Posts Tagged ‘clasa a V-a’

Exerciții Rezolvate la Unghiuri complementare. Unghiuri Suplementare

Cel mai mare neajuns al nostru este că renunțăm prea repede. Cel mai corect drum către succes este să mai încerci o dată.” Thomas Edison

Dragul meu părinte bine te-am regăsit! Azi îți propun o nouă lecție de geometrie în plan și te invit să rezolvăm și să explicăm pas cu pas împreună câteva exerciții la “Unghiuri Complementare. Unghiuri Suplementare”. (mai mult…)

Exercițiul 1 :

Unghiul  \widehat{MON} și  \widehat{NOP} sunt adiacente și complementare. Știind că  m(\widehat{MON}) este \frac{3}{2} din  m(\widehat{NOP}) să se calculeze   m(\widehat{NOP})   și  m(\widehat{MON}) ..

  • Rezolvare: 
  • Scriem datele problemei:
  • Realizăm desenul:
  • Analizând desenul observăm că  m(\widehat{MON})+ m(\widehat{NOP})=90^\circ
  • Știm că  m(\widehat{MON})=\frac{3}{{2}}\cdot m(\widehat{NOP})  \Rightarrow \frac{3}{{2}}\cdot m(\widehat{NOP})+m(\widehat{NOP})=90^\circ \ \ \ | \ \ \cdot \ \ 2
  •  \Rightarrow 3\cdot m(\widehat{NOP})+2 \cdot m(\widehat{NOP})=2\cdot 90^\circ
  •  \Rightarrow 5\cdot m(\widehat{NOP})=180^\circ \ \ \ | \ \ \ \cdot \ \ \ 5
  •  \Rightarrow m(\widehat{NOP})=180^\circ\ \ \ : \ \ \ 5
  •  \Rightarrow m(\widehat{NOP})=36^\circ
  • Înlocuim și  aflăm și măsura unghiului  \widehat{MON}
  •  m(\widehat{MON})=\frac{3}{{2}}\cdot m(\widehat{NOP}) \Rightarrow m(\widehat{MON})=\frac{3}{{2}}\cdot 36^\circ \Rightarrow m(\widehat{MON})=\frac{3\cdot36^\circ}{{2}} \Rightarrow m(\widehat{MON})=\frac{108^\circ}{{2}}=54^\circ
  • m(\widehat{MOP})= m(\widehat{MON})+ m(\widehat{NOP})
  •  m(\widehat{MOP})=36^\circ+54^\circ=90^\circ

Exercițiul 2:

Măsura m(\widehat{XOY}) este \frac{7}{8} din măsura suplementului său unghiul m(\widehat{YOZ}). Aflați măsura m(\widehat{XOY}) și m(\widehat{YOZ}).

  • Rezolvare:
  • Scriem datele problemei:
  • Realizăm desenul:
  • Analizând desenul observăm că: m(\widehat{XOY})+m(\widehat{YOZ})=180^\circ
  • Știm că m(\widehat{XOY})=\frac{7}{{8}}\cdot m(\widehat{YOZ})
  • \Rightarrow\frac{7}{{8}}\cdot m(\widehat{YOZ})+m(\widehat{YOZ})= 180^\circ \ \ \ | \ \ \cdot8
  • \Rightarrow 7\cdot m(\widehat{YOZ})+8\cdot m(\widehat{YOZ})=8\cdot180^\circ
  • \Rightarrow 15 \cdot m(\widehat{YOZ})= 1440^\circ
  • \Rightarrow 15 \cdot m(\widehat{YOZ})= 1440^\circ \ \ \ | \ \ : \ \ \ 15
  • \Rightarrow m(\widehat{YOZ})= 1440^\circ \ \ : \ \ \ 15
  • \Rightarrow m(\widehat{YOZ})= 96^\circ
  • Înlocuim și aflăm măsura  m(\widehat{XOY}):
  • m(\widehat{XOY})=\frac{7}{{8}}\cdot m(\widehat{YOZ}) \Rightarrow m(\widehat{XOY})=\frac{7}{{8}}\cdot 96^\circ \Rightarrow m(\widehat{XOY})=\frac{7\cdot 96^\circ}{{8}}\Rightarrow m(\widehat{XOY})=\frac{672^\circ}{{8}}=84^\circ

Exercițiul 3: 

Determinați măsura unghiului m(\widehat{MON}) știind că măsura complementului suplementului său este de 63^\circ.

  • Rezolvare:
  • Dacă citim atent enunțul problemei aceasta ne precizează că complementul suplementului unghiului  \widehat{MON} este 63^\circ . Scriem matematic această informație:
  • Notăm suplementul unghiului \widehat{MON} cu \widehat{NOP} și obținem informația:
  • m(\widehat{MON})+m(\widehat{NOP})=180^\circ
  • Notăm complementul unghiului \widehat{NOP} cu \widehat{NOQ} și obținem informația:
  • m(\widehat{NOP})+m(\widehat{NOQ})=90^\circ
  • Scriem datele problemei:
  • Realizăm desenul:
  • Plecăm de la informația furnizată de enunțul problemei că:
  • m(\widehat{NOP})+m(\widehat{NOQ})=90^\circ
  • Știm că m(\widehat{NOQ})=63^\circ \Rightarrow m(\widehat{NOP})+63 ^\circ=90^\circ \ \ \ | \ \ -63^\circ \Rightarrow m(\widehat{NOP})=90^\circ -63^\circ \Rightarrow m(\widehat{NOP})=27^\circ
  • Mai știm din enunțul problemei că: m(\widehat{MON})+m(\widehat{NOP})=180^\circ
  • Înlocuim m(\widehat{NOP})=27^\circ și obținem:
  • m(\widehat{MON})+27^\circ=180^\circ \ \ \ | \ \ -27^\circ
  • \Rightarrow m(\widehat{MON})=180^\circ -27^\circ
  • \Rightarrow m(\widehat{MON})=153^\circ

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în Clubul de “Matematică Math More Easy”.

Exerciții rezolvate la Unghiuri Adiacente. Bisectoarea unui unghi

Fără educație, ce este omul? Un splendid sclav, un sălbatic al rațiunii.”

Joseph Addison

Dragul meu părinte bine te-am regăsit! Azi îți propun câteva exerciții rezolvate și explicate pas cu pas la o lecție nouă de Geometrie: “Exerciții rezolvate la Unghiuri Adiacente. Bisectoarea unui unghi”. (mai mult…)

Exercițiul 1:

În figura de mai jos unghiurile \widehat{XOY} și \widehat{YOZ} sunt adiacente. Știind că m(\widehat{XOY} )=69^\circ și m(\widehat{XOZ} )=123^\circ , determinați m(\widehat{YOZ} ).

  • Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Analizând desenul observăm că îl putem determina  m(\widehat{YOZ} ) ca fiind:

m(\widehat{YOZ} )=m(\widehat{XOZ} )-m(\widehat{XOY} )\Rightarrow m(\widehat{YOZ} )=123^\circ - 69^\circ=54^\circ

 

Exercițiul 2:

 Unghiurile \widehat{ABC} și \widehat{CBD} sunt adiacente astfel încât m(\widehat{ABC})=45^\circ iar m(\widehat{CBD})=25 % \ \ \ din \ \ \ 180^\circ. Demonstrați că \left [ BC este bisectoarea unghiului \widehat{ABD}.

Rezolvare:

Scriem datele problemei:

Ca să arătăm că \left [ BC este bisectoarea unghiului  \widehat{ABD} trebuie să arătăm că \widehat{ABC}\equiv \widehat{CBD}.

Calculăm dimensiunea unghiului m(\widehat{CBD}) = 25 % \ \ \ din \ \ \ 180^\circ

 m(\widehat{CBD}) = \frac{25}{{100}}\cdot 180^\circ  \Rightarrow m(\widehat{CBD}) = \frac{25\cdot180^\circ}{{100}}  \Rightarrow m(\widehat{CBD}) = \frac{4500^\circ}{{100}}=45^\circ \Rightarrow m(\widehat{CBD}) \equiv m(\widehat{ABC})  \Rightarrow \left [ BC bisectoarea   \widehat{ABD}.

Realizăm desenul:

Exercițiul 3:

Se dau două unghiuri adiacente  \widehat{AOB} și  \widehat{BOC}. Știind că bisectoarele \left [ OM și \left [ ON ale celor două unghiuri sunt perpendiculare și că m( \widehat{AOB})=5\cdot m( \widehat{BOC}) să se determine m( \widehat{AOB}) și m( \widehat{BOC}).

Rezolvare: 

  • Scriem datele problemei:
  • Analizând datele problemei observăm că nu știm exact dimensiunile unghiurilor  \widehat{AOB} și  \widehat{BOC} deci este destul de greu de realizat desenul.
  • Dar știm că bisectoarele celor două unghiuri sunt perpendiculare deci formează un unghi   \widehat{MON}=90^\circ
  • Mai știm că \left [ MO bisectoarea  \widehat{AOB}  \Rightarrow \widehat{AOM}\equiv \widehat{MOB}
  • Și că \left [ ON bisectoarea  \widehat{BOC} \Rightarrow \widehat{BON}\equiv \widehat{NOC}
  • Dar  \widehat{MOB}+\widehat{BON}=90^\circ
  • Din aceste relații \Rightarrow 2m ( \widehat{MOB})+2 m ( \widehat{BON})=m( \widehat{AOC})
  •  \Rightarrow 2[m ( \widehat{MOB})+ m ( \widehat{BON})]=m( \widehat{AOC})
  • \Rightarrow 2\cdot m ( \widehat{MON})=m( \widehat{AOC})
  • \Rightarrow 2\cdot 90^\circ=m( \widehat{AOC})  \Rightarrow m( \widehat{AOC})=180^\circ .
  • Realizăm desenul:
  • Observăm din desen că m( \widehat{AOB})+m( \widehat{BOC})=m( \widehat{AOC})
  • \Rightarrow 5\cdot m( \widehat{BOC})+m( \widehat{BOC})=180^\circ
  • \Rightarrow 6\cdot m( \widehat{BOC})=180^\circ  \Rightarrow m( \widehat{BOC})=180^\circ\ \ \ :\ \ \ 6 \ \Rightarrow m( \widehat{BOC})=30^\circ
  • Știm că \Rightarrow m( \widehat{AOB})=5 \cdot m( \widehat{BOC}) \Rightarrow m( \widehat{AOB})=5 \cdot 30^\circ=150^\circ

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți 

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un 

grad de dificultate ridicat rezolvate și explicate pas cu pas te 

invit să te înscrii în Clubul de “Matematică Math More Easy.”

Exerciții rezolvate la Factorul Comun la Puteri

“Un ratat nu știe ce va face dacă pierde, dar vorbește despre ce va face dacă va castiga. Un învingător nu vorbește despre ce va face dacă va caștiga, dar știe ce va face dacă pierde.”
Eric Berne
Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună cateva exerciții la “Factorul comun la Puteri”.

Exercițiul 1:

Efectuați calculele, folosind factorul comun:

a) 3^{96}+3^{98}+3^{100}

b) 2\cdot2^{47}+3\cdot2^{48}+2^{50}

c) 8^{300}-24\cdot8^{298}-64\cdot8^{297}

d) 3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}

e) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

  • Rezolvare: 
  • a) 3^{96}+3^{98}+3^{100}
  • Adunarea este o operație de gradul I și ridicarea la putere este o operație de gradul III, iar ordinea efectuării operațiilor ne spune că trebuie să facem mai întâi operațiile de gradul III și apoi cele de gradul I

Observăm că avem puteri foarte mari și nu putem ridica la putere așa că ne vom folosi de factorul comun și vom da factor comun puterea cea mai mică.

Observăm că 3^{96} este puterea cea mai mică asa ca îl dăm factor comun pe 3^{96} și obținem:

3^{96}\cdot(3^{96-96}+3^{98-96}+3^{100-96})

Scădem puterile și obținem:

3^{96}\cdot(3^{0}+3^{2}+3^{4})

Ridicăm la putere termenii din paranteza rotundă:

3^{96}\cdot(1+9+81)=3^{96}\cdot91

  • b)      2\cdot2^{47}+3\cdot2^{48}+2^{50}

Observăm că  2^{47} este puterea cea mai mică așa că îl dăm factor comun pe 2^{47} și obținem:

2^{47}\cdot(2\cdot2^{47-47}+3\cdot2^{48-47}+2^{50-47})

Scădem puterile și obținem:

2^{47}\cdot(2\cdot2^{0}+3\cdot2^{1}+2^{3})

Ridicăm la putere termenii din paranteza rotundă și obținem:

2^{47}\cdot(2\cdot 1+3\cdot2+8)

Efectuăm  înmulțirile și obținem:

2^{47}\cdot(2+6+8)=

Efectuăm adunarea din paranteză și obținem:

2^{47}\cdot 16=

Știm că 16 îl putem scrie în baza 2 ca 2^{4} și obținem

2^{47}\cdot2^{4}=

Aplicăm Regulile de calcul cu puteri și scriem baza și adunam exponenții:

2^{47+4}=2^{51}

  • c)   8^{300}-24\cdot8^{298}-64\cdot8^{297}

Observăm că 8^{297} este cea mai mică putere, îl dăm factor comun pe 8^{297} și obținem:

8^{297}\cdot(8^{300-297}-24\cdot8^{298-297}-64\cdot8^{297-297})

Scădem puterile și obținem:

8^{297}\cdot(8^{3}-24\cdot8^{1}-64\cdot8^{0})

Ridicăm la putere termenii din paranteză și obținem:

8^{297}\cdot(512-24\cdot8-64\cdot1) =

Efectuăm înmulțirile din paranteză și obținem:

  • 8^{297}\cdot(512-192-64) =

Efectuăm scăderea din paranteza rotundă și obținem:

8^{297}\cdot 256 =

Știm că putem scrie 8=2^3 și 256=2^8 și obținem:

(2^3)^{297}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri înmulțim puterile și obținem:

2^{3\cdot297}\cdot 2^8=2^{891}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri, scriem baza și adunam puterile și obținem astfel:

2^{891+8}=2^{899}

  • d)  3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}=

Aplicăm Regulile de calcul cu puteri și obținem:

3^{2n}\cdot3^2+7\cdot 3^{2n}\cdot3^1-6\cdot3^{2n}=

Observăm că se repetă în fiecare termen al adunării 3^{2n},  îl dăm factor comun și obținem:

3^{2n}\cdot(3^2+7\cdot3^1-6\cdot1)=

Ridicăm la putere termenii din paranteza rotundă și obținem:

3^{2n}\cdot(9+7\cdot3-6)=

Efectuăm Înmulțirea din paranteză și obținem:

3^{2n}\cdot(9+21-6)=

Efectuăm calculele din paranteza rotundă și obținem:

3^{2n}\cdot 24=3^{2n}\cdot 3\cdot8=

Aplicăm Regulile de calcul cu puteri scriem baza și adunăm exponenții și obținem:

3^{2n+1}\cdot8

  • d) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri  transformăm bazele pe 6 îl scriem 6=2\cdot3 , pe 4=2^2, 9=3^2 , pe  18=2\cdot3^2  și obținem:

(2\cdot3)^{2n+1}+6\cdot (2^2)^{n+1}\cdot (3^2)^{n+2}+(2\cdot3^2)^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri, distribuim puterea și obținem:

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2\cdot(n+1)}\cdot 3^{2\cdot(n+2)}+2^{n+1}\cdot3^{2(n+1)}\cdot2^{n+1}

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2n+2}\cdot 3^{2n+4}+2^{n+1}\cdot3^{2n+2}\cdot2^{n+1}

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n}\cdot2^1\cdot3^{2n}\cdot3^2\cdot2^{n}\cdot2^1

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n+n}\cdot2^{1+1}\cdot3^{2n}\cdot3^2

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{2n}\cdot2^{2}\cdot3^{2n}\cdot3^2

Observăm că se repeta 2^{2n}\cdot3^{2n} și îl dăm factor comun, astfel obținem:

2^{2n}\cdot3^{2n}\cdot(2^1\cdot3^1+6\cdot2^2\cdot3^4+2^{2}\cdot3^2)

Ridicăm la putere termenii din paranteza rotundă:

2^{2n}\cdot3^{2n}\cdot(2\cdot3+6\cdot4\cdot81+4\cdot9)

Efectuăm înmulțirile din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot(6+1944+36)

Efectuăm calculele din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot 1986=(2\cdot3)^{2n}\cdot 6\cdot331=(6)^{2n}\cdot 6^1\cdot331=(6)^{2n+1}\cdot331

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în Clubul de “Matematică Math More Easy.” 

Segment de dreaptă. Semidreapta

“Singurul lucru mai rău decât să începi ceva și să ratezi…….. este să nu începi acel ceva”

Seth Godin

Dragul meu părinte bine te-am regăsit. Azi îți propun o nouă lecție de Geometrie în Plan.  În articolele anterioare am vorbit despre Dreaptă și Plan. Azi îți propun lecția  “Segment de dreaptă. Semidreapta”.

Segment de dreaptă:

  • Este o porțiune din acea dreaptă delimitat de două puncte distincte numite extremitățile segmentului sau capetele segmentului.
  • Se notează : \left [ AB \right ]

Segmentul de dreaptă închis:

  • Se notează: \left [ AB \right ]
  • Include cele două puncte A și B

Segmentul de dreaptă deschis:

  • Se notează: \left ( AB \right )
  • nu include cele două puncte A și B.

Segmentul de dreaptă nul:

  • Este segmentul de dreaptă care are proprietatea că punctele care delimitează segmentul coincid.

Semidreapta: 

  • Este un segment de dreaptă mărginit la un singur capăt.
  • Se notează: \left [ MN
  • M se numește origine

Semidreaptă închisă: 

  • Este semidreapta care își conține originea
  • Se notează: \left [ MN

Semidreaptă deschisă:

  • Este semidreapta care nu își conține originea.
  • Se notează: \left ( MN

Semidrepte opuse:

  • Sunt două semidrepte conținute în aceeași dreaptă, care au aceeași origine și sensuri diferite.

Semidrepte identice:

  • Sunt două semidrepte de acelasi fel (închise sau deschise), conținute în aceeași dreaptă, care au aceeași origine și același sens.

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții și probleme cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematic[ Math More Easy”. 

Exerciții rezolvate la Compararea puterilor

“Educația nu e cât de mult ai memorat sau cât știi. E capacitatea de a face diferența între ce știi și ce nu știi”.

Anatole France 

Dragul meu părinte bine te-am regăsit! Azi revin cu o lecție nouă la capitolul Numere Naturale: Exerciții rezolvate la Compararea Puterilor.

(mai mult…)

Exercițiul 1: Comparați numerele:

  • a) 4 ^{17} și 2 ^{34}
  • b) 3 ^{27} și 9 ^{13}
  • c) 8 ^{17} și  2^{52}

Rezolvare: 

  • 4 ^{17} și 2 ^{34}
  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că putem să-l scriem pe 4 ca bază 2 ^2.
  • ({2 ^2})^{17}    și 2 ^{34}
  • Aplicăm Regulile de Calcul cu Puteri pentru primul număr, înmulțim exponenții și obținem:
  • 2 ^{2\cdot 17}  și 2 ^{34} \Rightarrow 2 ^{34}   = 2 ^{34}

b) 3 ^{27}   și 9 ^{13}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că  putem modifica bazele atunci îl vom scrie pe 9=3 ^{2} și obținem:
  • 3 ^{27} și (3 ^{2}) ^{13} \Rightarrow 3 ^{27} și  3 ^{2\cdot 13}  \Rightarrow 3 ^{27}   \gt \ \ \ 3 ^{26}

c)  8 ^{17} și  2 ^{52}

    • Observăm că  putem modifica bazele atunci îl vom scrie pe 8= 2^{3} și obținem:
    • (2^{3})^{17} și 2^{52 \Rightarrow 2^{3\cdot 17} și  2^{52}  \Rightarrow 2^{51} \lt 2^{52}
Exercițiul 2:  Comparați numerele:
  • a)  2 ^{48}  și   3 ^{32}
  • b)  2 ^{60}  și  3 ^{36}
  • c)  3 ^{42}  și  5 ^{28}
  • d) { 2^2}^3  și (2^2)^3

Rezolvare: 

a) 2^{48} și 3^{32}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel  48=3\cdot16 și 32=2\cdot16. Obținem:
  • 2^{3\cdot16} și 3^{2\cdot16}  \Rightarrow (2^3)^{16} și  (3^2)^{16}
  • Ridicăm la putere știind că  2^3=8 și  3^2=9 obținem:
  •  8^{16} \lt 9^{16}
  • Numărul cu baza mai mică este mai mic.

