widehat{NOP} cu \widehat{NOQ} și obținem informația:
  • m(\widehat{NOP})+m(\widehat{NOQ})=90^\circ
  • Scriem datele problemei:
  • Realizăm desenul:
  • Plecăm de la informația furnizată de enunțul problemei că:
  • m(\widehat{NOP})+m(\widehat{NOQ})=90^\circ
  • Știm că m(\widehat{NOQ})=63^\circ \Rightarrow m(\widehat{NOP})+63 ^\circ=90^\circ \ \ \ | \ \ -63^\circ \Rightarrow m(\widehat{NOP})=90^\circ -63^\circ \Rightarrow m(\widehat{NOP})=27^\circ
  • Mai știm din enunțul problemei că: m(\widehat{MON})+m(\widehat{NOP})=180^\circ
  • Înlocuim m(\widehat{NOP})=27^\circ și obținem:
  • m(\widehat{MON})+27^\circ=180^\circ \ \ \ | \ \ -27^\circ
  • \Rightarrow m(\widehat{MON})=180^\circ -27^\circ
  • \Rightarrow m(\widehat{MON})=153^\circ

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în Clubul de “Matematică Math More Easy”.

Exerciții rezolvate la Factorul Comun la Puteri

“Un ratat nu știe ce va face dacă pierde, dar vorbește despre ce va face dacă va castiga. Un învingător nu vorbește despre ce va face dacă va caștiga, dar știe ce va face dacă pierde.”
Eric Berne
Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună cateva exerciții la “Factorul comun la Puteri”.

(mai mult…)

Exercițiul 1:

Efectuați calculele, folosind factorul comun:

a) 3^{96}+3^{98}+3^{100}

b) 2\cdot2^{47}+3\cdot2^{48}+2^{50}

c) 8^{300}-24\cdot8^{298}-64\cdot8^{297}

d) 3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}

e) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

  • Rezolvare: 
  • a) 3^{96}+3^{98}+3^{100}
  • Adunarea este o operație de gradul I și ridicarea la putere este o operație de gradul III, iar ordinea efectuării operațiilor ne spune că trebuie să facem mai întâi operațiile de gradul III și apoi cele de gradul I

Observăm că avem puteri foarte mari și nu putem ridica la putere așa că ne vom folosi de factorul comun și vom da factor comun puterea cea mai mică.

Observăm că 3^{96} este puterea cea mai mică asa ca îl dăm factor comun pe 3^{96} și obținem:

3^{96}\cdot(3^{96-96}+3^{98-96}+3^{100-96})

Scădem puterile și obținem:

3^{96}\cdot(3^{0}+3^{2}+3^{4})

Ridicăm la putere termenii din paranteza rotundă:

3^{96}\cdot(1+9+81)=3^{96}\cdot91

  • b)      2\cdot2^{47}+3\cdot2^{48}+2^{50}

Observăm că  2^{47} este puterea cea mai mică așa că îl dăm factor comun pe 2^{47} și obținem:

2^{47}\cdot(2\cdot2^{47-47}+3\cdot2^{48-47}+2^{50-47})

Scădem puterile și obținem:

2^{47}\cdot(2\cdot2^{0}+3\cdot2^{1}+2^{3})

Ridicăm la putere termenii din paranteza rotundă și obținem:

2^{47}\cdot(2\cdot 1+3\cdot2+8)

Efectuăm  înmulțirile și obținem:

2^{47}\cdot(2+6+8)=

Efectuăm adunarea din paranteză și obținem:

2^{47}\cdot 16=

Știm că 16 îl putem scrie în baza 2 ca 2^{4} și obținem

2^{47}\cdot2^{4}=

Aplicăm Regulile de calcul cu puteri și scriem baza și adunam exponenții:

2^{47+4}=2^{51}

  • c)   8^{300}-24\cdot8^{298}-64\cdot8^{297}

Observăm că 8^{297} este cea mai mică putere, îl dăm factor comun pe 8^{297} și obținem:

8^{297}\cdot(8^{300-297}-24\cdot8^{298-297}-64\cdot8^{297-297})

Scădem puterile și obținem:

8^{297}\cdot(8^{3}-24\cdot8^{1}-64\cdot8^{0})

Ridicăm la putere termenii din paranteză și obținem:

8^{297}\cdot(512-24\cdot8-64\cdot1) =

Efectuăm înmulțirile din paranteză și obținem:

  • 8^{297}\cdot(512-192-64) =

Efectuăm scăderea din paranteza rotundă și obținem:

8^{297}\cdot 256 =

Știm că putem scrie 8=2^3 și 256=2^8 și obținem:

(2^3)^{297}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri înmulțim puterile și obținem:

2^{3\cdot297}\cdot 2^8=2^{891}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri, scriem baza și adunam puterile și obținem astfel:

2^{891+8}=2^{899}

  • d)  3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}=

Aplicăm Regulile de calcul cu puteri și obținem:

3^{2n}\cdot3^2+7\cdot 3^{2n}\cdot3^1-6\cdot3^{2n}=

Observăm că se repetă în fiecare termen al adunării 3^{2n},  îl dăm factor comun și obținem:

3^{2n}\cdot(3^2+7\cdot3^1-6\cdot1)=

Ridicăm la putere termenii din paranteza rotundă și obținem:

3^{2n}\cdot(9+7\cdot3-6)=

Efectuăm Înmulțirea din paranteză și obținem:

3^{2n}\cdot(9+21-6)=

Efectuăm calculele din paranteza rotundă și obținem:

3^{2n}\cdot 24=3^{2n}\cdot 3\cdot8=

Aplicăm Regulile de calcul cu puteri scriem baza și adunăm exponenții și obținem:

3^{2n+1}\cdot8

  • d) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri  transformăm bazele pe 6 îl scriem 6=2\cdot3 , pe 4=2^2, 9=3^2 , pe  18=2\cdot3^2  și obținem:

(2\cdot3)^{2n+1}+6\cdot (2^2)^{n+1}\cdot (3^2)^{n+2}+(2\cdot3^2)^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri, distribuim puterea și obținem:

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2\cdot(n+1)}\cdot 3^{2\cdot(n+2)}+2^{n+1}\cdot3^{2(n+1)}\cdot2^{n+1}

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2n+2}\cdot 3^{2n+4}+2^{n+1}\cdot3^{2n+2}\cdot2^{n+1}

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n}\cdot2^1\cdot3^{2n}\cdot3^2\cdot2^{n}\cdot2^1

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n+n}\cdot2^{1+1}\cdot3^{2n}\cdot3^2

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{2n}\cdot2^{2}\cdot3^{2n}\cdot3^2

Observăm că se repeta 2^{2n}\cdot3^{2n} și îl dăm factor comun, astfel obținem:

2^{2n}\cdot3^{2n}\cdot(2^1\cdot3^1+6\cdot2^2\cdot3^4+2^{2}\cdot3^2)

Ridicăm la putere termenii din paranteza rotundă:

2^{2n}\cdot3^{2n}\cdot(2\cdot3+6\cdot4\cdot81+4\cdot9)

Efectuăm înmulțirile din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot(6+1944+36)

Efectuăm calculele din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot 1986=(2\cdot3)^{2n}\cdot 6\cdot331=(6)^{2n}\cdot 6^1\cdot331=(6)^{2n+1}\cdot331

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în Clubul de “Matematică Math More Easy.” 

Exerciții rezolvate la Pătrate Perfecte!

“Nu poți împinge pe nimeni să urce pe o scară dacă nu este dispus să o urce singur ”

Andrew Carnegie

Dragul meu părinte bine te-am regăsit! În articolul anterior am prezentat cateva “Exerciții Rezolvate la Ultima Cifră a unui Număr Natural”. Astăzi te invit să rezolvăm și să explicăm câteva exerciții la Pătrate Perfecte. Să vedem cum putem arăta că un număr foarte mare poate fi sau nu pătrat perfect!

(mai mult…)

Exercițiul 1: 

Arătați că numărul a=2003 + 2\cdot (1+2+3+................+ 2002) este pătrat perfect.

