Posts Tagged ‘clasa a VIII-a’

Segment de dreaptă. Semidreapta

“Singurul lucru mai rău decât să începi ceva și să ratezi…….. este să nu începi acel ceva”

Seth Godin

Dragul meu părinte bine te-am regăsit. Azi îți propun o nouă lecție de Geometrie în Plan.  În articolele anterioare am vorbit despre Dreaptă și Plan. Azi îți propun lecția  “Segment de dreaptă. Semidreapta”.

Segment de dreaptă:

  • Este o porțiune din acea dreaptă delimitat de două puncte distincte numite extremitățile segmentului sau capetele segmentului.
  • Se notează : \left [ AB \right ]

Segmentul de dreaptă închis:

  • Se notează: \left [ AB \right ]
  • Include cele două puncte A și B

Segmentul de dreaptă deschis:

  • Se notează: \left ( AB \right )
  • nu include cele două puncte A și B.

Segmentul de dreaptă nul:

  • Este segmentul de dreaptă care are proprietatea că punctele care delimitează segmentul coincid.

Semidreapta: 

  • Este un segment de dreaptă mărginit la un singur capăt.
  • Se notează: \left [ MN
  • M se numește origine

Semidreaptă închisă: 

  • Este semidreapta care își conține originea
  • Se notează: \left [ MN

Semidreaptă deschisă:

  • Este semidreapta care nu își conține originea.
  • Se notează: \left ( MN

Semidrepte opuse:

  • Sunt două semidrepte conținute în aceeași dreaptă, care au aceeași origine și sensuri diferite.

Semidrepte identice:

  • Sunt două semidrepte de acelasi fel (închise sau deschise), conținute în aceeași dreaptă, care au aceeași origine și același sens.

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții și probleme cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematic[ Math More Easy”. 

Model Rezolvat Teza clasa a VIII-a Semestrul II

Şcoala trebuie să te înveţe a fi propriul tău dascăl, cel mai bun şi cel mai aspru.

Nicolae Iorga

Dragul meu părinte bine te-am regăsit!  A început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(mai mult…)

Model Propus Teza clasa a VIII-a Semestrul II

 

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului: \sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  este:……………………………

Rezolvare:

\sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  =\sqrt{2\cdot 3}-3\sqrt{6} =\sqrt{6}-3\sqrt{6} =-2\sqrt{6}

Exercițiul 2 (1 punct):

Simplificând cu x^2+1  raportul : \frac{x^4-1}{{x^2+1}} se obține:……………………………….

Rezolvare:

Aplicăm formulele de calcul prescurtat pentru expresia: x^4-1 și se obține:

\frac{x^4-1}{{x^2+1}}=\frac{(x^2)^2-1^2}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}^{(x^2+1}=\frac{x^2-1}{1}=x^2-1.

Exercițiul 3 (1 punct):

Soluția ecuației: x-\sqrt{3}=0 este: ………………………………….

Rezolvare:

x-\sqrt{3}=0 \Rightarrow x-\sqrt{3}=0 /-\sqrt{3} \Rightarrow x=-\sqrt{3}

Exercițiul 4 (1 punct):

Se considera funcția f : R \to R  ,  f (x)=x-3. Valoarea funcției în punctul x=3 este egală cu: …………………….

Rezolvare:

Pentru a afla valoarea functiei în punctul x=3 calculăm  f (3) (îl înlocuim pe x cu 3 în funcție.

 f (3)=3-3=0

Exercițiul 5 (1punct):

Volumul cubului cu lungimea diagonalei de \sqrt{12}cm este: ……………………

Rezolvare:

Știm că diagonala cubului este egală cu:

 d=l\sqrt{3}\Rightarrow  l\sqrt{3}=\sqrt{12}\Rightarrow   l\sqrt{3}=\sqrt{4\cdot3}\Rightarrow   l\sqrt{3}=2\sqr{3}\Rightarrow  l\sqrt{3}=2\sqr{3} / :\sqr{3} \Rightarrow   l=2 cm

Știm că volumul cubului are formula:  V= l^3  ; înlocuim latura cu 2 cm și obținem:

 V= l^3 \Rightarrow  V= (2cm)^3 \Rightarrow V= 8cm^3 .

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete.

Exercițiul 1 (1,5 puncte):

Se consideră expresia: E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}.

a) Determina’i valorile reale ale lui x pentru care expresia E(x) este bine definită.

b) Demonstrați că E(x)=1,  (\forall ) x \in R \setminus \left \{ -2; 1\right \}.

Rezolvare:

E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

  • a)Punem condițiile de existență ale fracțiilor (numitorul fracției trebuie să fie diferit de 0):

 x-2 \neq 0 \Rightarrow x \neq 2

 3x-1 \neq 0 \Rightarrow 3x \neq 1 \Rightarrow 3x \neq \frac{1}{{3}}

 \Rightarrow x \in R\setminus \left \{ \frac{1}{{3}} , 2 \right \}

  • E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2

Înmulțim cu a doua fracție răsturnată.

  •  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

Aducem la același numitor în paranteză.

  •  \Rightarrow E(x)=(_{{}}^{x-2)}\textrm{1}- _{{}}^{x-2)}\textrm{x}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}    \Rightarrow E(x)=(\frac{x-2}{x-2}- \frac{x(x-2)}{x-2}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=(\frac{x-2-x^2+2x+x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=\frac{3x-1}{x-2}\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=1

Exercițiul 2 (1,5 puncte):

Se consideră funcția  f : R \to R , f(x)= -x+2 .

a) Calculați media aritmetică a numerelor a=f(0)  și b=f(2) .

b) Reprezentați grafic funcția f(x).

c) Calculați aria triunghiului determinat de graficul funcției f(x) și axele de coordonate OX și OY.

Rezolvare:

  • a) f(0)=0+2=2

f(2)=-2+2=0

 M_{a}=\frac{f(0)+f(2)}{{2}} \Rightarrow  M_{a}=\frac{2+0}{{2}} \Rightarrow  M_{a}=\frac{2}{{2}} \Rightarrow M_{a}= 1

  • b) Pentru a reprezenta grafic funcția f(x) facem intersecția cu cele două axe OX și OY
  • \cap OX : y=0 \Rightarrow f(x)=0   \Rightarrow -x+2=0   \Rightarrow -x=-2  \Rightarrow x=2  \Rightarrow A(2;0)
  • \cap OY:   x=0 \Rightarrow f(0)=0+2=2\Rightarrow B(0;2)

Exercițiul 3 (1,5 puncte):

O piramidă triunghiulară regulată VABC are latura AB=4\sqrt{6} cm și VO=2\sqrt{6} cm, unde O este centrul bazei ABC. Calculați:

a) aria laterală a piramidei;

b) distanța de la O la planul (VBC)

c) distanța de la punctul A la planul (VBC)

d) măsura unghiului format de planele (VBC) și (ABC).

Rezolvare:

Scriem datele problemei și apoi le analizăm:

Realizăm și desenul:

  • a)  Știm formula arie laterale:  A_{l}= \frac{P_{b}\cdot a_{p}}{2}.

Pentru a calcula A_{{l}} trebuie să aflăm mai întâi apotema piramidei a_{{p}}=VM.

VABC este piramidă triunghiulară regulată  \Rightarrow \bigtriangleup ABC  echilateral   \Rightarrow  AM înălțimea \bigtriangleup ABC  \Rightarrow AM=\frac{l\sqrt{3}}{{2}}  \Rightarrow AM=\frac{AB\sqrt{3}}{{2}}   \Rightarrow AM=\frac{4\sqrt{6}\cdot \sqrt{3}}{{2}}  \Rightarrow AM=\frac{4\sqrt{6\cdot 3}}{{2}}    \Rightarrow AM=\frac{4\cdot 3\sqrt{2}}{{2}}   \Rightarrow AM=\frac{12\sqrt{2}}{{2}}   \Rightarrow AM=6\sqrt{2} cm

Știm că OM= \frac{1}{{3}}\cdot AM \Rightarrow OM= \frac{1}{{3}}\cdot 6\sqrt{2} cm \Rightarrow OM= \frac{6\sqrt{2}}{{3}} cm \Rightarrow OM= 2\sqrt{2}} cm.

