Posts Tagged ‘clasa a V-a’

Adunarea Fracțiilor (Numerelor Raționale)

“Diferența dintre success și eșec vine de cele mai multe ori din refuzul de a renunța”.

Walt Disney

Dragul meu părinte bine te-am regăsit!

Azi te invit să exersăm împreună câteva exerciții rezolvate  la Adunarea fracțiilor (Numerelor Raționale)! (mai mult…)

Exercițiul 1:  Efectuați adunarea următoarelor fracții:

a) \frac{2}{{5}}+ \frac{3}{{5}}=?

b) \frac{2}{{7}}+ \frac{5}{{7}}+\frac{4}{{7}}=?

c)\frac{1}{{2}}+ \frac{2}{{3}}=?

d) \frac{1}{{2}}+ \frac{2}{{3}}+\frac{3}{{4}}=?

e) \frac{7}{{36}}+ \frac{11}{{18}}+\frac{13}{{9}}=?

Rezolvare:

a) Observăm că avem două fracții care au același numitor.

  • La adunarea a două sau mai multe fracții care au același numitor, adunăm numărătorii între ei și păstrăm numitorul. Astfel obținem:
  •         \frac{2}{{5}}+ \frac{3}{{5}}=\frac{2+3}{{5}}=\frac{5}{{5}}=1

b)      \frac{2}{{7}}+ \frac{5}{{7}}+ \frac{4}{{7}}=\frac{2+5+4}{{7}}=\frac{11}{{7}}

c)   Observăm că avem două fracții care au numitori diferiți.

La adunarea a două sau mai multe fracții care au numitori diferiți mai întâi aducem fracțiile la același numitor determinăm c.m.m.m.c-ul numitorilor , amplificăm fracțiile pentru a le adduce la același numitor , apoi  adunăm fracțiile folosind regula de mai sus  adunăm numărătorii între ei și păstrăm numitorul. Astfel obținem:

\frac{1}{{2}}+ \frac{2}{{3}}=

Observăm că numitorii sunt două numere prime între ele atunci c.m.m.m.c-ul va fi

[2;3 ]=2\cdot 3=6

Așadar prima frcție o amplificăm cu 3, iar a doua fracție o amplificăm cu 2.

  • _{{}}^{3)}\frac{1}{2}}+_{{}}^{2)}\frac{2}{3}}= \frac{3\cdot 1}{3\cdot2}}\ \ +\ \ \frac{2\cdot 2}{2\cdot 3}}= \frac{3}{6}}\ \ +\ \ \frac{4}{6}}= \ \ \frac{3 +4}{6}}= \ \ \frac{7}{6}}

d)        \frac{1}{{2}}+ \frac{2}{{3}}+\frac{3}{{4}}=?

Observăm că avem trei fracții care au numitori diferiți.

Calculăm c.m.m.m.c-ul numerelor 2, 3 și 4. Știm că 4=2^2 și că 4 și 3 sunt numere prime.

\left [ 2;3;4 \right ]=4\cdot 3=12

Prima fracție  o amplificăm cu 6, a doua fracție o amplificăm cu 4 iar a treia fracție o amplificăm cu 3. Astfel obținem:

_{{}}^{6)}\frac{1}{2}}+_{{}}^{4)}\frac{2}{3}}+ _{{}}^{3)}\frac{3}{4}}=  \frac{6\cdot 1}{6\cdot 2}}+\frac{4\cdot 2}{4\cdot 3}}+ \frac{3\cdot 3}{3\cdot4}}= \frac{6}{12}}+\frac{8}{12}}+ \frac{9}{12}} =  \frac{6+8+9}{12}} =  \frac{23}{12}}

e)           \ \ \frac{7}{36}}+\ \ \frac{11}{18}}+\ \ \frac{13}{9}}=?

Observăm că avem trei fracții care au numitori diferiți.

Calculăm c.m.m.m.c-ul numerelor 36, 18, 9.Pentru a putea calcula c.m.m.m.c-ul numerelor mai întâi le descompunem în factori primi.

Numitorul comun al celor trei fracții este 36. Prima fracție nu o amplificăm, a doua fracție o amplificăm cu 2 iar a treia fracție o amplificăm cu 4. Astfel obținem:

\frac{7}{36}}+_{{}}^{2)}\frac{11}{18}}+_{{}}^{4)}\frac{13}{9}}=  \frac{7}{36}}+\frac{2\cdot 11}{2\cdot 18}}+\frac{4\cdot 13}{4\cdot 9}}=  \frac{7}{36}}+\frac{22}{36}}+\frac{52}{36}}=  \frac{7+22+52}{36}} =  \frac{84}{36}} =

Simplificăm fracția obținută până obținem o fracție ireductibilă.