  • Rezolvare: Pentru a arăta că numărul “a” este pătrat perfect trebuie să arătam că numărul “a”se poate scrie ca un număr natural la puterea a doua.
  • Observăm că în paranteză avem  Suma Gauss a primelor 2002 numere naturale consecutive așa că vom aplica formula de calcul a lui Gauss.
  • a=2003 + 2\cdot (1+2+3+................+ 2002)
  • a=2003 + 2\cdot [2002\cdot (2002+1)\ : \ 2]
  • a=2003 + 2\cdot [2002\cdot 2003 \ : \ 2]
  • Pentru că înmulțirea și împărțirea sunt operații de același ordin putem efectua mai întâi operația de împărțire.
  • a=2003 + 2\cdot [2002\ \ : \ 2 \cdot 2003]
  • a=2003 + 2\cdot 1001 \cdot 2003
  • a=2003 + 2002 \cdot 2003
  • Dăm factor comun pe 2003.
  • a=2003\cdot (1 + 2002)
  • a=2003\cdot 2003
  • a=2003^2.
  • \Rightarrow numarul \ este pătrat perfect.
Exercițiul 2: 

Arătați că numărul  a=81+81 \cdot 2+ 81 \cdot 3+.....................+81 \cdot 49 este pătrat perfect.

  • Rezolvare: Pentru a arăta că numărul “a” este pătrat perfect trebuie să arătam că numărul “n”se poate scrie ca un număr natural la puterea a doua.
  • Observăm că 81 se repetă și îl putem da factor comun.
  • a=81\cdot (1+ 2+ 3+.....................+49).
  • În paranteză obținem   Suma Gauss a primelor 49 numere naturale consecutive așa că vom aplica metoda de calcul a lui Gauss.
  • a=81\cdot [49 \cdot(49+1) \ \ : \ 2 ]
  • a=81\cdot [49 \cdot 50 \ \ : \ 2 ]
  • a=81\cdot 49 \cdot 25
  • a=9^2\cdot 7^2 \cdot 5^2
  • Aplicăm Regulile de Calcul cu Puteri și obținem:
  • a=(9\cdot 7 \cdot 5)^2
  • a=315^2
Exercițiul 3:  

Arătați că numărul   n= 27^9 \cdot 32^{11} \ \ : \ \ 2 - 16^6\cdot 2\cdot 6^{27} este pătrat perfect.

  • Rezolvare:  Pentru a arăta că numărul “n” este pătrat perfect trebuie să arătăm că se poate scrie ca un număr natural la puterea a doua.
  • Observăm că pe 27 îl putem scrie ca bază 3, pe 16 și 32 îi putem scrie ca baza 2 iar pe 6 îl putem scrie ca produsul 2\cdot 3
  • n= (3^3)^9 \cdot (2^5)^{11} \ \ : \ \ 2^1 - (2^4)^6\cdot 2^1 \cdot (2\cdot3)^{27}
  • Aplicăm Regulile de calcul cu puteri și obținem:
  • n= 3^{3\cdot9} \cdot 2^{5\cdot 11} \ \ : \ \ 2^1 - 2^{4\cdot 6}\cdot 2^1 \cdot 2^{27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{55} \ \ : \ \ 2^1 - 2^{24}\cdot 2^1 \cdot 2^{27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{55-1} - 2^{24+1+27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{54} - 2^{52}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{52} \cdot 2^2 - 2^{52}\cdot 3^{27}
  • Observăm că se repetă  3^{27} \cdot 2^{52} și îi dăm factor comun.
  • n= 3^{27} \cdot 2^{52} \cdot (2^2 - 1)
  • n= 3^{27} \cdot 2^{52} \cdot (4 - 1)
  • n= 3^{27} \cdot 2^{52} \cdot 3
  • n= 3^{27} \cdot 2^{52} \cdot 3^1
  • n= 3^{27+1} \cdot 2^{52}
  • n= 3^{28} \cdot 2^{52}
  • n= (3^{14} \cdot 2^{26} )^2 \Rightarrow n este pătrat perfect
Exercițiul 4:  

Arătați că numărul  n= 2^{2011}- 2^{2010}-2^{2009}-2^{2008}  este pătrat perfect.

  • Rezolvare: Pentru a arăta că numărul “n” este pătrat perfect trebuie să arătăm că se poate scrie ca un număr natural la puterea a doua.
  • Aplicând Regulile de Calcul cu Puteri  putem scrie: 2^{2011}= 2^{2008}\cdot 2^{3}2^{2010}= 2^{2008}\cdot 2^{2} și 2^{2009}= 2^{2008}\cdot 2^{1}. Obținem astfel:
  •  n= 2^{2008}\cdot 2^{3} - 2^{2008}\cdot 2^{2} - 2^{2008}\cdot 2^{1} -2^{2008}
  • Observăm că se repetă  2^{2008} și putem sa îl dăm factor comun:
  •  n= 2^{2008}\cdot (2^{3} - 2^{2} - 2^{1} - 1)
  •  n= 2^{2008}\cdot (8 - 4 - 2 - 1)
  •  n= 2^{2008}\cdot 1
  •  n= 2^{2008}
  •   n= (2^{1004})^2 \Rightarrow n este pătrat perfect

 

Exercițiul 5: 

Arătați că numărul a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002}   nu este pătrat perfect.