b)  2^{60} și  3^{36}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel: 60=10\cdot 6 și 36=6\cdot 6. Obținem:
  • 2^{10\cdot 6} și 3^{6\cdot 6} \Rightarrow (2^{10})^ 6 și (3^{6})^ 6
  • Ridicăm la putere știind că 2^{10}=1024 și 3^{6}=729. Obținem:
  •  1024^{6} \gt 729^6
  • Numărul cu baza mai mare este mai mare.

c) 3^{42} și 5^{28}

  • Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel: 42=3\cdot 14  și 28=2 \cdot 14. Obținem:
  • 3^{3\cdot14} și 5^{2\cdot14}   \Rightarrow (3^3)^{14} și  (5^2)^{14}
  • Ridicăm la putere știind că  3^3= 27 și  5^2= 25 obținem:
  •  27^{14}\ \ \gt\ \ 25^{14}.

d) { 2^2}^3 și (2^2)^3

  • Observăm că la primul număr avem puterea unei puteri cu alte cuvinte exponentul este tot o putere 2^3. Mai întâi ridicăm la putere exponentul știind că 2^3 = 8 și obținem: { 2^2}^3=2^8.
  • La cel de-al doilea număr aplicăm Regulile de calcul cu puteri,  înmulțim puterile și obținem: (2^3)^2=2^{3\cdot 2}= 2^6
  • { 2^2}^3 și (2^2)^3\Rightarrow 2^8 \ \ \gt \ \ 2^6

Exercițiul 3: Comparați numerele:

a) 8^{18} - 7\cdot 8^{17} și 16^{14} - 15\cdot 16^{13}

c) (9^{15}\cdot 3^{14})^4  și (81^{3}\cdot 27^{7})^3 \cdot 243 ^{15}

Rezolvare:

a) 8^{18} - 7\cdot 8^{17} și 16^{14} - 15\cdot 16^{13}

  • Pentru a putea compara cele două numere trebuie să le aducem la o formă mai simplă. Pentru că avem operația de scădere între termenii celor două numere trebuie să dam factor comun baza care se repetă la puterea cea mai mică
  • 8^{17}\cdot (8^{18-17} - 7\cdot 8^{17-17}) și 16^{13}\cdot (16^{14-13} - 15\cdot 16^{13-13})
  • 8^{17}\cdot (8^{1} - 7\cdot 8^{0})   și 16^{13}\cdot (16^{1} - 15\cdot 16^{0})
  • Știm că orice număr la puterea 0 este egal cu 1  \Rightarrow 8^0=1 și \Rightarrow 16^0=1
  • Obținem:
  • 8^{17}\cdot (8 - 7\cdot 1) și 16^{13}\cdot (16 - 15\cdot 1)
  • 8^{17}\cdot (8 - 7) și 16^{13}\cdot (16 - 15)
  • 8^{17}\cdot 1 și 16^{13}\cdot 1 \Rightarrow 8^{17} și 16^{13}
  • Pentru a putea compara cele două numere trebuie să le aducem la aceeași bază.
  • Știm că putem scrie:8=2^{3} și 16=2^{4} astfel obținem:
  • (2^{3})^{17} și (2^{4})^{13} \Rightarrow 2^{3\cdot 17} și 2^{4\cdot 13} \Rightarrow 2^{51} \lt 2^{52}

b) (9^{15}\cdot 3^{14})^4 și (81^{3}\cdot 27^{7})^3 \cdot 243 ^{15}

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy”.  

Planul

” Dacă începi astăzi, vei vedea rezultate cu o zi mai devreme decât dacă aștepți până mâine. Începe astăzi! “

Dragul meu părinte bine te-am regăsit! Azi te invit sa parcurgem împreună încă o lecție de Geometrie: Planul. 

(mai mult…)

Planul:
  • Ni-l imaginăm ca o suprafață netedă, întinsă la nesfârșit în toate direcțiile, alcătuită din puncte.
  • Îl notăm cu o literă din alfabetul grecesc:  \alpha, \beta, \gamma, \Delta ,\Psi , \Omega ............., sau cu trei litere mari într-o paranteză rotundă cu condiția să reprezinte trei puncte necoliniare ce-i aparțin (ABC).

Pozițiile Relative A  Unui Punct Față De Un Plan:

  • Punct Interior unui plan: 

  • Punct Exterior unui plan:

Dreaptă inclusă în plan:

Dacă o dreaptă d are toate punctele într-un plan \alpha, atunci dreapta este inclusă în planul \alpha. Se notează: d \subset \alpha .

Observație: 

Dacă A \in \alpha și B \in \alpha\Rightarrow AB \subset \alpha

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor 

dacă ai întrebări sau nevoie de ajutor.

                                          Cu mare drag și mult respect Alina Nistor!

Exerciții rezolvate la Ultima Cifră a unui Număr Natural

“Zadarnic vei vrea să-l înveți

pe cel ce nu e dornic să fie învățat, dacă nu-l vei fi făcut mai întâi dornic de a învăța.”

Comenius

Dragul meu părinte bine te-am regăsit. În articolul anterior am vorbit despre cum putem afla Ultima cifră a unui număr natural. Azi îți propun câteva exemple de exerciții rezolvate și explicate pas cu pas la această lecție dificilă pentru clasa a V-a.

(mai mult…)

Exercițiul 1:

Calculați ultima cifră a numerelor:

a)  2^{1299}; \ \ \ 2^{2020};

b)  21^{324}; \ \ \ 19^{257}; \ \ \ 17^{2020};

Rezolvare:

  • a) Pentru a calcula  2^{1299}; mai întâi privim atent puterile numărului 2.

Observăm că ultima cifră se repetă din 4 în 4.

Împărțim puterea 1299 la 4 și obținem:  1299 \ \ \ : \ \ \ 4=324 \ \ \ rest \ \ \ 3 \Rightarrow 1299=4\cdot 324 +3

Atunci putem scrie că: U(2^{1299})=U(2^{4\cdot 324 +3})=U[(2^{4})^{ 324} \cdot 2^3)] =U[(2^{4})^{ 324}] \ \ \ \cdot \ \ \ U( 2^3)

Consultăm tabelul cu puterile lui 2 și observăm că 2^{4} are ultima cifră 6 astfel obținem:

 U[(2^{4})^{ 324}] \ \ \ \cdot \ \ \ U( 2^3)=U(6^{ 324}) \ \ \ \cdot \ \ \ 8

Consultăm tabelul cu puterile lui 6.

Observăm că  6 ridicat la orice putere are ultima cifră 6 astfel obținem:

U(6^{ 324}) \ \ \ \cdot \ \ \ 8=U(6 \cdot 8)=U(48)=8

Am obținut că U(2^{ 1299})=8

Calculăm acum pentru U(2^{ 2020})=?

Avem mai sus tabelul cu puterile lui 2 și am observat că ultima cifră se repetă din 4 în 4.