 \frac{84}{36}} ^{{(2}}= \frac{42}{18}} ^{{(2}}= \frac{21}{9}} ^{{(3}}= \frac{7}{3}}

 

Exercițiul 2:  Efectuați calculele:

a) 2\frac{1}{4}} + 3\frac{1}{3}} +\frac{5}{6}} =?

b) 3\frac{1}{2}} + \frac{5}{3}} +1\frac{1}{9}} =?

Rezolvare:

a) 2\frac{1}{4}} + 3\frac{1}{3}} +\frac{5}{6}} =?

Primul pas introducem întregii în fracție.

\frac{2\cdot 4+1}{4}} + \frac{3\cdot 3+1}{3}} +\frac{5}{6}} =  \frac{8+1}{4}} + \frac{9+1}{3}} +\frac{5}{6}} =  \frac{9}{4}} + \frac{10}{3}} +\frac{5}{6}} =

Aducem fracțiile la același numitor . Mai întâi determinăm c.m.m.m.c-ul numerelor 4; 3; 6 astfel:

4= 2^2

3= 1\cdot3

6= 2\cdot3

\left [ 4; 3; 6 \right ]= 2^2 \cdot 3=4\cdot 3=12

Prima fracție o amplificăm cu 3, a doua fracție o amplificăm cu 4, iar a treia fracție o amplificăm cu 2.

_{{}}^{3)}\frac{9}{4}}+_{{}}^{4)}\frac{10}{3}}+_{{}}^{2)}\frac{5}{6}}=  \frac{3 \cdot 9}{3\cdot 4}}+\frac{4\cdot 10}{4\cdot 3}}+\frac{2\cdot 5}{2\cdot 6}}=  \frac{27}{12}}+\frac{40}{12}}+\frac{10}{12}}=  \frac{77}{12}}

b)       3\frac{1}{2}} + \frac{5}{3}} +1\frac{1}{9}} =?

Primul pas introducem întregii în fracție.

\frac{3\cdot 2+1}{2}} + \frac{5}{3}} +\frac{1\cdot 9+1}{9}} = \frac{6+1}{2}} + \frac{5}{3}} +\frac{9+1}{9}} =  \frac{7}{2}} + \frac{5}{3}} +\frac{10}{9}} =

Aducem fracțiile la același numitor . Mai întâi determinăm c.m.m.m.c-ul numerelor 2; 3; 9. Știm că 9=3^2   atunci obținem c.m.m.m.c-ul numerelor:

\left [ 2; 3; 9 \right ]= 2\cdot 3^2= 2\cdot 9=18

Prima fracție o amplificăm cu 9, a doua fracție o amplificăm cu 6, iar a treia fracție o amplificăm cu 2.

_{{}}^{9)}\frac{7}{2}}+_{{}}^{6)}\frac{5}{3}}+_{{}}^{2)}\frac{10}{9}}=  \frac{9\cdot7}{9\cdot 2}}+\frac{6\cdot 5}{6\cdot 3}}+\frac{2\cdot 10}{2\cdot 9}}=  \frac{63}{18}}+\frac{30}{18}}+\frac{20}{18}}=  \frac{63+30+20}{18}}= \frac{103}{18}}

Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Adunarea  fracțiilor  pentru copilul tău, pe care o gasești aici:Fisa de lucru Adunarea fractiilor

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Aducerea fracțiilor la același numitor

„Învățătorii îți deschid ușa, însă numai tu însuți poți trece dincolo de ea.”

-Proverb chinezesc

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții rezolvate  la Aducerea fracțiilor la același numitor!

(mai mult…)

Exercițiul 1: Se consider fracțiile:    \frac{3}{48}\frac{7}{72} ;  \frac{5}{56} ;  \frac{1}{45};

a) Calculați c.m.m.m.c-ul numitorilor fractiilor de mai sus;

b) Aduce-ți fracțiile la acelasi numitor.