  • Rezolvare: Observăm că avem Suma Gauss a puterilor lui 2. Pentru a rezolva acest exercițiu înmultim întreaga expresie matematică cu un 2. 
  • a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002} | \ \ \ \cdot2
  • 2\cdot a= 2\cdot 2^{1504} + 2\cdot 2^{1505} + 2\cdot 2^{1506} +..............+2\cdot 2^{2002}
  • 2\cdot a= 2^{1504+1} + 2^{1505+1} + 2^{1506+1} +..............+ 2^{2002+1}
  • 2\cdot a= 2^{1505} + 2^{1506} + 2^{1507} +.............+2^{2002}+ 2^{2003}
  • Scădem cele două relații și obținem:
  • suma gauss a puteror lui 2

  •  a = 2^{2003} - 2^{1504}
  • Pentru a demonstra că numărul  a = 2^{2003} - 2^{1504} nu este pătrat perfect trebuie să arătăm că Ultima cifră a lui a aparține mulțimii: \left \{ 2,3, 7,8 \right \}.
  • Calculăm Ultima cifră a numărului a = 2^{2003} - 2^{1504}
  •  U(a) = U(2^{2003} - 2^{1504})
  •  U(a) = U(2^{2003}) - U(2^{1504})
  • Calculăm  U(2^{2003}) .
  • Mai întâi calculăm puterilelui 2.
  • Observăm că ultima cifră se schimbă din 4 în 4.
  • Împărțim 2003 la 4 și obținem câtul 500 și restul 3.
  •  U(2^{2003})=U(2^{4\cdot 500+3})=U[(2^4)^{500}\cdot 2^3]=U[(2^4)^{500}]\cdot U(2^3)
  • Dacă privim atent puterile lui 2 observăm ca ultima cifră a lui 2^4 este 6 și astfel obținem:
  • U[(2^4)^{500}]\cdot U(2^3)= U[U(6^{500})\cdot 8]
  • Știm că 6 ridicat la orice putere are ultima cifra tot 6.
  • Și obținem: U[U(6^{500})\cdot 8]=U(6 \cdot 8)= U(48)=8
  • Am obținut că  U(2^{2003})=8
  • Calculăm  U(2^{1504}).
  • Împărțim 1504 la 4 și obținem câtul 376.
  •  U(2^{1504})=U(2^{4\cdot 376})=U[(2^4)^{376}]
  • U(2^4)=6\Rightarrow U[(2^4)^{376}]=U(6^{376})=6
  • Am obținut astfel:  U(a) = U(2^{2003}) – U(2^{1504})=8-6=2
  • Știm că ultima cifră a unui pătrat perfect nu poate fi 2 \Rightarrow  a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002} nu este pătrat perfect

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

Criteriile de divizibilitate

“Mintea umană este ca o parașută. E inutilă dacă nu se deschide.”

Frank Zappa

Dragul meu părinte bine te-am regăsit! În articolul anterior ți-am prezentat lecția “Divizorul unui număr natural. Multiplul unui număr natural”. Am învățat împreună care sunt divizorii unui număr, care sunt multiplii unui număr natural și cum arătăm dacă un număr natural divide sau nu un alt număr natural. Astăzi voi continua cu o noua lecție la acest capitol “Criteriile de divizibilitate” .

(mai mult…)

Criteriul de divizibilitate cu 2

  • Un număr natural este divizibil cu 2 dacă și numai dacă ultima cifră a numărului este o cifră pară.
  • numar-divizibil-cu-2

Criteriul de divizibilitate cu 5

  • Un număr natural este divizibil cu 5 dacă și numai dacă ultima cifră a numărului este 0 sau 5
  • numar-divizibil-cu-5

Criteriul de divizibilitate cu 10.