Aplicăm Teorema lui Pitagora în \bigtriangleup VOM pentru a afla apotema VM.

\bigtriangleup VOM((\widehat{VOM})=90^\circ )\RightarrowT.P \Rightarrow VM^2=VO^2+OM^2  \Rightarrow VM^2= (2\sqrt{6} cm)^2 + (2\sqrt{2} cm)^2

\Rightarrow VM^2= 2^2\cdot (\sqrt{6})^2 cm^2 + 2^2\cdot (\sqrt{2})^2 cm^2

\Rightarrow VM^2= 4\cdot 6 cm^2 + 4\cdot 2 cm^2

\Rightarrow VM^2= 24 cm^2 + 8 cm^2

\Rightarrow VM^2= 32 cm^2   \Rightarrow VM= \sqrt{32 cm^2}  \Rightarrow VM= \sqrt{16 \cdot2} cm

 \Rightarrow VM= 4\sqrt{2} cm

Aflăm și perimetrul bazei. Pentru ca \bigtriangleup ABC  este echilateral  \Rightarrow P_{b}= 3 \cdot l  \Rightarrow P_{b}= 3 \cdot AB

 \Rightarrow P_{b}= 3 \cdot 4\sqrt{6} cm  \Rightarrow P_{b}= 12\sqrt{6} cm.

Înlocuim în aria laterală și obținem:

 A_{l}= \frac{P_{b}\cdot a_{p}}{2}  \Rightarrow A_{l}= \frac{12\sqrt{6} cm\cdot 4\sqrt{2} cm}{2}   \Rightarrow A_{l}= \frac{12 \cdot 4 \sqrt{6\cdot 2} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{12} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{4 \cdot 3} cm^2}{2}  \Rightarrow A_{l}= \frac{48\cdot 2 \sqrt{ 3} cm^2}{2}  \Rightarrow A_{l}= 48\sqrt{ 3} cm^2

  • b) d(O; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]  și  \left \{ O \right \} \in AM\Rightarrow \left [ OM \right ]\perp \left [ BC \right ]

  • OM=2\sqrt{2}cm

 

  • c) d(A; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]

  • d) m(\widehat{ (VOM),(ABC)} )=?

\bigtriangleup VOM((\widehat{VOM})=90^\circ ) : sin (\widehat{VMO})= \frac{VO}{{VM}} =\frac{2\sqrt{6}cm}{4\sqrt{2}cm} =\frac{\sqrt{3}}{2}   \Rightarrow m((\widehat{VMO})= 60^\circ)  \Rightarrow m((\widehat{VMA})= 60^\circ).

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

Model Rezolvat Teza clasa a VII-a Semestrul II

Încearcă să fii un om de valoare și nu neapărat un om de succes. – Albert Einstein

Dragul meu părinte bine te-am regăsit!  De azi a început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(mai mult…)

Model-Teza-clasa-a-VII-a-Semestrul-II

 

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului: \sqrt{20}+\sqrt{45}-3\sqrt{5}  este:……………………………

Rezolvare:

\sqrt{20}+\sqrt{45}-3\sqrt{5}= \sqrt{4\cdot 5}+\sqrt{9\cdot 5}-3\sqrt{5}= 2\sqrt{5}+3\sqrt{5}-3\sqrt{5}=2\sqrt{5}

Exercițiul 2 (0,5 puncte):

Raționalizând fracția: \frac{4}{\sqrt{5}-1}  obținem:…………………

Rezolvare:

_{{}}^{\sqrt{5}+1)}\textrm{\frac{4}{\sqrt{5}-1}}={\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}}={\frac{4(\sqrt{5}+1)}{(\sqrt{5})^2-1^2}}= {\frac{4(\sqrt{5}+1)}{5-1}}={\frac{4(\sqrt{5}+1)}{4}}=\sqrt{5}+1

Exercițiul 3 (1 punct):

Rezultatul calculului: (2a+1)^2 - (2a)^2= este………………………

Rezolvare:

(2a+1)^2 - (2a)^2= (2a)^2+2\cdot2a\cdot1+(1)^2 - (2a)^2= 4a^2+4a+1 -4a^2= 4a+1

Exercițiul 4 (1 punct):

Dacă x+\frac{1}{{x}}=4 atunci x^2+\frac{1}{{x^2}}  este egal cu………………….

Rezolvare:

Pornim de la relația x+\frac{1}{{x}}=4 și o ridicăm la pătrat iar relația x+\frac{1}{{x}} o ridicăm la pătrat cu formula de calcul prescurtat :(a+b)^2=a^2+2\cdot a\cdot b+b^2. Astfel obținem:

x+\frac{1}{{x}}=4 /^2 \Rightarrow(x+\frac{1}{{x}})^2=4^2 \Rightarrow  x^2+2\cdot x \cdot \frac{1}{{x}} +(\frac{1}{{x}})^2=16 \Rightarrow   x^2+(\frac{1}{{x}})^2 +2=16 /-2 \Rightarrow  x^2+(\frac{1}{{x}})^2 =16-2 \Rightarrow  x^2+(\frac{1}{{x}})^2 =14

Exercițiul 5 (0,5puncte):

Soluția ecuației x+\sqrt{2}=0 este: …………………….

Rezolvare:

 x+\sqrt{2}=0 /-\sqrt{2} \Rightarrow  x=-\sqrt{2}

Exercițiul 6 (0,5puncte):

 sin 45^\circ  este egal cu …………..

Rezolvare:

 sin 45^\circ =\frac{\sqrt{2}}{2}

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete:

Exercițiul 1:(1,5 puncte):

Media geometrică a numerelor:  a=\left \| 2\cdot\sqrt{6} - 6\cdot\sqrt{2} \right \| și  b= \sqrt{72} + \sqrt{24} .

Rezolvare:

Știm că M_{{g}} =\sqrt{a\cdot b} .

Pentru a calcula \sqrt{a\cdot b} trebuie să aducem a și b la o formă mai simplă.

Pentru a aduce numărul “a” la o formă mai simplă trebuie să comparăm  2\cdot\sqrt{6}  cu  6\cdot\sqrt{2}  să aflăm dacă numărul a este un număr pozitiv sau negativ.

Pentru a compara  2\cdot\sqrt{6}  cu 6\cdot\sqrt{2}  trebuie să ridicăm la pătrat pentru a scăpa de redicali.

 2\cdot\sqrt{6} \sqcup 6\cdot\sqrt{2} /^2 \Rightarrow   2^2 \cdot6 \sqcup 6^2 \cdot2 \Rightarrow 4 \cdot6 \sqcup 36 \cdot2  \Rightarrow  24 \lt 72 \Rightarrow 2\cdot\sqrt{6} \lt 6\cdot\sqrt{2} \Rightarrow  numărul “a” este un număr negativ \Rightarrow  a=\left \| 2\cdot\sqrt{6} - 6\cdot\sqrt{2} \right \|=-2\cdot\sqrt{6}+6\cdot\sqrt{2}=6\cdot\sqrt{2}- 2\cdot\sqrt{6}

Pentru a aduce numărul “b” la o formă mai simplă trebuie să scoatem de sub radical:

 b= \sqrt{72} + \sqrt{24}   = \sqrt{2\cdot 36} + \sqrt{4\cdot 6}   =6 \sqrt{2} + 2\sqrt{ 6}

În concluzie  M_{{g}} =\sqrt{a\cdot b}  =\sqrt{(6 \sqrt{2} - 2\sqrt{ 6})\cdot(6 \sqrt{2} + 2\sqrt{ 6} )}  =\sqrt{(6 \sqrt{2})^2- (2\sqrt{ 6} )^2}  =\sqrt{36\cdot 2- 4\cdot 6}}  =\sqrt{72- 24}}  =\sqrt{48}} =\sqrt{16\cdot3 }}  =4\sqrt{3 }}.