Rezolvare:

a)  \frac{3}{48}\frac{7}{72} ;  \frac{5}{56} ;  \frac{1}{45};

Descompunem in factori primi numitorii:

Scriem numitorii ca produs de puteri:

48=2^{4} \cdot 3

72=2^{3} \cdot 3^{2}

56=2^{3} \cdot 7

45=3^{2} \cdot 5

Pentru a determina  c. m.m.m.c- ul luăm toate bazele la puterea cea mai mare.  [48; 72; 56; 45]=2^{4}\cdot 3^{2}\cdot 5^{1}\cdot 7^{1}   \Rightarrow [48; 72; 56; 45]=16 \cdot 9\cdot 5\cdot 7   \Rightarrow [48; 72; 56; 45]=5140

b) Pentru a aduce la același numitor fracțiile de mai sus trebuie sa le amplificam astfel incăt la numitor să obținem valoarea c.m.m.m.c-ului.Pentru a afla cu cat trebuie să amplificăm fiecare fracție împărțim valoarea c.m.m.m.c-ului la fiecare numitor.

5140 \ \ \ : \ \ \ 48=105 \Rightarrow Prima fracție o amplificăm cu 105.

5140 \ \ \ : \ \ \ 72=70  \Rightarrow A doua  fracție o amplificăm cu 70

5140 \ \ \ : \ \ \ 56 = 90  \Rightarrow A treia  fracție o amplificăm cu 90

5140 \ \ \ : \ \ \ 45 = 112 \Rightarrow A patra  fracție o amplificăm cu 112.

Astfel obținem:

_{}^{105)}\frac{3}{48}\ \ \ \ ; \ \ _{}^{70)}\frac{7}{72}\ \ \ \ ; \ \ _{}^{90)}\frac{5}{56}\ \ \ ; \ \ _{}^{112)}\frac{1}{45}\ \ \ \ ;     \Rightarrow \frac{105 \cdot 3}{{105 \cdot 48}}\ \ \ ; \ \ \frac{70 \cdot 7}{{70 \cdot 72}}\ \ \ ; \ \ \frac{90 \cdot 5}{{90 \cdot 56}}\ \ \ ; \ \ \frac{112 \cdot 1}{{112 \cdot 45}}

\Rightarrow \frac{315}{{5140}}\ \ \ ; \ \ \frac{490}{{5140}}\ \ \ ; \ \ \frac{450}{{5140}}\ \ \ ; \ \ \frac{112}{{5140}}

Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Aducerea fracțiilor la același numitor pentru copilul tău, pe care o gasești aici: Fisa de lucru Aducerea fractiilor la acelasi numitor

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

 

 

 

 

Exerciții rezolvate la Metoda Mersului Invers

“Învingătorii nu renunță, iar cei care renunță nu ajung învingători!”

Aristotel

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții rezolvate  la Metoda Mersului Invers! (mai mult…)

Exercițiul 1:     3(x+2) - 7=14

Rezolvare:  Știm din clasele mici că într-un exerciţiu în care sunt folosite paranteze rotunde, atunci efectuăm întâi operaţiile din paranteze după care efectuam restul operaţiilor în ordinea în care sunt scrise. Analizând exercițiul nostru observăm că nu putem efectua calculele din paranteza rotunda deoarece avem o necunoscută. În acest caz pentru a-l afla pe x prima oară îl mutăm pe 7 cu semn schimbat în partea dreaptă a egalului.

3(x+2) - 7=14   / +7  \Rightarrow   3(x+2)=14+7 \Rightarrow

3(x+2)=21/ :\ \ \ \ 3  \Rightarrow   x+2=21 \ \ \ :\ \ \ 7  \Rightarrow

x+2=3/ -2  \Rightarrow   x=3-2   \Rightarrow   x=1

Exercițiul 2:    100\cdot [25-6\cdot (x-3)+2]\ \ \ : \ \ \ 3=300

Rezolvare: 

100\cdot[25-6\cdot (x-3)+3] \ \ \ : \ \ \ 3=300   / \ \ \ \cdot 3

100\cdot[25-6\cdot (x-3)+3] = 300 \cdot 3

100\cdot[25-6\cdot (x-3)+3] = 900 / \ \ \ : \ \ \ 100

25-6\cdot (x-3)+3 = 900\ \ \ : \ \ \ 100

25-6\cdot (x-3)+3 = 9   / - 3

25- 6\cdot (x-3) = 9 - 3

25- 6\cdot (x-3) = 6

Deoarece necunoscuta mea este în pozitia scăzătorului atunci vom scrie:

 6\cdot (x-3) =25 - 6  \Rightarrow    6\cdot (x-3) =18     / \ \ \ :\ \ \ 6  \Rightarrow

x-3 =18\ \ \ :\ \ \ 6  \Rightarrow   x-3 =3   /+3  \Rightarrow   x =3+3  \Rightarrow   x =6

Exercițiul 3:  90+[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=212

Rezolvare: De data aceasta primul termen mutat cu semn schimbat este 90 cu semnul –

90+[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=212    /-90

[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=212-90

[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] \ \ \ :\ \ \ 4=122    /\cdot 4

[(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18] =122 \cdot 4

(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2+18 =488 / - 18

(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2=488-18

(420\ \ \ :\ \ \ 4 +5\cdot a)\cdot 2=470   / \ \ \ :\ \ \ 2

(420\ \ \ :\ \ \ 4 +5\cdot a)=470 \ \ \ :\ \ \ 2   \Rightarrow (420\ \ \ :\ \ \ 4 +5\cdot a)=235

\Rightarrow (205+5\cdot a)=235   / - 205

\Rightarrow 5\cdot a=235 -205   \Rightarrow 5\cdot a=30  / \ \ \ : \ \ \ 5

\Rightarrow a=30 \ \ \ :\ \ \ 5   \Rightarrow a=6

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Metoda Mersului  Invers  pentru copilul tău, pe care o gasești aici: Fisa de lucru Metoda Mersului Invers

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.” 

Transformarea unei fracții ordinare într-o fracție periodică

„Trebuie să încerci necontenit să urci foarte sus, dacă vrei să poți să vezi foarte departe.”

Dragul meu părinte bine te-am regăsit. Astăzi te invit să efectuam împreună câteva exerciții la transformarea unei fracții ordinare în fracție periodică.

(mai mult…)

Exercițiul 1: Transformați următoarele fracții ordinare în fracții zecimale periodice simple:

a) \frac{31}{9}   ;   b)  \frac{517}{99}  ;

Rezolvare:

Pentru a transforma fracțiile ordinare în fracții zecimale periodice simple trebuie să împărțim numărătorul la numitor astfel:

a) \frac{31}{9}   Împărțim 31 la 9 și obținem:

Observăm că dacă am continua împărțirea se va repeat numărul 4. În aceste cazuri spunem că rezultatul    \frac{31}{9}=3,(4) și citim trei virgulă perioadă patru.

b)   \frac{517}{99}=

Observăm că dacă am continua împărțirea se va repeat numărul 4. În aceste cazuri spunem că rezultatul    \frac{517}{99}=5,(2) .

Exercițiul 2 : Transformați următoarele fracții ordinare în fracții zecimale periodice mixte:

a) \frac{233}{45} ;   b) \frac{553}{60}  ;

Rezolvare:

Pentru a transforma fracțiile ordinare în fracții zecimale periodice simple trebuie să împărțim numărătorul la numitor astfel:

a)  \frac{233}{45}

Observăm că dacă am continua împărțirea se va repeat numărul 7. În aceste cazuri spunem că rezultatul    \frac{233}{45}=5,1(7) și citim cinci virgulă unu perioadă șapte.

b) \frac{553}{60}

Observăm că dacă am continua împărțirea se va repeat numărul 6. În aceste cazuri spunem că rezultatul     \frac{553}{60}=9,21(6).

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții Rezolvate la Unghiuri complementare. Unghiuri Suplementare

Cel mai mare neajuns al nostru este că renunțăm prea repede. Cel mai corect drum către succes este să mai încerci o dată.” Thomas Edison

Dragul meu părinte bine te-am regăsit! Azi îți propun o nouă lecție de geometrie în plan și te invit să rezolvăm și să explicăm pas cu pas împreună câteva exerciții la “Unghiuri Complementare. Unghiuri Suplementare”. (mai mult…)

Exercițiul 1 :

Unghiul  \widehat{MON} și  \widehat{NOP} sunt adiacente și complementare. Știind că  m(\widehat{MON}) este \frac{3}{2} din  m(\widehat{NOP}) să se calculeze   m(\widehat{NOP})   și  m(\widehat{MON}) ..