  • Un număr natural este divizibil cu 10 dacă și numai dacă ultima cifră a numărului este 0.
  • numar-divizibil-cu-10

Criteriul de divizibilitate cu 100(1000, 10000, etc).

  • Un număr natural este divizibil cu 100(respectiv 1000, 10000, etc) dacă și numai dacă ultimile două (respectiv trei, patru, etc) cifre ale numărului sunt egale cu 0.
  • numar-divizibil-cu-100

Criteriul de divizibilitate cu 3 (respectiv 9).

  • Un număr natural este divizibil cu 3 (respectiv 9) dacă și numai dacă suma cifrelor sale se divide cu 3 (respectiv 9).
  • numar-divizibil-cu-3

Criteriul de divizibilitate cu 4.

  • Un număr natural este divizibil cu 4  dacă și numai dacă numărul format din ultimele două cifre se divide cu 4
  • numar-divizibil-cu-4

Criteriul de divizibilitate cu 25.

  • Un număr natural este divizibil cu 25  dacă și numai dacă  ultimele două cifre ale sale sunt 00, 25, 50 sau 75.

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor  dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

Exerciții rezolvate la Ultima Cifră a unui Număr Natural

“Zadarnic vei vrea să-l înveți

pe cel ce nu e dornic să fie învățat, dacă nu-l vei fi făcut mai întâi dornic de a învăța.”

Comenius

Dragul meu părinte bine te-am regăsit. În articolul anterior am vorbit despre cum putem afla Ultima cifră a unui număr natural. Azi îți propun câteva exemple de exerciții rezolvate și explicate pas cu pas la această lecție dificilă pentru clasa a V-a.

(mai mult…)

Exercițiul 1:

Calculați ultima cifră a numerelor:

a)  2^{1299}; \ \ \ 2^{2020};

b)  21^{324}; \ \ \ 19^{257}; \ \ \ 17^{2020};

Rezolvare:

  • a) Pentru a calcula  2^{1299}; mai întâi privim atent puterile numărului 2.

Observăm că ultima cifră se repetă din 4 în 4.

Împărțim puterea 1299 la 4 și obținem:  1299 \ \ \ : \ \ \ 4=324 \ \ \ rest \ \ \ 3 \Rightarrow 1299=4\cdot 324 +3

Atunci putem scrie că: U(2^{1299})=U(2^{4\cdot 324 +3})=U[(2^{4})^{ 324} \cdot 2^3)] =U[(2^{4})^{ 324}] \ \ \ \cdot \ \ \ U( 2^3)

Consultăm tabelul cu puterile lui 2 și observăm că 2^{4} are ultima cifră 6 astfel obținem:

 U[(2^{4})^{ 324}] \ \ \ \cdot \ \ \ U( 2^3)=U(6^{ 324}) \ \ \ \cdot \ \ \ 8

Consultăm tabelul cu puterile lui 6.

Observăm că  6 ridicat la orice putere are ultima cifră 6 astfel obținem:

U(6^{ 324}) \ \ \ \cdot \ \ \ 8=U(6 \cdot 8)=U(48)=8

Am obținut că U(2^{ 1299})=8

Calculăm acum pentru U(2^{ 2020})=?

Avem mai sus tabelul cu puterile lui 2 și am observat că ultima cifră se repetă din 4 în 4.

Împărțim puterea 2020 la 4 și obținem: 2020 \ \ \ : \ \ \ 4=505 \ \ \ rest \ \ \ 0

Atunci putem scrie că: U(2^{2020})=U(2^{4\cdot 505 +0})=U[(2^{4})^{ 505} \cdot 2^0)] .

Știm că orice număr ridicat la puterea 0 este egal cu 1 \Rightarrow 2^{0}=1.

Am văzut mai sus că  2^{4} are ultima cifră 6 astfel obținem:

=U[(6^{ 505} \cdot 1)]=U(6 \cdot1)=6 .

Am obținut că: U(2^{ 2020}) = 6

b)   21^{324}; \ \ \ 19^{257}; \ \ \ 17^{2020};

  • Calculăm  U(21^{ 324}) = ?

 U(21^{ 324}) = U(1^{ 324})

Știm că 1 ridicat la orice putere este egal cu 1.  \Rightarrow U(1^{ 324}) = 1

  • Calculăm  U(19 ^{ 257}) = ?

 U(19 ^{ 257}) = U(9^{ 257}) =

Calculăm puterile lui 9.