Exercițiul 2:(1,5 puncte):

Rezolvați ecuația:  (x-2)^2-(x-1)(3-2x)=3(x+3)(x-3)+25

Rezolvare: Aplicăm formulele de calcul prescurtat și obținem:

 (x-2)^2-(x-1)(3-2x)=3(x+3)(x-3)+25

 (x)^2-2\cdot x \cdot 2+(2)^2-(x\cdot 3-x \cdot2x-1\cdot3+1\cdot2x)=3(x^2-3^2)+25

x^2-4x+4-3x +2x^2+3-2x=3(x^2-9)+25

3x^2-9x+7=3x^2-27+25

3x^2-9x+7=3x^2-2

3x^2-9x-3x^2 = -2-7

-9x= -9

-9x= -9 /:(-9)  \Rightarrow x= 1

Exercițiul 3:(1,5 puncte):

În trapezul ABCD cu  AB \parallel CD, m(\widehat{A})= m(\widehat{D})= 90^{\circ}, se consideră BE\perp CD, unde  E\in(CD). Știind că AB=6cm,CD=10cm și  BD \perp BC , determinați:

a) lungimea înălțimii BE.

b) perimetrul trapezului ABCD.

c) aria trapezului ABCD, rotunjită la cel mai apropiat număr întreg.

Rezolvare:

 

Scriem datele problemei după care le analizăm.

Trasăm desenul respectând datele problemei.

Trapez dreptunghic

  • a) Observăm că triunghiul este dreptunghic în unghiul B și putem aplica teorema înălțimii [ BE ] .

Mai știm Că  \left [ AB \right ] \equiv \left [ DE \right ] \Rightarrow \left [ EC \right ]=4 cm

\bigtriangleup DBC  (\widehat{DBC})= 90^{\circ}  \Rightarrow T.Î  \Rightarrow  BE^2=DE \cdot EC  \Rightarrow BE^2=6 cm \cdot 4 cm \Rightarrow BE^2= 24 cm^2  \Rightarrow BE= \sqrt{24 cm^2} \Rightarrow BE= \sqrt{4\cdot 6 } cm  \Rightarrow BE= 2\sqrt{6 } cm

Știm că  \left [ BE \right ] \equiv \left [ AD \right ] \Rightarrow  AD= 2\sqrt{6 } cm

  • b) Pentru a calcula perimetrul trapezului trebuie să aflam și latura \left [ BC \right ].

Știm că triunghiul \bigtriangleup BEC este dreptunghic în unghiul (\widehat{BEC})= 90^{\circ} astfel putem aplica Teorema lui Pitagora pentru a afla lungimea laturii \left [ BC \right ].

\bigtriangleup BEC (\widehat{BEC})= 90^{\circ} \Rightarrow T.P. \Rightarrow BC^2=BE^2+EC^2  \Rightarrow BC^2=(2\sqrt{6}cm)^2+(4cm)^2   \Rightarrow BC^2=2^2\cdot6} cm^2+16cm^2

 \Rightarrow BC^2=4\cdot6} cm^2+16cm^2   \Rightarrow BC^2=24 cm^2+16cm^2   \Rightarrow BC^2=40 cm^2

 \ \Rightarrow BC=\sqrt{40cm ^2}  \Rightarrow BC=\sqrt{4 \cdot 10cm ^2}  \Rightarrow BC=2\sqrt{ 10} cm

P_{{ABCD}}= AB+BC+CD+AD \Rightarrow P_{{ABCD}}= 6 cm+2\sqrt{ 10} cm+10 cm+2\sqrt{ 6} cm

\Rightarrow P_{{ABCD}}= 16 cm+2(\sqrt{ 10} +\sqrt{ 6}) cm.

  • c)  A_{ABCD}= \frac{(B+b)\cdot h}{{2}}\Rightarrow  A_{ABCD}= \frac{(AB+DC)\cdot AD}{{2}}\Rightarrow  A_{ABCD}= \frac{(6 cm+10 cm)\cdot 2\sqrt{6}cm }{{2}}\Rightarrow   A_{ABCD}= \frac{16cm\cdot 2\sqrt{6}cm }{{2}}\Rightarrow  A_{ABCD}= \frac{32\sqrt{6}cm^2 }{{2}}\Rightarrow   A_{ABCD}= 16\sqrt{6}cm^2

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la formulele de calcul prescurtat

Clasa a VIII-aBine te-am regăsit dragul meu părinte. În articolul anterior ţi-am prezentat “Formulele de Calcul Prescurtat” pentru numere reale.

Dragul meu părinte, ţi-am spus că aceste formule sunt foarte importante deoarece le vom folosi în Operaţiile cu rapoarte? Aceste rapoarte de numere compun un exerciţiu care se dă şi la examenul de capacitate. (Cel puţin în anul anterior  Examenul de Evaluare Naţională 2016 a avut un exerciţiu cu rapoarte).

(mai mult…)

EXERCIŢIUL 1:  Folosind formula pentru pătratul sumei sau diferenţei a doi termeni, calculaţi:

  • a)       (x+1) ^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=x şi b=+1. Aplicând formula obţinem:

 (x+1)^{2}=x^{2}+2\cdot x\cdot (+1)+(+1)^{2}

 (x+1)^{2}=x^{2}+2 x+1

  •     b)  (x - 2)^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=x şi b=-2. Aplicând formula obţinem:

 (x - 2)^{2}=x^{2}-2\cdot x\cdot 2 +(-2)^{2}

 (x - 2)^{2}=x^{2}-4 x +4

  • c)  (2x+\sqrt{3})^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=2x şi b=\sqrt{3}. Aplicând formula obţinem:

 (2x+\sqrt{3})^{2}=(2x)^{2}+2\cdot 2x\cdot\sqrt{3}+(\sqrt{3})^{2}

 (2x+\sqrt{3})^{2}=4x^{2}+4\sqrt{3} x+3

  • d)  (5x-\sqrt{2})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=5x şi b=\sqrt{2}. Aplicând formula obţinem:

 (5x-\sqrt{2})^{2}=(5x)^{2}-2\cdot 5x\cdot \sqrt{2}+(\sqrt{2})^{2}

 (5x-\sqrt{2})^{2}=25x^{2}-10 \sqrt{2}x+2

  • e) (\frac{2}{3}x+\frac{1}{3})^{2}=

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru:  a=\frac{2}{3}x şi  b=\frac{1}{3} . Aplicând formula obţinem:

 (\frac{2}{3}x+\frac{1}{3})^{2}=(\frac{2}{3}x)^{2}+2\cdot \frac{2}{3}x\cdot \frac{1}{3}+(\frac{1}{3})^{2}

 (\frac{2}{3}x+\frac{1}{3})^{2}=\frac{4}{9}x^{2}+ \frac{4}{9}x +\frac{1}{9}

  • f) (\frac{2}{7}x-\frac{7}{4})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru:  a=\frac{2}{7}x şi  b=\frac{7}{4}. Aplicând formula obţinem:

 (\frac{2}{7}x-\frac{7}{4})^{2}=(\frac{2}{7}x)^{2}-2\cdot \frac{2}{7}x\cdot \frac{7}{4}+(\frac{7}{4})^{2}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-\frac{28}{28}x+\frac{49}{16}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-x+\frac{49}{16}

f)  (x+7)(x-7)

Aplicăm formula de calcul prescurtat:  (a+b)(a-b)= a^{2}-b^{2}

În cazul exerciţiului  nostru: a=x şi b=7. Aplicând formula obţinem:

 (x+7)(x-7)= x^{2}-7^{2}

 (x+7)(x-7)= x^{2}-49

EXERCIŢIUL 2:  Efectuaşi calculele :

  •  a)  (x+2)^{2}+ (x-1)^{2}

Aplicând formulele de calcul prescurtat obţinem:

 (x+2)^{2}+ (x-1)^{2}=x^{2}+2\cdot x\cdot 2+ 2^{2}+x^{2}-2\cdot x\cdot 1+1^{2}= aplicatii-formule-de-calcul-prescurtat-ex-2

  •  b) (x-\sqrt{2}) ^{2}-(\sqrt{2}x+1) ^{2}

Aplicând formulele de calcul prescurtat obţinem:

aplicatii-formule-de-calcul-prescurtat-ex-2-pct-b

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Înmulţirea, împărţirea şi ridicarea la putere a numerelor reale reprezentate prin litere.