Împărțim puterea 2020 la 4 și obținem: 2020 \ \ \ : \ \ \ 4=505 \ \ \ rest \ \ \ 0

Atunci putem scrie că: U(2^{2020})=U(2^{4\cdot 505 +0})=U[(2^{4})^{ 505} \cdot 2^0)] .

Știm că orice număr ridicat la puterea 0 este egal cu 1 \Rightarrow 2^{0}=1.

Am văzut mai sus că  2^{4} are ultima cifră 6 astfel obținem:

=U[(6^{ 505} \cdot 1)]=U(6 \cdot1)=6 .

Am obținut că: U(2^{ 2020}) = 6

b)   21^{324}; \ \ \ 19^{257}; \ \ \ 17^{2020};

  • Calculăm  U(21^{ 324}) = ?

 U(21^{ 324}) = U(1^{ 324})

Știm că 1 ridicat la orice putere este egal cu 1.  \Rightarrow U(1^{ 324}) = 1

  • Calculăm  U(19 ^{ 257}) = ?

 U(19 ^{ 257}) = U(9^{ 257}) =

Calculăm puterile lui 9.

Observăm că ultima cifră se repetă din 2 în 2.

Împărțim 257 la 2 și obținem: 257 \ \ \ : \ \ \ 2 = 128 \ \ \ rest \ \ \ 1

Atunci putem scrie că: U(9^ {257})= U(9^ {2\cdot128+1})= U(9^ {2})^{128} \cdot U(9^1)=

Consultând tabelul cu puterile lui 9 observăm că 9^2 are ultima cifră egală cu 1, astfel obținem:  U(9^ {2})^{128} \cdot U(9^1)= U(1^{128})\ \ \ \cdot \ \ \ 9=U(1 \cdot 9 )=9

Am obținut că U(19^{ 257}) = 9

  • Calculăm U(17^{ 2020}) = ?

U(17^{ 2020}) = U(7^{ 2020}) = ?

Calculăm puterile lui 7.

Observăm că ultima cifră se repetă din 4 în 4.

Împărțim 2020 la 4 și obținem: 2020 \ \ \ : \ \ \ 4 = 505 \ \ \ rest \ \ \ 0

Atunci putem scrie că:  U(7^{ 2020}) = U[(7^4)^{ 505}]

Consultând tabelul cu puterile lui 7 observăm că 7^4 are ultima cifră egală cu 1, astfel obținem:

U[(7^4)^{ 505}] = U(1^{505})=1

Am obținut că U(17^{ 2020})=1

Învăț pentru mine

Dragul meu părinte își propun câteva exerciții pe care să le rezolve copilul tău urmărind exemplele explicate și rezolvate mai sus!

Determină ultima cifră a numerelor:

a)  2^{99}; \ \ \ 2^{2018}; \ \ \ 2^{2024};

b)  41^{2017}; \ \ \ 125^{2017}; \ \ \ 2017^{2018};

c)  4^{1999}; \ \ \ 129^{2022}; \ \ \ 2016^{2018};

 

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

Ultima cifră a unui număr natural

 

Cu cât un copil a văzut și a înțeles mai mult, cu atât vrea el să vadă și să înțeleagă mai mult.” 

Jean Piaget

Dragul meu părinte bine te-am regăsit! În articolul anterior am vorbit despre “Pătratul unui număr natural”. Astăzi îți propun o nouă lecție care mă ajută să demonstrez dacă un număr natural este pătrat perfect sau nu: “Ultima cifră a unui număr natural”.

(mai mult…)

Șirul de numere: 0, 1, 4, 9, 16, 25, 36, …………… este șirul 0 ^{2}, 1 ^{2}, 2 ^{2}, 3 ^{2}, 4 ^{2}, 5 ^{2}, 6 ^{2}, .............., n ^{2}, .......... și se numește șirul numerelor naturale pătrate perfecte.

Fie x un număr natural. Notăm cu U(x) ultima cifră a numărului x.

Să privim cu atenție următorul tabel:

Observăm ca ultima cifră a unui pătrat perfect poate fi: 0, 1, 4, 5, 6 \ \ sau \ \ \ 9 .

Observație:

  • Dacă ultima cifră a unui număr natural este 2, 3, 7\ \ sau \ \ \ 8 atunci acel număr natural nu poate fi pătrat perfect.
  • Dacă ultima cifră a unui număr natural este 0, 1, 4, 5, 6 \ \ sau \ \ \ 9 acel număr natural este pătrat perfect.

Pentru a afla ultima cifră a unui număr vor avea în vedere următoarele reguli de calcul:

  • U(x+y)=U(U(x)+U(y))
  • U(x\cdot y)=U(U(x)\cdot U(y))
  • U(x^n)=U[(U(x))^n]

Exemple:

  • U(79 +24)=U(U(79) +U(24))=U(9+4)=U(13)=3
  • U(98 \cdot 82)=U(U(98) \cdot U(82))=U(8 \cdot 2)=U(16)=6
  • U(36 ^{89})=U(U(36) ^{89})=U(6^ ^{89})=6

Să analizăm atent următorul tabel:

Puterile numerelor naturale

Observație:

  • Numerele 1,5 \ \ \ si \ \ \ 6 ridicate la orice putere îmi dă ultima cifră 1,5 \ \ \ si \ \ \ respectiv \ \ \ 6 .
  • La numerele 2,3, 7 \ \ \ si \ \ \ 8 se repetă ultima cifră din patru în patru puteri. La aceste numere ca să pot afla ultima cifră împart exponentul la 4, iar ultima cifră va fi egală cu ultima cifră a numărului 2,3,7 sau respectiv 8  ridicat la puterea egală cu restul împărțirii.
  • Iar la numerele 4 \ \ \ si \ \ \ 9 se repetă ultima cifră din două în două puteri.La aceste numere ca să pot afla ultima cifră împart exponentul la 2, iar ultima cifră va fi egală cu ultima cifră a numărului 4 sau respectiv 9 ridicat la puterea egală cu restul împărțirii.

 

Exemple:

Determinați ultima cifră a numerelor:

  •  2^{{2017}}\ \ \ si \ \ 4^{{2017}}

Rezolvare: 

  • Calculăm pentru  2^{{2017}}. Scriem puterile lui 2.

Puterile lui 2

Observăm ca ultima cifră se repetă din 4 în 4.

Împărțim 2017 la 4

Obținem astfel 2017\ \ \ : \ \ \ 4 =504 \ \ \ rest \ \ \ 1

Rezultă că U(2^{2017})= U[(2^4)^{2017} \cdot 2^1]=U(2^4)^{2017}\cdot U(2^1)

Privind puterile lui 2 observăm că ultima cifră a lui 2^4 este 6, iar ultima cifră a lui 2^1 este 2.

Astfel obținem că U(6^{2017})\cdot 2= U(6 \cdot 2) = U(12) = 2

  • Observație: Am precizat mai sus ca 6 la orice putere are ultima cifră egala tot cu 6.

 

  • Calculăm ultima cifră pentru numărul U(4^{2017})=

Scriem puterile lui 4.

Observăm că la numărul 4 ultima cifră se repetă din 2 în 2.