Observăm că ultima cifră se repetă din 2 în 2.

Împărțim 257 la 2 și obținem: 257 \ \ \ : \ \ \ 2 = 128 \ \ \ rest \ \ \ 1

Atunci putem scrie că: U(9^ {257})= U(9^ {2\cdot128+1})= U(9^ {2})^{128} \cdot U(9^1)=

Consultând tabelul cu puterile lui 9 observăm că 9^2 are ultima cifră egală cu 1, astfel obținem:  U(9^ {2})^{128} \cdot U(9^1)= U(1^{128})\ \ \ \cdot \ \ \ 9=U(1 \cdot 9 )=9

Am obținut că U(19^{ 257}) = 9

  • Calculăm U(17^{ 2020}) = ?

U(17^{ 2020}) = U(7^{ 2020}) = ?

Calculăm puterile lui 7.

Observăm că ultima cifră se repetă din 4 în 4.

Împărțim 2020 la 4 și obținem: 2020 \ \ \ : \ \ \ 4 = 505 \ \ \ rest \ \ \ 0

Atunci putem scrie că:  U(7^{ 2020}) = U[(7^4)^{ 505}]

Consultând tabelul cu puterile lui 7 observăm că 7^4 are ultima cifră egală cu 1, astfel obținem:

U[(7^4)^{ 505}] = U(1^{505})=1

Am obținut că U(17^{ 2020})=1

Învăț pentru mine

Dragul meu părinte își propun câteva exerciții pe care să le rezolve copilul tău urmărind exemplele explicate și rezolvate mai sus!

Determină ultima cifră a numerelor:

a)  2^{99}; \ \ \ 2^{2018}; \ \ \ 2^{2024};

b)  41^{2017}; \ \ \ 125^{2017}; \ \ \ 2017^{2018};

c)  4^{1999}; \ \ \ 129^{2022}; \ \ \ 2016^{2018};

 

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

Mulțimea Numerelor Raționale.

Nu îți coborî așteptările pentru a se potrivi cu performanța ta. Ridică-ți nivelul de performananță pentru a se potrivi cu așteptările tale.” 

Ralph Marston

 

Dragul meu părinte bine te-am regăsit. Azi revin cu o lecție pentru clasa a VII-a. (mai mult…)

Copilul tău a învățat în clasa a VI-a Numerele Raționale pe care le vom repeta și  acum în clasa a VII-a.

Începem clasa a VII-a cu recapitularea lecției  “Mulțimea numerelor Raționale. Forme de scriere a Numerelor Raționale.”

Definiție Număr Rațional: 

Un număr x se numește număr rațional dacă există o pereche de numere întregi (a,b) cu b\neq 0, astfel încât \frac{a}{b}=x.

  • Mulțimea numerelor raționale se notează cu Q și se poate defini astfel:
  • Q=\left \{ x| (\exists)\ \ \ a,\ b \in Z;\ \ b\neq 0 \ \ \ \ x=\frac{a}{b} \right \}

Observații: 

  • N \subset Z \subset Q
  •  Q^{{\star}}=Q \setminus \left \{ 0 \right \};
  •  Q^{{\star}} se numește mulțimea numerelor raționale nenule.
  • Q=Q_{{-}} \cup \left \{ 0\right \} \cup Q_{{+}}
  •  Q_{{-}} reprezintă mulțimea numerelor raționale negative
  •  Q_{{+}} reprezintă mulțimea numerelor raționale pozitive.
  • orice număr natural x se poate scrie ca un număr rațional cu numitor 1: x=\frac{x}{1}.

Scoaterea Întregilor din Fracție: 

  • Dacă avem un număr rațional x=\frac{a}{b} cu b\neq 0, pentru a scoate întregii din fracție efectuăm operația de împărțire a : b și obținem câtul c si restul r .
  • Putem scrie că  \frac{a}{b}=c\frac{r}{b}, unde c este partea întreagă , iar \frac{r}{b} este partea fracționară a numărului rațional \frac{a}{b} .

Exemplu:

  • Efectuăm operația de scoatere a întregilor din fracția  \frac{19}{4}
  • Efectuăm împărțirea 19\ \ \ :\ \ 4 = 4 \ \ \ rest \ \ 3
  • Putem scrie astfel: \frac{19}{4}=4\frac{3}{4}.