Clasa a VIII-aBine te-am regăsit dragul meu părinte. În articolul pe care l-am postat ieri pe blog am vorbit despre “adunarea şi scăderea numerelor reale reprezentate prin litere”.

În articolul de azi am să îţi vorbesc despre înmulţirea, împărţirea şi ridicarea la putere a numerelor reale reprezentate prin litere.

(mai mult…)

Observaţie:Prin “Inmulţirea a două numere reale reprezentate prin litere” (nu neapărat termeni asemenea)  se obţine un termen nou care are coeficientul egal cu produsul coeficienţilor termenilor daţi, iar partea literală este formată din toate literele luate o singură dată, iar ca exponent fiecare literă va avea suma exponenţilor pe care  i-a avut în termenii daţi.

inmultirea-nr-reale-reprezentate-prin-litere

Observaţie: Prin “Împărţirea a două numere reale reprezentate prin litere” (nu neapărat termeni asemenea)  se obţine un termen nou care are coeficientul egal cu câtul coeficienţilor termenilor daţi, iar partea literală este formată din toate literele luate o singură dată, iar ca exponent fiecare literă va avea diferenţa exponenţilor pe care  i-a avut în termenii daţi.

impartirea-nr-reale-reprezentate-prin-litere

Observaţie: Prin “Ridicarea la puterea întreagă a unui număr real reprezentat prin litere”   se obţine un termen nou care are coeficientul egal cu puterea întreagă a coeficienţului iniţial, iar partea literală este formată din aceleaşi litere ca ale temenului iniţial, fiecare literă având exponent egal cu produsul dintre exponentul iniţial şi puterea la care s-a ridicat numărul real reprezentat prin literă.

ridicarea-la-putere-a-nr-reale

Observaţie: 

  • Operaţiile de adunare, scădere, înmulţire, împărţire şi ridicare la putere a expresiilor algebrice îşi pastrează aceleaşi reguli şi proprietăţi ca la numere reale.
  • La înmulţirea unui factor cu o paranteză (proprietatea de distributivitate a înmulţirii faţă de adunare şi scădere) înmulţim factorul din faţa parantezei cu fiecare termen din paranteză.
  • La înmulţirea a două paranteze înmulţim fiecare termen din prima paranteză cu fiecare termen din cea de-a doua paranteză, iar la final reducem termenii asemenea.
  • La împărţirea unei paranteze cu un factor împărţim fiecare termen din paranteză la factor, dacă operaţia de împărţire este posibilă, dacă nu scriem termenii ca fracţie.

inmultirea-si-impartirea-numerelor-reprezentate-prin-litereimpartirea-unei-paranteze-la-un-factor

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

Exerciții Rezolvate la Numere Reale

Clasa a VIII-a

Dragul meu părinte bine te-am regăsit!

În ultimul articol pe care l-am  postat am vorbit despre multimea numerelor reale. Astăzi te invit să rezolvăm împreună câteva aplicaţii la această lecţie. Unele exerciţii au un grad de dificultate mai scăzut, iar unele au grad de dificultate ridicat. De aceea o să le explic pas cu pas, pentru a veni în ajutorul tuturor celor care nu înţeleg foarte bine matematica.

(mai mult…)

EXERCIŢIUL 1:Se dau următoarele fracţii: \frac{1}{2} , \frac{61}{37}\frac{2}{6}\frac{55}{1133}\frac{4}{21}\frac{3}{9}\frac{8}{15}\frac{14}{2\cdot7}\frac{85}{15}\frac{35}{56}\frac{19}{72}\frac{4\cdot3\cdot5}{60}

Determinaţi din şirul de fracţii de mai sus  fracţiile:

–  ireductibile; subunitare;supraunitare;echiumitare.

Rezolvare: Observăm că unele fracţii pot fi simplificate aşa că mai întâi vom aduce şirul la forma cea mai simplă simplificând fracţiile care permit această operaţie:

 \frac{2}{6}^{(2}=\frac{1}{3} \frac{55}{1133}^{(11}=\frac{5}{103} \frac{3}{9}^{(3}=\frac{1}{3};

 \frac{14}{2\cdot7}=\frac{14}{14}^{(14}=\frac{1}{1}=1;   \frac{85}{15}^{(5}=\frac{17}{3};   \frac{35}{56}^{(7}=\frac{5}{8} \frac{4\cdot3\cdot5}{60}=\frac{60}{60}^{(60}=1

Obţinem astfel şirul: \frac{1}{2} , \frac{61}{37} \frac{1}{3} \frac{5}{103}\frac{4}{21}, \frac{1}{3} , \frac{8}{15}1\frac{17}{3}\frac{5}{8}\frac{19}{72}1.

– fracţii ireductibile: (fracţii care nu se poate simplifica, numărătorul şi numitorul , sunt numere prime între ele):

\frac{1}{2} , \frac{61}{37}\frac{4}{21}, \frac{8}{15}\frac{19}{72}.

-fracţii subunitare: (fracţii care au numărătorul mai mic decât numitorul):

\frac{1}{2} \frac{2}{6}\frac{55}{1133}\frac{4}{21},\frac{3}{9} , \frac{8}{15}\frac{35}{56}\frac{19}{72}

 

– fracţii supraunitare: (fracţii care au numărătorul mai mare decât numitorul):

\frac{61}{37}; \frac{85}{15}

– fracţii echiunitare: (fracţii care au numărătorul egal cu numitorul):

\frac{14}{2\cdot7}; \frac{4\cdot3\cdot5}{60}.

EXERCIŢIUL 2: Amplificaţi fracţiile: \frac{7}{15}, \frac{3}{12}, \frac{5}{16}, \frac{3}{10}, \frac{11}{24} , astfel încât să aibă acelaşi numitor comun.

Rezolvare: Determinăm numitorul comun calculând c.m.m.m.c (cel mai mic multiplu comun) al numerelor de la numitor.

Pentru a determina c.m.m.m.c-ul numitorilor trebuie sa desfacem în factori primi numerele după care luăm toate numerele prime o singură dată la puterea cea mai mare.exercitiul-2-aplicatii-nr-reale

 

În concluzie putem scrie:

15= 3\cdot5

12= 2^{2}\cdot3

16= 2^{4}

10= 2\cdot5

24= 2 ^{3}\cdot3

c.m.m.m.c= 2 ^{4}\cdot3\cdot5=16\cdot3\cdot5=240.

Pentru a ştii cu cât amplific fiecare fracţie impart 240 la numitor:ex-2-nr-reale-impartiriObţin astfel următoarele fracţii:

ex-2-nr-reale-amplificarea

EXERCIŢIUL 3:Fie mulţimeaA= \left \{ (-2)^{2}\right \ ; (-3)^{-2} ; \sqrt{0,09} ; \sqrt{5\frac{5}{9}} ;  (-1)^{4}; \sqrt{18} ; \sqrt{1\frac{2}{25}} ; (-\frac{1}{{2}}) ^{-1}; \sqrt{5\frac{3}{9}}  \}.