Împărțim 2017 la 2 :

 

Obținem astfel: 2017 \ \ \ :\ \ \ 2 = 1008 \ \ \ rest\ \ \ 1

Rezultă că: U(4^{2017})=U[(4^2)^{1008} \cdot 4^1]=U[(4^2)^{1008}] \cdot U(4^1)=

Ultima cifră a lui 4^2 este 6 iar ultima cifră a lui 4^1 este 4. Înlocuiesc și obțin:

U(6^{1008})\cdot U(4^1)= U(6 \cdot 4)= U(24)= 4.

Te invit să exersezi și tu 3 exerciții identice pe care ți le propun în rubrica:

Învăț pentru viitorul meu:

Determină ultima cifră a numerelor:

9^{2017}; \ \ \ 3^{2019} ;\ \ \ 8^{2021}.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un grad de dificultate ridicat rezolvate și explicate pas cu pas te invit alături de mine in Clubul de Matematică “Math More Easy”  sau accesează link-ul de mai jos:http://mathmoreeasy.ro/exercitii-rezolvate-la-ultima-cifra-a-unui-numar-natural/

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și  pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai  nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor! 

Model Rezolvat Teza clasa a VIII-a Semestrul II

Şcoala trebuie să te înveţe a fi propriul tău dascăl, cel mai bun şi cel mai aspru.

Nicolae Iorga

Dragul meu părinte bine te-am regăsit!  A început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(mai mult…)

Model Propus Teza clasa a VIII-a Semestrul II

 

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului: \sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  este:……………………………

Rezolvare:

\sqrt{2} \cdot \sqrt{3}-3\sqrt{6}  =\sqrt{2\cdot 3}-3\sqrt{6} =\sqrt{6}-3\sqrt{6} =-2\sqrt{6}

Exercițiul 2 (1 punct):

Simplificând cu x^2+1  raportul : \frac{x^4-1}{{x^2+1}} se obține:……………………………….

Rezolvare:

Aplicăm formulele de calcul prescurtat pentru expresia: x^4-1 și se obține:

\frac{x^4-1}{{x^2+1}}=\frac{(x^2)^2-1^2}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}=\frac{(x^2-1)(x^2+1)}{{x^2+1}}^{(x^2+1}=\frac{x^2-1}{1}=x^2-1.

Exercițiul 3 (1 punct):

Soluția ecuației: x-\sqrt{3}=0 este: ………………………………….

Rezolvare:

x-\sqrt{3}=0 \Rightarrow x-\sqrt{3}=0 /-\sqrt{3} \Rightarrow x=-\sqrt{3}

Exercițiul 4 (1 punct):

Se considera funcția f : R \to R  ,  f (x)=x-3. Valoarea funcției în punctul x=3 este egală cu: …………………….

Rezolvare:

Pentru a afla valoarea functiei în punctul x=3 calculăm  f (3) (îl înlocuim pe x cu 3 în funcție.

 f (3)=3-3=0

Exercițiul 5 (1punct):

Volumul cubului cu lungimea diagonalei de \sqrt{12}cm este: ……………………

Rezolvare:

Știm că diagonala cubului este egală cu:

 d=l\sqrt{3}\Rightarrow  l\sqrt{3}=\sqrt{12}\Rightarrow   l\sqrt{3}=\sqrt{4\cdot3}\Rightarrow   l\sqrt{3}=2\sqr{3}\Rightarrow  l\sqrt{3}=2\sqr{3} / :\sqr{3} \Rightarrow   l=2 cm

Știm că volumul cubului are formula:  V= l^3  ; înlocuim latura cu 2 cm și obținem:

 V= l^3 \Rightarrow  V= (2cm)^3 \Rightarrow V= 8cm^3 .

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete.

Exercițiul 1 (1,5 puncte):

Se consideră expresia: E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}.

a) Determina’i valorile reale ale lui x pentru care expresia E(x) este bine definită.

b) Demonstrați că E(x)=1,  (\forall ) x \in R \setminus \left \{ -2; 1\right \}.

Rezolvare:

E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2}  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

  • a)Punem condițiile de existență ale fracțiilor (numitorul fracției trebuie să fie diferit de 0):

 x-2 \neq 0 \Rightarrow x \neq 2

 3x-1 \neq 0 \Rightarrow 3x \neq 1 \Rightarrow 3x \neq \frac{1}{{3}}

 \Rightarrow x \in R\setminus \left \{ \frac{1}{{3}} , 2 \right \}

  • E(x)=(1-x+\frac{x^2+1}{x-2}) : \frac{3x-1}{x-2

Înmulțim cu a doua fracție răsturnată.

  •  \Rightarrow E(x)=(1-x+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}

Aducem la același numitor în paranteză.

  •  \Rightarrow E(x)=(_{{}}^{x-2)}\textrm{1}- _{{}}^{x-2)}\textrm{x}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}    \Rightarrow E(x)=(\frac{x-2}{x-2}- \frac{x(x-2)}{x-2}+\frac{x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=(\frac{x-2-x^2+2x+x^2+1}{x-2})\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=\frac{3x-1}{x-2}\cdot \frac{x-2}{3x-1}
  •  \Rightarrow E(x)=1

Exercițiul 2 (1,5 puncte):

Se consideră funcția  f : R \to R , f(x)= -x+2 .

a) Calculați media aritmetică a numerelor a=f(0)  și b=f(2) .

b) Reprezentați grafic funcția f(x).

c) Calculați aria triunghiului determinat de graficul funcției f(x) și axele de coordonate OX și OY.

Rezolvare:

  • a) f(0)=0+2=2

f(2)=-2+2=0

 M_{a}=\frac{f(0)+f(2)}{{2}} \Rightarrow  M_{a}=\frac{2+0}{{2}} \Rightarrow  M_{a}=\frac{2}{{2}} \Rightarrow M_{a}= 1

  • b) Pentru a reprezenta grafic funcția f(x) facem intersecția cu cele două axe OX și OY
  • \cap OX : y=0 \Rightarrow f(x)=0   \Rightarrow -x+2=0   \Rightarrow -x=-2  \Rightarrow x=2  \Rightarrow A(2;0)
  • \cap OY:   x=0 \Rightarrow f(0)=0+2=2\Rightarrow B(0;2)

Exercițiul 3 (1,5 puncte):

O piramidă triunghiulară regulată VABC are latura AB=4\sqrt{6} cm și VO=2\sqrt{6} cm, unde O este centrul bazei ABC. Calculați:

a) aria laterală a piramidei;

b) distanța de la O la planul (VBC)

c) distanța de la punctul A la planul (VBC)

d) măsura unghiului format de planele (VBC) și (ABC).

Rezolvare:

Scriem datele problemei și apoi le analizăm:

Realizăm și desenul:

  • a)  Știm formula arie laterale:  A_{l}= \frac{P_{b}\cdot a_{p}}{2}.

Pentru a calcula A_{{l}} trebuie să aflăm mai întâi apotema piramidei a_{{p}}=VM.