Introducerea Întregilor în fracție: 

Definiție : Numărul rațional scris sub forma a\frac{b}{c}  se poate scrie sub forma unei fracții ordinare astfel: a\frac{b}{c}= \frac{a\cdot c +b}{c}.

Exemplu:

  • Efectuăm operația de introducere a întregilor din fracție  pentru numărul rațional: 9\frac{3}{5}.
  • Conform definiției enunțate mai sus 9\frac{3}{5}= \frac{9 \cdot 5+3}{5}= \frac{45+3}{5}= \frac{48}{5} .

Forme de scriere:

Un număr rațional poate fi reprezentat prin fracții ordinare echivalente sau printr-o fracție zecimală finită sau periodică.

Teoremă:  Pentru orice număr rațional nenul “q”  există o unică fracție ireductibilă \frac{a}{b}, \ \ \ cu \ \ \ a\in Z \ \ \ si \ \ \ b\in Z^*, astfel încât q= \frac{a}{b}.

Transformarea Fracțiilor Ordinare în Fracții Zecimale:

Un număr rațional pozitiv reprezentat printr-o fracție ireductibilă \frac{a}{b} , cu  a,b \in N^{*}, b\geq 2, se poate transforma, folosind algoritmul de împărțire a numerelor naturale în:

  • fracție zecimală finită;
  • fracție periodică simplă;
  • fracție periodică mixtă.

Exemple: 

  • fracție zecimală finită;

\frac{39}{4}=9,75;

impartire

  • fracție periodică simplă;

\frac{122}{6}=20,(3)

  • fracție periodică mixtă.

\frac{125}{6}=20,8(3)

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

Ultima cifră a unui număr natural

 

Cu cât un copil a văzut și a înțeles mai mult, cu atât vrea el să vadă și să înțeleagă mai mult.” 

Jean Piaget

Dragul meu părinte bine te-am regăsit! În articolul anterior am vorbit despre “Pătratul unui număr natural”. Astăzi îți propun o nouă lecție care mă ajută să demonstrez dacă un număr natural este pătrat perfect sau nu: “Ultima cifră a unui număr natural”.

(mai mult…)

Șirul de numere: 0, 1, 4, 9, 16, 25, 36, …………… este șirul 0 ^{2}, 1 ^{2}, 2 ^{2}, 3 ^{2}, 4 ^{2}, 5 ^{2}, 6 ^{2}, .............., n ^{2}, .......... și se numește șirul numerelor naturale pătrate perfecte.

Fie x un număr natural. Notăm cu U(x) ultima cifră a numărului x.

Să privim cu atenție următorul tabel:

Observăm ca ultima cifră a unui pătrat perfect poate fi: 0, 1, 4, 5, 6 \ \ sau \ \ \ 9 .

Observație:

  • Dacă ultima cifră a unui număr natural este 2, 3, 7\ \ sau \ \ \ 8 atunci acel număr natural nu poate fi pătrat perfect.
  • Dacă ultima cifră a unui număr natural este 0, 1, 4, 5, 6 \ \ sau \ \ \ 9 acel număr natural este pătrat perfect.

Pentru a afla ultima cifră a unui număr vor avea în vedere următoarele reguli de calcul:

  • U(x+y)=U(U(x)+U(y))
  • U(x\cdot y)=U(U(x)\cdot U(y))
  • U(x^n)=U[(U(x))^n]

Exemple:

  • U(79 +24)=U(U(79) +U(24))=U(9+4)=U(13)=3
  • U(98 \cdot 82)=U(U(98) \cdot U(82))=U(8 \cdot 2)=U(16)=6
  • U(36 ^{89})=U(U(36) ^{89})=U(6^ ^{89})=6

Să analizăm atent următorul tabel:

Puterile numerelor naturale

Observație:

  • Numerele 1,5 \ \ \ si \ \ \ 6 ridicate la orice putere îmi dă ultima cifră 1,5 \ \ \ si \ \ \ respectiv \ \ \ 6 .
  • La numerele 2,3, 7 \ \ \ si \ \ \ 8 se repetă ultima cifră din patru în patru puteri. La aceste numere ca să pot afla ultima cifră împart exponentul la 4, iar ultima cifră va fi egală cu ultima cifră a numărului 2,3,7 sau respectiv 8  ridicat la puterea egală cu restul împărțirii.
  • Iar la numerele 4 \ \ \ si \ \ \ 9 se repetă ultima cifră din două în două puteri.La aceste numere ca să pot afla ultima cifră împart exponentul la 2, iar ultima cifră va fi egală cu ultima cifră a numărului 4 sau respectiv 9 ridicat la puterea egală cu restul împărțirii.