Calculaţi:  A\bigcap_{}^{}N ; A\bigcap_{}^{}Z; A\bigcap_{}^{}Q; A\bigcap_{}^{}(Q\setminus Z); A\bigcap_{}^{}R; A\bigcap_{}^{}(R\setminus Q)

Rezolvare: Observăm că trebuie să rescriem mulţimea efectuând calculele:

(-2) ^{2}= 4

(-3) ^{-2}= \frac{1}{3 ^2}=\frac{1}{9}

\sqrt{0,09}= 0,3 =\frac{3}{10}

\sqrt{5\frac{5}{9}}= \sqrt{\frac{5\cdot9+5}{9}}}=\sqrt{\frac{50}{9}}}=\frac{5\sqrt2}{3}

 (-1)^{4}= 1

\sqrt{18}= \sqrt{9\cdot2}=3 \sqrt{2}

\sqrt{1\frac{2}{25}}= \sqrt{\frac{1\cdot25+2}{25}}}=\sqrt{\frac{27}{25}}}=\frac{3\sqrt3}{5}

(-\frac{1}{2}) ^{-1}=(-2)

\sqrt{5\frac{3}{9}}= \sqrt{\frac{5\cdot9+3}{9}}}=\sqrt{\frac{48}{9}}}=\frac{4\sqrt3}{3}

Obţinem astfel mulţimea: A= \left \{ 4;\frac{1}{9} ; \frac{3}{10} ; \frac{5\sqrt{2}}{3} ; 1; 3\sqrt{2} ; \frac{3\sqrt{3}}{5} ; (-2); \frac{4\sqrt{3}}{3} \}.

A\bigcap {N}= \left \{ 4;1 \right \}

A\bigcap {Z}= \left \{-2;1; 4 \right \}

A\bigcap {Q}= \left \{ 4; \frac{1}{{9}}; \frac{3}{10}; 1; (-2)  \}

A\bigcap(Q\setminus Z)= \left \{ \frac{1}{9};\frac{3}{10} \right \}

A\bigcap {R}= A

A\bigcap {(R\setminus Q)}= \left \{\frac{5\sqrt{2}}{3};3\sqrt{2};\frac{3\sqrt{3}}{5}; \frac{4\sqrt{3}}{3} \right \} .

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul să se pregătească şi să aibă numai note bune in  noul an şcolar.

Dacă ţi-a plăcut articolul te invit sa distribui acest material şi să inviţi şi alţi părinţi să viziteze acest blog!

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:mathmoreeasy@yahoo.com
De asemenea, te invit şi pe pagina de facebook a blogului:
https://www.facebook.com/MathMoreEasy

 

Mulţimi de numere reale.

Clasa a VIII-a

Dragul meu părinte, bine te-am regasăsit. Revin după o pauză cam lungă, cu un nou articol.
De data aceasta prima lecţie de algebră pentru clasa a VIII-a: “Mulţimi de numere reale”.

 

(mai mult…)

 

  •  În clasa a V-a s-a studiat “Mulţimea numerelor Naturale” pe care am notat-o cu N={0,1,2,3,4,5,………, +∞}.
  • În clasa a VI-a s-a studiat Mulţimea Numerelor Întregi pe care am notat-o cu:  Z={-∞, ……., -2,-1,0,1,2,3,4,5,………, +∞}.
  • În clasa a VII-a s-a studiat Mulţimea Numerelor Raţionale pe care am notat-o cu: Q={\frac{a}{{b}} ∕ a \in Z, b \in Z*}.

 

  • Observaţie:– Mulţimea Numerelor Raţionale este stabilă în raport cu operaţiile de adunare, scădere, înmulţire şi împărţire, adică suma, diferenţa, înmulţirea şi împărţirea a două numere raţionale sunt tot numere raţionale.

 

Observaţie: Pentru orice număr rational nenul “q” , există o unică fracţie ireductibilă   \frac{a}{b} , cu a  \in Z, b  \in Z*  astfel încât q =\frac{a}{b} .

  • Un număr raţional poate fi reprezentat prin fractii ordinare echivalente sau printr-o fracţie zecimală finită sau periodică.

Exemplu:

  • Fracţie ordinară: \frac{5}{6}
  • Fracţie zecimală finită: 2,4
  • Fracţie zecimală periodică: 41,(6)

Mulţimea numerelor reale se notează cu R.
Mulţimea numerelor reale nenule se notează cu R*.

Mulţimea numerelor iraţionale se notează cu R\Q.

  • Observaţie:ℕ ⊂ℤ ⊂ ℚ ⊂ ℝ
  • Observaţie: Orice număr irational este reprezentat de o fracţie zecimală infinită şi neperiodică.
  • Observaţie: Reciproc, dacă un număr real este reprezentat de o fracţie zecimală infinită şi neperiodică, atunci numărul este irational.

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor. Cu mare drag şi mult respect Alina Nistor!

Evaluare naţională 2016. Sesiunea specială iunie 2016

EvaluareDragul meu părinte, bine te-am regăsit.
Nu am mai scris nimic de mult timp şi pentru că se apropie cu paşi repezi examenul de capacitate pentru absolvenţii clasei a VIII-a m-am gândit în articolul de azi să rezolvăm exerciţiile date la sesiunea specială pentru olimpici care s-a desfăşurat săptămâna trecută.
Voi rezolva şi explica fiecare exerciţiu pas cu pas, menţionând şi punctajul aferent fiecarui exerciţiu conform baremului de corectare, astfel ca ţie să-ţi fie uşor să-i explici copilului tău cum să rezolve şi să trateze fiecare exerciţiu pentru a obţine un punctaj cât mai mare la examenul de capacitate care va avea loc pe data de 29 iunie 2016. (mai mult…)

Subiectul 1

Pe foaia de examen trebuie completat doar răspunsul corect în spaţiul punctat.

  • 1. Rezultatul calculului 10×5 – 10 este egal cu …40 .

Rezolvare: 10×5 – 10 = 50-10 = 40

  • 2. Șase cărți de acelaşi fel costă în total 24 de lei. Trei dintre aceste cărți costă în total ..12 lei.

Rezolvare: Această problemă poate fi rezolvată in mai multe moduri:
Metoda I. 24 : 6=4 (Lei costă o carte)
3 x 4=12 (Lei costă 3 cărti)
Metoda II. Folosind Regula de trei simplă:
6 cărţi……………………24 lei
3 cărţi……………………x lei

x = \frac{(3\cdot24)}{6}=\frac{72}{6}=12 lei

  • 3. Cel mai mic număr natural care aparţine intervalului [1, 4] este egal cu …1 .

Rezolvare: Pentru că avem un interval închis (paranteza este pătrată) putem lua şi valoarea 1.

  • 4. Dreptunghiul ABCD are AB = 5 cm și BC = 3 cm. Aria acestui dreptunghi este egală cu …15  cm^{2}

Rezolvare:  Ştim că aria dreptunghiului este produsul dintre lungime şi lăţime.
A=L x l = 5 cm x 3 cm= 15  cm^{2}

  • 5. În Figura 1 este reprezentat un paralelipiped dreptunghic ABCDA’B’C’D’. Măsura unghiului determinat de dreptele AD şi AA’ este egală cu ..90 ° .

sub 1 ex 5

Rezolvare: Ştim că A’ADD’ este dreptunghi deci măsura unghiului determinat de dreptele AD şi AA’ este egală cu măsura (<A’AD)= 90 °.

  • 6. În diagrama de mai jos este prezentată repartiţia după vârstă a elevilor unui club sportiv.Numărul elevilor acestui club sportiv care au vârsta de 7 ani este egal cu …120.

sub 1 ex 6

  • Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie 5 puncte, fie 0 puncte.
  • Nu se acordă punctaje intermediare.

SUBIECTUL al II-lea 

  • Pe foaia de examen scrieţi rezolvările complete.

  • Pentru orice soluţie corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.

  •  Nu se acordă fracţiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parţiale, în limitele punctajului indicat în barem.