VABC este piramidă triunghiulară regulată  \Rightarrow \bigtriangleup ABC  echilateral   \Rightarrow  AM înălțimea \bigtriangleup ABC  \Rightarrow AM=\frac{l\sqrt{3}}{{2}}  \Rightarrow AM=\frac{AB\sqrt{3}}{{2}}   \Rightarrow AM=\frac{4\sqrt{6}\cdot \sqrt{3}}{{2}}  \Rightarrow AM=\frac{4\sqrt{6\cdot 3}}{{2}}    \Rightarrow AM=\frac{4\cdot 3\sqrt{2}}{{2}}   \Rightarrow AM=\frac{12\sqrt{2}}{{2}}   \Rightarrow AM=6\sqrt{2} cm

Știm că OM= \frac{1}{{3}}\cdot AM \Rightarrow OM= \frac{1}{{3}}\cdot 6\sqrt{2} cm \Rightarrow OM= \frac{6\sqrt{2}}{{3}} cm \Rightarrow OM= 2\sqrt{2}} cm.

Aplicăm Teorema lui Pitagora în \bigtriangleup VOM pentru a afla apotema VM.

\bigtriangleup VOM((\widehat{VOM})=90^\circ )\RightarrowT.P \Rightarrow VM^2=VO^2+OM^2  \Rightarrow VM^2= (2\sqrt{6} cm)^2 + (2\sqrt{2} cm)^2

\Rightarrow VM^2= 2^2\cdot (\sqrt{6})^2 cm^2 + 2^2\cdot (\sqrt{2})^2 cm^2

\Rightarrow VM^2= 4\cdot 6 cm^2 + 4\cdot 2 cm^2

\Rightarrow VM^2= 24 cm^2 + 8 cm^2

\Rightarrow VM^2= 32 cm^2   \Rightarrow VM= \sqrt{32 cm^2}  \Rightarrow VM= \sqrt{16 \cdot2} cm

 \Rightarrow VM= 4\sqrt{2} cm

Aflăm și perimetrul bazei. Pentru ca \bigtriangleup ABC  este echilateral  \Rightarrow P_{b}= 3 \cdot l  \Rightarrow P_{b}= 3 \cdot AB

 \Rightarrow P_{b}= 3 \cdot 4\sqrt{6} cm  \Rightarrow P_{b}= 12\sqrt{6} cm.

Înlocuim în aria laterală și obținem:

 A_{l}= \frac{P_{b}\cdot a_{p}}{2}  \Rightarrow A_{l}= \frac{12\sqrt{6} cm\cdot 4\sqrt{2} cm}{2}   \Rightarrow A_{l}= \frac{12 \cdot 4 \sqrt{6\cdot 2} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{12} cm^2}{2}  \Rightarrow A_{l}= \frac{48 \sqrt{4 \cdot 3} cm^2}{2}  \Rightarrow A_{l}= \frac{48\cdot 2 \sqrt{ 3} cm^2}{2}  \Rightarrow A_{l}= 48\sqrt{ 3} cm^2

  • b) d(O; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]  și  \left \{ O \right \} \in AM\Rightarrow \left [ OM \right ]\perp \left [ BC \right ]

  • OM=2\sqrt{2}cm

 

  • c) d(A; (VBC))=?

Știm că AM înălțime în \bigtriangleup ABC \Rightarrow \left [ AM \right ]\perp \left [ BC \right ]

  • d) m(\widehat{ (VOM),(ABC)} )=?

\bigtriangleup VOM((\widehat{VOM})=90^\circ ) : sin (\widehat{VMO})= \frac{VO}{{VM}} =\frac{2\sqrt{6}cm}{4\sqrt{2}cm} =\frac{\sqrt{3}}{2}   \Rightarrow m((\widehat{VMO})= 60^\circ)  \Rightarrow m((\widehat{VMA})= 60^\circ).

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

Model Rezolvat Teza clasa a VII-a Semestrul II

Încearcă să fii un om de valoare și nu neapărat un om de succes. – Albert Einstein

Dragul meu părinte bine te-am regăsit!  De azi a început școala iar perioada următoare este pentru toți elevi una solicitantă deoarece urmează perioada tezelor. Așa că azi îți propun un model de teză rezolvat și explicat pas cu pas pe înțelesul tuturor, dar și un model nerezolvat (asemănător) pe care copilul tău să îl rezolve singur urmărind modelul rezolvat de mine.

(mai mult…)

Model-Teza-clasa-a-VII-a-Semestrul-II

 

Subiectul I (total 4,5 puncte):

Exercițiul 1 (0,5 puncte):

Rezultatul calculului: \sqrt{20}+\sqrt{45}-3\sqrt{5}  este:……………………………

Rezolvare:

\sqrt{20}+\sqrt{45}-3\sqrt{5}= \sqrt{4\cdot 5}+\sqrt{9\cdot 5}-3\sqrt{5}= 2\sqrt{5}+3\sqrt{5}-3\sqrt{5}=2\sqrt{5}

Exercițiul 2 (0,5 puncte):

Raționalizând fracția: \frac{4}{\sqrt{5}-1}  obținem:…………………

Rezolvare:

_{{}}^{\sqrt{5}+1)}\textrm{\frac{4}{\sqrt{5}-1}}={\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}}={\frac{4(\sqrt{5}+1)}{(\sqrt{5})^2-1^2}}= {\frac{4(\sqrt{5}+1)}{5-1}}={\frac{4(\sqrt{5}+1)}{4}}=\sqrt{5}+1

Exercițiul 3 (1 punct):

Rezultatul calculului: (2a+1)^2 - (2a)^2= este………………………

Rezolvare:

(2a+1)^2 - (2a)^2= (2a)^2+2\cdot2a\cdot1+(1)^2 - (2a)^2= 4a^2+4a+1 -4a^2= 4a+1

Exercițiul 4 (1 punct):

Dacă x+\frac{1}{{x}}=4 atunci x^2+\frac{1}{{x^2}}  este egal cu………………….

Rezolvare:

Pornim de la relația x+\frac{1}{{x}}=4 și o ridicăm la pătrat iar relația x+\frac{1}{{x}} o ridicăm la pătrat cu formula de calcul prescurtat :(a+b)^2=a^2+2\cdot a\cdot b+b^2. Astfel obținem:

x+\frac{1}{{x}}=4 /^2 \Rightarrow(x+\frac{1}{{x}})^2=4^2 \Rightarrow  x^2+2\cdot x \cdot \frac{1}{{x}} +(\frac{1}{{x}})^2=16 \Rightarrow   x^2+(\frac{1}{{x}})^2 +2=16 /-2 \Rightarrow  x^2+(\frac{1}{{x}})^2 =16-2 \Rightarrow  x^2+(\frac{1}{{x}})^2 =14

Exercițiul 5 (0,5puncte):

Soluția ecuației x+\sqrt{2}=0 este: …………………….

Rezolvare:

 x+\sqrt{2}=0 /-\sqrt{2} \Rightarrow  x=-\sqrt{2}

Exercițiul 6 (0,5puncte):

 sin 45^\circ  este egal cu …………..