 

Exemple:

Determinați ultima cifră a numerelor:

  •  2^{{2017}}\ \ \ si \ \ 4^{{2017}}

Rezolvare: 

  • Calculăm pentru  2^{{2017}}. Scriem puterile lui 2.

Puterile lui 2

Observăm ca ultima cifră se repetă din 4 în 4.

Împărțim 2017 la 4

Obținem astfel 2017\ \ \ : \ \ \ 4 =504 \ \ \ rest \ \ \ 1

Rezultă că U(2^{2017})= U[(2^4)^{2017} \cdot 2^1]=U(2^4)^{2017}\cdot U(2^1)

Privind puterile lui 2 observăm că ultima cifră a lui 2^4 este 6, iar ultima cifră a lui 2^1 este 2.

Astfel obținem că U(6^{2017})\cdot 2= U(6 \cdot 2) = U(12) = 2

  • Observație: Am precizat mai sus ca 6 la orice putere are ultima cifră egala tot cu 6.

 

  • Calculăm ultima cifră pentru numărul U(4^{2017})=

Scriem puterile lui 4.

Observăm că la numărul 4 ultima cifră se repetă din 2 în 2.

Împărțim 2017 la 2 :

 

Obținem astfel: 2017 \ \ \ :\ \ \ 2 = 1008 \ \ \ rest\ \ \ 1

Rezultă că: U(4^{2017})=U[(4^2)^{1008} \cdot 4^1]=U[(4^2)^{1008}] \cdot U(4^1)=

Ultima cifră a lui 4^2 este 6 iar ultima cifră a lui 4^1 este 4. Înlocuiesc și obțin:

U(6^{1008})\cdot U(4^1)= U(6 \cdot 4)= U(24)= 4.

Te invit să exersezi și tu 3 exerciții identice pe care ți le propun în rubrica:

Învăț pentru viitorul meu:

Determină ultima cifră a numerelor:

9^{2017}; \ \ \ 3^{2019} ;\ \ \ 8^{2021}.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un grad de dificultate ridicat rezolvate și explicate pas cu pas te invit alături de mine in Clubul de Matematică “Math More Easy”  sau accesează link-ul de mai jos:http://mathmoreeasy.ro/exercitii-rezolvate-la-ultima-cifra-a-unui-numar-natural/

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și  pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai  nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor! 

Divizorul unui număr natural. Multiplul unui număr natural.

“Dimensiunea succesului tău este măsurata de puterea dorinței tale, de mărimea visului tău și de cum gestionezi dezamăgirile pe drumul către succes.”

Dragul meu părinte bine te-am regăsit! Azi revin cu o lecție pentru clasa a VI-a.

Copilul tău a învățat în clasa a V-a noțiunile de Divizor. Multiplu dar și Criteriile de divizibilitate pe care acum în clasa a VI-a le vom repeta.

(mai mult…)

Definiție:  Numărul natural “a”  este divizibil (sau se divide) cu numărul natural “b”, dacă există un număr natural “c” astfel încât: ”  a=b\cdot c” .

Observație:

Numărul natural “a”  nu este divizibil (sau nu se divide) cu numărul natural “b”, dacă există un număr natural “c” astfel încât: ”  a\neq b\cdot c” .

Divizori improprii. Divizori proprii.

Fie n \geq 2 un număr natural. Numerele 1 și n  se numesc divizori improprii ai numărului n .

Ceilalți divizori ai numărului n  (dacă există) se numesc divizori proprii.

Mulțimea divizorilor naturali ai numărului natural n este mulțimea D_{{n}} a tuturor numerelor naturale care divid pe n.

Se notează  D_{{n}}=\left \{ d \in N| n \ \vdots\ d \right \} .

Mulțimea multiplilor naturali ai numărului natural n  este mulțimea tuturor elementelor naturale care se divid cu n .

Se notează  M_{n}=\left \{ k\in N |\ \ \ \ \ \ \ k \ \vdots\ n \right \}.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

1 2