  • Rezolvare: 
  • Scriem datele problemei:
  • Realizăm desenul:
  • Analizând desenul observăm că  m(\widehat{MON})+ m(\widehat{NOP})=90^\circ
  • Știm că  m(\widehat{MON})=\frac{3}{{2}}\cdot m(\widehat{NOP})  \Rightarrow \frac{3}{{2}}\cdot m(\widehat{NOP})+m(\widehat{NOP})=90^\circ \ \ \ | \ \ \cdot \ \ 2
  •  \Rightarrow 3\cdot m(\widehat{NOP})+2 \cdot m(\widehat{NOP})=2\cdot 90^\circ
  •  \Rightarrow 5\cdot m(\widehat{NOP})=180^\circ \ \ \ | \ \ \ \cdot \ \ \ 5
  •  \Rightarrow m(\widehat{NOP})=180^\circ\ \ \ : \ \ \ 5
  •  \Rightarrow m(\widehat{NOP})=36^\circ
  • Înlocuim și  aflăm și măsura unghiului  \widehat{MON}
  •  m(\widehat{MON})=\frac{3}{{2}}\cdot m(\widehat{NOP}) \Rightarrow m(\widehat{MON})=\frac{3}{{2}}\cdot 36^\circ \Rightarrow m(\widehat{MON})=\frac{3\cdot36^\circ}{{2}} \Rightarrow m(\widehat{MON})=\frac{108^\circ}{{2}}=54^\circ
  • m(\widehat{MOP})= m(\widehat{MON})+ m(\widehat{NOP})
  •  m(\widehat{MOP})=36^\circ+54^\circ=90^\circ

Exercițiul 2:

Măsura m(\widehat{XOY}) este \frac{7}{8} din măsura suplementului său unghiul m(\widehat{YOZ}). Aflați măsura m(\widehat{XOY}) și m(\widehat{YOZ}).

  • Rezolvare:
  • Scriem datele problemei:
  • Realizăm desenul:
  • Analizând desenul observăm că: m(\widehat{XOY})+m(\widehat{YOZ})=180^\circ
  • Știm că m(\widehat{XOY})=\frac{7}{{8}}\cdot m(\widehat{YOZ})
  • \Rightarrow\frac{7}{{8}}\cdot m(\widehat{YOZ})+m(\widehat{YOZ})= 180^\circ \ \ \ | \ \ \cdot8
  • \Rightarrow 7\cdot m(\widehat{YOZ})+8\cdot m(\widehat{YOZ})=8\cdot180^\circ
  • \Rightarrow 15 \cdot m(\widehat{YOZ})= 1440^\circ
  • \Rightarrow 15 \cdot m(\widehat{YOZ})= 1440^\circ \ \ \ | \ \ : \ \ \ 15
  • \Rightarrow m(\widehat{YOZ})= 1440^\circ \ \ : \ \ \ 15
  • \Rightarrow m(\widehat{YOZ})= 96^\circ
  • Înlocuim și aflăm măsura  m(\widehat{XOY}):
  • m(\widehat{XOY})=\frac{7}{{8}}\cdot m(\widehat{YOZ}) \Rightarrow m(\widehat{XOY})=\frac{7}{{8}}\cdot 96^\circ \Rightarrow m(\widehat{XOY})=\frac{7\cdot 96^\circ}{{8}}\Rightarrow m(\widehat{XOY})=\frac{672^\circ}{{8}}=84^\circ

Exercițiul 3: 

Determinați măsura unghiului m(\widehat{MON}) știind că măsura complementului suplementului său este de 63^\circ.

  • Rezolvare:
  • Dacă citim atent enunțul problemei aceasta ne precizează că complementul suplementului unghiului  \widehat{MON} este 63^\circ . Scriem matematic această informație:
  • Notăm suplementul unghiului \widehat{MON} cu \widehat{NOP} și obținem informația:
  • m(\widehat{MON})+m(\widehat{NOP})=180^\circ
  • Notăm complementul unghiului \widehat{NOP} cu \widehat{NOQ} și obținem informația:
  • m(\widehat{NOP})+m(\widehat{NOQ})=90^\circ
  • Scriem datele problemei:
  • Realizăm desenul:
  • Plecăm de la informația furnizată de enunțul problemei că:
  • m(\widehat{NOP})+m(\widehat{NOQ})=90^\circ
  • Știm că m(\widehat{NOQ})=63^\circ \Rightarrow m(\widehat{NOP})+63 ^\circ=90^\circ \ \ \ | \ \ -63^\circ \Rightarrow m(\widehat{NOP})=90^\circ -63^\circ \Rightarrow m(\widehat{NOP})=27^\circ
  • Mai știm din enunțul problemei că: m(\widehat{MON})+m(\widehat{NOP})=180^\circ
  • Înlocuim m(\widehat{NOP})=27^\circ și obținem:
  • m(\widehat{MON})+27^\circ=180^\circ \ \ \ | \ \ -27^\circ
  • \Rightarrow m(\widehat{MON})=180^\circ -27^\circ
  • \Rightarrow m(\widehat{MON})=153^\circ

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în Clubul de “Matematică Math More Easy”.