Rezolvare:

 sin 45^\circ =\frac{\sqrt{2}}{2}

Subiectul II: (total 4,5 puncte):Pe foaia de examen se trec rezolvarile complete:

Exercițiul 1:(1,5 puncte):

Media geometrică a numerelor:  a=\left \| 2\cdot\sqrt{6} - 6\cdot\sqrt{2} \right \| și  b= \sqrt{72} + \sqrt{24} .

Rezolvare:

Știm că M_{{g}} =\sqrt{a\cdot b} .

Pentru a calcula \sqrt{a\cdot b} trebuie să aducem a și b la o formă mai simplă.

Pentru a aduce numărul “a” la o formă mai simplă trebuie să comparăm  2\cdot\sqrt{6}  cu  6\cdot\sqrt{2}  să aflăm dacă numărul a este un număr pozitiv sau negativ.

Pentru a compara  2\cdot\sqrt{6}  cu 6\cdot\sqrt{2}  trebuie să ridicăm la pătrat pentru a scăpa de redicali.

 2\cdot\sqrt{6} \sqcup 6\cdot\sqrt{2} /^2 \Rightarrow   2^2 \cdot6 \sqcup 6^2 \cdot2 \Rightarrow 4 \cdot6 \sqcup 36 \cdot2  \Rightarrow  24 \lt 72 \Rightarrow 2\cdot\sqrt{6} \lt 6\cdot\sqrt{2} \Rightarrow  numărul “a” este un număr negativ \Rightarrow  a=\left \| 2\cdot\sqrt{6} - 6\cdot\sqrt{2} \right \|=-2\cdot\sqrt{6}+6\cdot\sqrt{2}=6\cdot\sqrt{2}- 2\cdot\sqrt{6}

Pentru a aduce numărul “b” la o formă mai simplă trebuie să scoatem de sub radical:

 b= \sqrt{72} + \sqrt{24}   = \sqrt{2\cdot 36} + \sqrt{4\cdot 6}   =6 \sqrt{2} + 2\sqrt{ 6}

În concluzie  M_{{g}} =\sqrt{a\cdot b}  =\sqrt{(6 \sqrt{2} - 2\sqrt{ 6})\cdot(6 \sqrt{2} + 2\sqrt{ 6} )}  =\sqrt{(6 \sqrt{2})^2- (2\sqrt{ 6} )^2}  =\sqrt{36\cdot 2- 4\cdot 6}}  =\sqrt{72- 24}}  =\sqrt{48}} =\sqrt{16\cdot3 }}  =4\sqrt{3 }}.

Exercițiul 2:(1,5 puncte):

Rezolvați ecuația:  (x-2)^2-(x-1)(3-2x)=3(x+3)(x-3)+25

Rezolvare: Aplicăm formulele de calcul prescurtat și obținem:

 (x-2)^2-(x-1)(3-2x)=3(x+3)(x-3)+25

 (x)^2-2\cdot x \cdot 2+(2)^2-(x\cdot 3-x \cdot2x-1\cdot3+1\cdot2x)=3(x^2-3^2)+25

x^2-4x+4-3x +2x^2+3-2x=3(x^2-9)+25

3x^2-9x+7=3x^2-27+25

3x^2-9x+7=3x^2-2

3x^2-9x-3x^2 = -2-7

-9x= -9

-9x= -9 /:(-9)  \Rightarrow x= 1

Exercițiul 3:(1,5 puncte):

În trapezul ABCD cu  AB \parallel CD, m(\widehat{A})= m(\widehat{D})= 90^{\circ}, se consideră BE\perp CD, unde  E\in(CD). Știind că AB=6cm,CD=10cm și  BD \perp BC , determinați:

a) lungimea înălțimii BE.

b) perimetrul trapezului ABCD.

c) aria trapezului ABCD, rotunjită la cel mai apropiat număr întreg.

Rezolvare:

 

Scriem datele problemei după care le analizăm.

Trasăm desenul respectând datele problemei.

Trapez dreptunghic

  • a) Observăm că triunghiul este dreptunghic în unghiul B și putem aplica teorema înălțimii [ BE ] .

Mai știm Că  \left [ AB \right ] \equiv \left [ DE \right ] \Rightarrow \left [ EC \right ]=4 cm

\bigtriangleup DBC  (\widehat{DBC})= 90^{\circ}  \Rightarrow T.Î  \Rightarrow  BE^2=DE \cdot EC  \Rightarrow BE^2=6 cm \cdot 4 cm \Rightarrow BE^2= 24 cm^2  \Rightarrow BE= \sqrt{24 cm^2} \Rightarrow BE= \sqrt{4\cdot 6 } cm  \Rightarrow BE= 2\sqrt{6 } cm

Știm că  \left [ BE \right ] \equiv \left [ AD \right ] \Rightarrow  AD= 2\sqrt{6 } cm

  • b) Pentru a calcula perimetrul trapezului trebuie să aflam și latura \left [ BC \right ].

Știm că triunghiul \bigtriangleup BEC este dreptunghic în unghiul (\widehat{BEC})= 90^{\circ} astfel putem aplica Teorema lui Pitagora pentru a afla lungimea laturii \left [ BC \right ].

\bigtriangleup BEC (\widehat{BEC})= 90^{\circ} \Rightarrow T.P. \Rightarrow BC^2=BE^2+EC^2  \Rightarrow BC^2=(2\sqrt{6}cm)^2+(4cm)^2   \Rightarrow BC^2=2^2\cdot6} cm^2+16cm^2

 \Rightarrow BC^2=4\cdot6} cm^2+16cm^2   \Rightarrow BC^2=24 cm^2+16cm^2   \Rightarrow BC^2=40 cm^2

 \ \Rightarrow BC=\sqrt{40cm ^2}  \Rightarrow BC=\sqrt{4 \cdot 10cm ^2}  \Rightarrow BC=2\sqrt{ 10} cm

P_{{ABCD}}= AB+BC+CD+AD \Rightarrow P_{{ABCD}}= 6 cm+2\sqrt{ 10} cm+10 cm+2\sqrt{ 6} cm

\Rightarrow P_{{ABCD}}= 16 cm+2(\sqrt{ 10} +\sqrt{ 6}) cm.

  • c)  A_{ABCD}= \frac{(B+b)\cdot h}{{2}}\Rightarrow  A_{ABCD}= \frac{(AB+DC)\cdot AD}{{2}}\Rightarrow  A_{ABCD}= \frac{(6 cm+10 cm)\cdot 2\sqrt{6}cm }{{2}}\Rightarrow   A_{ABCD}= \frac{16cm\cdot 2\sqrt{6}cm }{{2}}\Rightarrow  A_{ABCD}= \frac{32\sqrt{6}cm^2 }{{2}}\Rightarrow   A_{ABCD}= 16\sqrt{6}cm^2

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și recomandă-i

“Math More Easy Club”

Cu mare drag şi mult respect Alina Nistor!

1 2 3