Dragul meu părinte, acest subiect are in total 30 puncte. Spre deosebire de subiectul anterior, la acest subiect nu sunt punctate doar raspunsurile ci şi rezolvările şi formulele.

  • 1. Desenaţi, pe foaia de examen, un cub ABCDEFGH .

ex 1 sub 2

Pentru desenarea corectă a cubului se obţin 4 puncte, iar notarea corectă a cubului se punctează cu 1 punct.

  • 2. Știind că \frac{a}{b}=4 , unde a și b sunt numere reale nenule, arătați că

 \frac{(3a-2b)}{b}=10 .

Rezolvare: Şi această problemă are 2 metode de rezolvare:
Metoda I.  Scriem 4 ca fracţie cu numitorul 1 şi îl scoatem pe “a” în funcţie de “b”.
\frac{a}{b}=\frac{4}{1}\Rightarrow a=4b

\frac{(3a-2b)}{b}=10 .
\frac{(3\cdot4b-2b)}{b}=10

\frac{(12b-2b)}{b}=10.
\frac{10b}{b}=10

10=10 (A)
Metoda II. Scoatem factor comun forţat pe b din a doua ecuaţie.

\frac{b(3\cdot\frac{a}{b}-2)}{b}=10

b se simplifică şi obţinem:

3\cdot\frac{a}{b}-2=10.

(3\cdot4\cdot2)=10

(12 - 2)=10.

10=10 (A)
Pentru efectuarea substituţiei sau a scoaterii factorului comun se obţin 3 puncte, iar obţinerea rezultatului corect al exercitiului se punctează cu 2 puncte.

  • 3. Preţul unui obiect este de 360 lei. După o reducere cu p% din preţul obiectului, noul preț va fi de 324 lei. Determinați numărul p .

Rezolvare:
Aflam întâi suma cu care s-a ieftinit produsul.
360 lei - 324 lei = 36 lei..

\frac{p}{100}\cdot360 lei = 36 lei.

p=\frac{36\cdot100}{360}=\frac{3600}{360}=10

p = 10 %.

Pentru aflarea sumei cu care s-a ieftinit produsul se obţin 2 puncte, iar pentru scrierea corecta a ecuaţiei lui p si obţinerea rezultatului corect se punctează cu 3 puncte.

  • 4. Se consideră funcţia f :ℝ →ℝ, f (x) = x – 4 .

a) Reprezentați grafic funcția f într-un sistem de coordonate xOy .
b) Arătaţi că triunghiul determinat de graficul funcției f și axele sistemului de coordonate xOy este isoscel.
Rezolvare:
Calculăm intersecţia funcţiei cu cele 2 axe Ox şi Oy după care trasăm graficul funcţiei.

\cap Ox: y = 0 \Rightarrow f(x) = 0 \Rightarrow x -4 = 0 \Rightarrow x = 4 \Rightarrow M(4 ; 0)
\cap Oy : x = 0 \Rightarrow f(0) = 0 - 4 \Rightarrow f(0) = - 4 \Rightarrow N(0 ; - 4)

grafic functie

Pentru reprezentarea fiecarui punct M şi N care aparţine graficului funcţiei f(x) se obţin câte 2 puncte, iar pentru trasarea graficului funcţiei f(x) se punctează cu 1 punct.

  • b) Arătaţi că triunghiul determinat de graficul funcției f și axele sistemului de coordonate xOy este isoscel.

Rezolvare: Segmentele OM = 4 u  şi ON = 4 u    → OM ≡ ON → triunghiul MON isoscel.

Pentru determinarea dimensiunilor fiecarui segment OM şi ON care aparţine graficului funcţiei f(x) se obţin câte 2 puncte, iar pentru demonstrarea triunghiului isoscel se punctează cu 1 punct.

  • 5. Se consideră expresia :

E(x)=(\frac{x+2}{x-3}-\frac{x-3}{x+2}-\frac{25}{(x+2)(x-3)}) : \frac{5}{x+2} , unde x este număr real,
x ≠ -2 şi x ≠ 3. Arătați că E(x) = 2 , pentru orice x număr real, x ≠ -2 şi x ≠ 3.

Rezolvare: Pentru a rezolva expresia trebuie mai întâi să aducem la acelaşi numitor în paranteză şi să rezolvăm paranteza aplicând formulele de calcul prescurtat :

 (a+b)^{2}= a^{2}+2ab+ b^{2}

E(x)=(\frac{x+2}{x-3}-\frac{x-3}{x+2}-\frac{25}{(x+2)(x-3)}) : \frac{5}{x+2}
E(x)=[\frac{(x+2)^2}{x-3}-\frac{(x-3)^2}{x+2}-\frac{25}{(x+2)(x-3)}] : \frac{5}{x+2}E(x)=(\frac{x^2+4x+4-x^2+6x-9-25}{(x+2)(x-3)}): \frac{5}{x+2}

E(x)=(\frac{10x-30}{(x+2)(x-3)})\cdot \frac{x+2}{5}

E(x)=\frac{10(x-3)}{(x+2)(x-3)}\cdot \frac{x+2}{5}

Simplificăm termenii asemenea şi obţinem:

E(x)=\frac{10}{5}

E(x)=2

Pentru aducerea la acelaşi numitor şi aplicarea formulelor de calcul prescurtat se obţin 3 puncte, iar pentru aflarea rezultatului corect al expresiei lui E(x) se punctează cu 2 puncte.

SUBIECTUL al III-lea

Pe foaia de examen scrieţi rezolvările complete. (30 puncte)

  • 1. Figura 2 este schiţa unui teren. ABCD și BEFC sunt paralelograme cu AD=60m, AB = BE = 80m și punctele A, B și E coliniare. Se consideră punctele M și N pe laturile BE, respectiv CD, astfel încât MN \perp BC și BM = CN = 60 m .

Figura 2a) Arătați că perimetrul paralelogramului ABCD este egal cu 280 m.
b) Demonstrați că unghiul DAB are măsura de 60° .
c) Demonstrați că aria suprafeței CMEF este mai mică decât 2600 m2 .
Rezolvare:

a) Notăm cu L_{{mare}} =AB=DC laturile mari ale paralelogramului şi cu L_{{mica}}= AD=BC

laturile mici ale paralelogramului.

 P_{ABCD} = 2(L_{mica}+L_{mare}) = 2( AB + AD) = 2 (80 m + 60m) = 2\cdot140m = 280 m.

Pentru scrierea şi  aplicarea formulei perimetrului dreptunghiului se obţin 2 puncte, iar pentru aflarea rezultatului corect al perimetrului se punctează cu 3 puncte.

 b) Ştim din datele problemei ca BM \equiv NC şi ca BM // NC deoarece ABCD şi BEFC sunt paralelograme\Rightarrow BMNC paralelogram şi pentru ca BC \perp MN \Rightarrow BMNC romb \Rightarrow BN≡CN=60m.

Dar ABCD paralelogram \Rightarrow  AD \equiv BC \Rightarrow BC=60 m.

În concluzie am demonstrat ca BN\equiv CN\equiv BC   \Rightarrow\Delta BMC echilateral \Rightarrow m(\lt BCN)= 60^{\circ}.

Dar ABCD paralelogram \Rightarrowm (< BCN)\equiv m (<DAB) \Rightarrow m(\lt DAB)= 60^{\circ}.

Pentru demonstrarea că   BMNC romb se obţin 2 puncte, iar pentru aflarea măsurii  unghiului m(\lt DAB)= 60^{\circ} se punctează cu 3 puncte.

c) Observăm ca MEFC este trapez, iar pentru a calcula Aria trapezului avem nevoie de înălţimea trapezului.

A=\frac{(B+b)\cdot h}{2}

În cazul nostru B=CF, b=ME iar  h= EP. Pentru a afla dimensiunea lui EP aplicăm teorema lui Pitagora în triunghiul ∆ EPF.

Ştim  AD // EF \Rightarrow EF = 60 m
\Delta EPF (< P = 90^{\circ}). Dar < EFP = 60^{\circ} \Rightarrow m( < PEF) = 30^{\circ} \Rightarrow PF = \frac{EF}{2}= \frac{60}{2}=30 m

\Delta EPF (< P = 90^{\circ} ) :  EF^{2}=EP ^{2} + PF ^{2}
 60^{2}=EP ^{2} + 30 ^{2}

3600=EP ^{2} + 900
EP ^{2} = 3600 – 900
EP ^{2} =2700
EP=\sqrt{2700}
EP=30\sqrt{3} m

A_{{CMEF}}=\frac{(ME+CF)\cdot EP}{2}

A_{{CMEF}}=\frac{(20+80)\cdot 30\sqrt{3} }{2}

A_{{CMEF}}=\frac{100\cdot 30\sqrt{3} }{2}

A_{{CMEF}}=1500\sqrt{3} m^2

1500\sqrt{3} \lt 2600
15\sqrt{3} \lt 26 | ^2

225 \cdot3 \lt 26^2

675 < 676

Pentru demonstrarea şi calcularea distanţei de la M la CF se obţin 2 puncte, iar pentru calcularea ariei  şi demonstrarea rezultatului corect   se punctează cu 3 puncte.

  • 2. În Figura 3 este reprezentată o piramidă triunghiulară regulată VABC , cu baza triunghiul ABC și AB =12m . Punctul M este mijlocul segmentului BC și VM = 6\sqrt{3} m , iar VO este înălțimea piramidei.piramida triunghiulara regulata

a) Arătați că aria laterală a piramidei VABC este egală cu 108\sqrt{3} m^2 .
b) Arătați că volumul piramidei VABC este egal cu 144\sqrt{2} m^3 .
c) Demonstrați că distanța de la mijlocul înălțimii VO la dreapta VA este mai mică decât 3m .

Rezolvare:

  • a) Pentru a afla aria laterală a piramidei regulate VABC aplicam formula:

A_{{l}}= \frac{P_{{b}}\cdot a_{{p}}}{2}
Pentru că este piramidă regulată triunghiul de la bază ABC este triunghi echilateral deci toate laturile triunghiului sunt egale cu 12.
Obţinem astfel: P_{{b}}=3\cdot l=3\cdot12=36 m, iar apotema piramidei ne-o spune problema

VM=6\sqrt{3}m.

A_{{l}}= \frac{P_{{b}}\cdot a_{{p}}}{2}= \frac{36\cdot 6\sqrt{3}}{2}=\frac{21 6\sqrt{3}}{2}=108\sqrt{3} m^2

Pentru scrierea formulei ariei laterale a piramidei triunghiulare regulate se obţin 2 puncte, iar pentru calcularea corectă a  rezultatului ariei se punctează cu 3 puncte.

  • b) Pentru a afla volumul piramidei regulate VABC aplicam formula:

V_{{p}}= \frac{A_{{b}}\cdot h_{{p}}}{3}
Pentru că este piramidă triunghiulară regulată aflăm aria triunghiului de la bază ABC cu ajutorul formulei:

A_{{b}}= \frac{l^2\sqrt{3}}{4}=\frac{12^2\sqrt{3}}{4}=\frac{144\sqrt{3}}{4}=36\sqrt{3} m^2
Pentru a afla volumul piramidei regulate VABC avem nevoie şi de dimensiunea înălţimei piramidei VO.
Pentru a calcula înălţimea piramidei VO avem nevoie de dimensiunea laturei OM care stim ca este egală cu 1/3 din AM.
AM este înălţime în triunghiul echilateral ABC şi pentru ai afla dimensiunea aplicăm formula :

AM=\frac{l\sqrt{3}}{2}=\frac{12\sqrt{3}}{2}=6\sqrt{3} m

OM=\frac{1}{3}\cdot AM=\frac{1}{3}\cdot 6\sqrt{3} m=2\sqrt{3} m

Calculăm înălţimea VO aplicând teorema lui Pitagora în triunghiul dreptunghic VOM.
∆VOM(< O = 90^\circ ) :   VM^{{2}}=VO^2 +OM^2
(6\sqrt{3}) ^{{2}}=VO^2 +(2\sqrt{3}) ^{{2}}
VO^2 = 108-12
VO^2 = 96
VO^2 = \sqrt{96}

VO = 4\sqrt{6} m

V_{{p}}=\frac{A_{{b}}\cdot h_{{p}}}{3}=\frac{36\sqrt{3}m^2\cdot 4\sqrt{6}m}{3}=\frac{144\sqrt{18}m^3}{3}=\frac{144\cdot 3\sqrt{2}m^3}{3}=144\sqrt{2} m^3

Pentru aflarea dimensiunii înălţimii piramidei se obţin 2 puncte, iar pentru scrierea formulei volumului  piramidei triunghiulare regulate şi calcularea corectă a  volumului se punctează cu 3 puncte.

  • c)  Ştim că N mijlocul lui VO şi NP este distanţa de la N la VA → NP ⊥ VA (P ɛ VA) → că ∆VPN este asemenea cu ∆VOA conform criteriului de asemămare U.U obţinem următoarele rapoarte egale:

∆VPN ~ ∆VOA → \frac{VP}{{VO}}=\frac{VN}{{VA}}=\frac{NP}{{AO}}
Din aceste rapoarte egale putem să scoatem dimensiunea laturii NP.
Pentru a afla NP avem nevoie de dimensiunea muchiei VA care ştim că este egală cu muchia VB.
Aflăm VB din triunghiul dreptunghic VMB cu ajutorul teoremei lui Pitagora.
∆VMB (< M =  90^{\circ}) VB ^{2}= VM ^{2} + BM ^{2}

VB ^{2}= (6\sqrt{3}) ^{2} + 6 ^{2}
VB ^{2}= 108 + 36
VB ^{2}= 144

VB ^{2}=\sqrt{144} m

VB =12 m\Rightarrow VA=12 m

Pentru ca N este mijlocul lui VO → VN=\frac{VO}{2}=\frac{4\sqrt{6}}{2}=2\sqrt{6} m .

\frac{VN}{{VA}}=\frac{NP}{{AO}}\Rightarrow \frac{2\sqrt{6}}{{12}}=\frac{NP}{{4\sqrt{3}}} \Rightarrow NP=\frac{2\sqrt{6}\cdot4\sqrt{3} }{{12}} m=\frac{8\sqrt{18} }{{12}} m \Rightarrow

 \Rightarrow NP=\frac{24\sqrt{2}}{{12}} m \Rightarrow NP =2\sqrt{2} m

Dar noi trebuie să demonstrăm ca NP < 3m \Rightarrow2\sqrt{2} \lt 3 | ^{{2}}
8 < 9 (A)

Pentru identificarea corectă a rapoartelor lui Thales se obţin 2 puncte, iar calcularea corectă a  dimensiunii laturii NP şi demonstraţia ca  NP\lt 3 se punctează cu 3 puncte.

Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea la 10 a punctajului total obținut pentru lucrare.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul să se pregătească şi să treacă cu bine peste examenul de capacitate din acest an.

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:mathmoreeasy@yahoo.com

De asemenea, te invit şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy

10 Aşi pe care un profesor trebuie să-i aibă pentru ca elevii să iubească materia pe care o predă

Profesorul esteDragul meu părinte, bine te-am regăsit. În articolul de azi am să mă adresez atât ţie dar şi profesorilor, în mod special profesorilor de matematică.

Este bine ştiut că un copil învaţă mai bine o materie atunci când îl place pe profesor. Astfel se creează între copil şi profesor o legatură bazată pe admiraţie, iar copilul asimilează mult mai uşor materia predată de profesor. Şi este şi motivat să înveţe, îşi doreşte să îşi depăşească limitele, să fie remarcat dar şi lăudat de profesor. Însă copiii sunt extrem de atenţi la toate gesturile pe care le face profesorul, la felul în care se prezintă, la felul în care comunică, la câtă siguranţă emană şi speculează toate greşelile pe care le face.

Ca să obţii încrederea şi admiraţia unui copil este foarte greu. Ca să obţii admiraţia unei clase de aproximativ 30 de elevi trebuie sa fii impecabil ca persoană, ca profesor dar să ai şi câţiva “AŞI” în mânecă cu care să dezarmezi o armată de pitici dornici de adrenalină.

În articolul de azi vreau să-ţi vorbesc exact despre aceşti „10 AŞI pe care fiecare profesor ar trebui să-i aibă pentru ca elevii să iubească materia pe care o predă”.

(mai mult…)

Ei bine, dragul meu părinte, dacă copilului tău nu-i place matematica sau nu o înţelege foarte bine, vorbeşte cu el şi încearcă să aflii dacă nu cumva este şi vina profesorului de la clasă şi atrage-i atenţia acestuia de greselile pe care le face.

  • Să intre în clasă zâmbind.

Dragul meu părinte, atunci când zâmbeşti unui om, în 99% din cazuri îţi răspunde şi el tot cu un zâmbet. Zâmbetul transmite o stare de optimism, de bună dispoziţie, de fericire. Atunci când un profesor intră în clasă cu zâmbetul pe buze a transmis elevilor o stare de linişte.

Vă spun din experienţă copiii gândesc astfel:

  • Dacă profesorul intră în clasă supărat : sigur dăm lucrare sau ne ascultă.
  • Dacă profesorul intră în clasă vesel: ne predă şi scăpăm de note mici.

Ei bine, dacă profesorul nu a intrat în clasă cu zâmbetul pe buze, copiii încep să se agite, să intre în panică, iar atenţia lor la ceea ce spune profesorul se diminuează, ei sunt concentraţi să nu fie ascultaţi şi să ia note mici.

  • Să aibă foarte mare răbdare.

Dragul meu părinte, am auzi adesea mulţi părinţi care se vaită că profesorul de la clasă al copilului lor nu vrea să mai explice o dată lecţia atunci când un copil spune că nu a înţeles ceea ce a predat. Dragul meu părinte, este absolut necesar ca profesorul să repete până când copiii au înţeles. Este adevărat că materia este stufoasă iar timpul limitat, însă menirea unui profesor este de a-i învăţa pe elevi. Dacă trece la următoarea lecţie iar copilul nu a înţeles lecţia predată anterior, (în special la matematică) copilul nu are cum să înţeleagă lecţia următoare.

  • Matematica este precum lanţul de la bicicletă, s-a rupt o zală de la lanţ, bicicleta nu mai merge.

Atrage-i atenţia profesorului şi nu permite să se întămple aşa ceva copilului tău.

  • Să trateze elevii cu blândeţe şi respect.

Dragul meu părinte, atunci când proferorul adoptă o atitudine adresivă şi dură, atitudinea copilului este una defensivă, de apărare. În astfel de cazuri comportamentul copilului este cuprins de o stare de frică şi panică, iar comunicarea cu el devine aproape imposibilă. Copilul nu mai are curajul de a pune întrebări, de a răspunde, de a întelege noţiunile care îi sunt transmise. Dacă copilul este învăluit cu blândeţe şi respect de profesor el prinde aripi în a-şi imagina noţiunile receptate, are curajul de a pune întrebări şi a spune dacă a înţeles noile noţiuni, comunică deschis ştiind că are suportul profesorului, vine cu idei noi şi îşi pune întreaga imaginaţie în funcţiune.

  •  Să fie siguri pe ei.

Dragul meu părinte, un profesor sigur pe el atât în atitudine, comportament cât şi sigur pe noţiunile pe care le transmite este considerat un om puternic. Ca să transmiţi siguranţă trebuie să îţi ţii spatele drept, să-ţi priveşti interlocutorul, să ştii foarte bine ce transmiţi şi mai important decât toate să-ţi menţi părerea.Dacă profesorul nu-i transmite copilului că este sigur pe el, nu poate obţine admiraţia şi respectul acestuia.

  • Să nu-şi uite misiunea.

Dragul meu părinte, misiunea unui profesor este aceea de a învăţa copii materia pe care o predă, de a le dezvălui tainele ascunse ale matematicii şi de a-i determina să iubească matematica. Un profesor bun este un deschizător de drum, un prezentator de noi pasiuni, un magician al noţiunilor matematice, un mentalist.

  •   Să lase orgoliul la poarta scolii.

Dragul meu părinte, un profesor bun trebuie să ştie că orgoliul nu are ce căuta în relaţia dintre el şi elevii săi. Un profesor bun ar trebui să-şi lase orgoliul la poarta şcolii, nicidecum să se prezinte în faţa elevilor cu atitudinea „Staţi că vă arăt cine sunt eu”. În relaţia profesor-elev trebuie să domnească prietenia, încurajarea, respectul reciproc, motivarea.

  • Să vorbească despre el dar să nu spună prea mult.

Dragul meu părinte, profesorul de la clasă trebuie să vorbească în faţa elevilor despre pasiunile sale, despre cum a început dragostea lui pentru materia pe care o predă, despre frumuseţea meseriei pe care a îmbrăţişat-o, despre suişurile şi coborâşurile pe care le-a întâmpinat în carieră şi cum le-a depăşit. Un profesor bun nu ar trebui să discute cu elevii săi despre problemele pe care le are acasă, despre nemulţumirile în carieră şi în familia sa.

  • Să fie o persoana empatică.

Dragul meu părinte, empatia este şi ea foarte importantă când discutăm despre calităţile unui bun profesor: acesta trebuie să aibe cunoştinţe despre psihologia tinerilor, să stie cum gândesc ei. Empatia înseamnă să intuieşti, să înţelegi, a ai puterea să pătrunzi în lumea interioara a copilului şi să priveşti lucrurile din perspectiva lor.

  •  Să aducă noua tehnologie in ajutorul predării lecţiilor.

Dragul meu părinte, un profesor bun ar trebui să ştie să folosească tehnologia de ultimă generaţie şi să ştie să o folosească în predarea lecţiilor. Copiii sunt atraşi de aparatura de nouă generaţie, iar daca aceasta este folosită în actul de predare copiii nu ar mai considera învăţarea o povară ci o provocare.

  •  Să iubească să predea dar şi mai important să iubească ceea ce predă.

Atunci când faci cu pasiune un lucru, din mâinile tale iese o opră de artă. Când eşti profesor şi îţi faci meseria cu dragoste şi pasiune, din mainele tale nu iese un copil învăţat ci o personalitate umană care va avea puterea să schimbe lumea.

Dragul meu părinte te îmbrăţişez cu drag, îţi urez un nou an şcolar plin de satisfacţii alături de copilul tău urmărind blogul http://mathmoreeasy.ro sau pagina de facebook a blogului:https://www.facebook.com/MathMoreEasy

De asemenea, măgăseşti şi pe mine  pagina de facebook la adresa:

https://www.facebook.com/alinamadalina.nistor

PS : Te invit să votezi blogul Math More Easy în competiţia Pasiunea ta dând un click pe link-ul: http://www.pasiuneata.ro/applications/?id=2072

 

Pentru că începe un nou an şcolar!

orar

Dragul meu părinte, pentru că începe un nou an şcolar şi pentru că tu îţi doreşti să ai un copil organizat, îţi fac cadou un Orar special care să-l inspire pe copilul tău să iubească mai tare matematica!

Click pe Download Orar  şi descarcă Orarul pe care îl poţi imprima!

Dragul meu părinte te îmbrăţişez cu drag, îţi urez un nou an şcolar plin de satisfacţii alături de copilul tău şi distracţie plăcută în ultimele zile de vacanţă urmărind blogul http://mathmoreeasy.ro. icon smile Top 10 site uri cu jocuri unde copilul tău poate învăţa matematica!

De asemenea, te invit şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy

 

1 2