Exerciții rezolvate la Unghiuri Adiacente. Bisectoarea unui unghi

Fără educație, ce este omul? Un splendid sclav, un sălbatic al rațiunii.”

Joseph Addison

Dragul meu părinte bine te-am regăsit! Azi îți propun câteva exerciții rezolvate și explicate pas cu pas la o lecție nouă de Geometrie: “Exerciții rezolvate la Unghiuri Adiacente. Bisectoarea unui unghi”. (mai mult…)

Exercițiul 1:

În figura de mai jos unghiurile \widehat{XOY} și \widehat{YOZ} sunt adiacente. Știind că m(\widehat{XOY} )=69^\circ și m(\widehat{XOZ} )=123^\circ , determinați m(\widehat{YOZ} ).

  • Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Analizând desenul observăm că îl putem determina  m(\widehat{YOZ} ) ca fiind:

m(\widehat{YOZ} )=m(\widehat{XOZ} )-m(\widehat{XOY} )\Rightarrow m(\widehat{YOZ} )=123^\circ - 69^\circ=54^\circ

 

Exercițiul 2:

 Unghiurile \widehat{ABC} și \widehat{CBD} sunt adiacente astfel încât m(\widehat{ABC})=45^\circ iar m(\widehat{CBD})=25 % \ \ \ din \ \ \ 180^\circ. Demonstrați că \left [ BC este bisectoarea unghiului \widehat{ABD}.

Rezolvare:

Scriem datele problemei:

Ca să arătăm că \left [ BC este bisectoarea unghiului  \widehat{ABD} trebuie să arătăm că \widehat{ABC}\equiv \widehat{CBD}.

Calculăm dimensiunea unghiului m(\widehat{CBD}) = 25 % \ \ \ din \ \ \ 180^\circ

 m(\widehat{CBD}) = \frac{25}{{100}}\cdot 180^\circ  \Rightarrow m(\widehat{CBD}) = \frac{25\cdot180^\circ}{{100}}  \Rightarrow m(\widehat{CBD}) = \frac{4500^\circ}{{100}}=45^\circ \Rightarrow m(\widehat{CBD}) \equiv m(\widehat{ABC})  \Rightarrow \left [ BC bisectoarea   \widehat{ABD}.

Realizăm desenul:

Exercițiul 3:

Se dau două unghiuri adiacente  \widehat{AOB} și  \widehat{BOC}. Știind că bisectoarele \left [ OM și \left [ ON ale celor două unghiuri sunt perpendiculare și că m( \widehat{AOB})=5\cdot m( \widehat{BOC}) să se determine m( \widehat{AOB}) și m( \widehat{BOC}).

Rezolvare: 

  • Scriem datele problemei:
  • Analizând datele problemei observăm că nu știm exact dimensiunile unghiurilor  \widehat{AOB} și  \widehat{BOC} deci este destul de greu de realizat desenul.
  • Dar știm că bisectoarele celor două unghiuri sunt perpendiculare deci formează un unghi   \widehat{MON}=90^\circ
  • Mai știm că \left [ MO bisectoarea  \widehat{AOB}  \Rightarrow \widehat{AOM}\equiv \widehat{MOB}
  • Și că \left [ ON bisectoarea  \widehat{BOC} \Rightarrow \widehat{BON}\equiv \widehat{NOC}
  • Dar  \widehat{MOB}+\widehat{BON}=90^\circ
  • Din aceste relații \Rightarrow 2m ( \widehat{MOB})+2 m ( \widehat{BON})=m( \widehat{AOC})
  •  \Rightarrow 2[m ( \widehat{MOB})+ m ( \widehat{BON})]=m( \widehat{AOC})
  • \Rightarrow 2\cdot m ( \widehat{MON})=m( \widehat{AOC})
  • \Rightarrow 2\cdot 90^\circ=m( \widehat{AOC})  \Rightarrow m( \widehat{AOC})=180^\circ .
  • Realizăm desenul:
  • Observăm din desen că m( \widehat{AOB})+m( \widehat{BOC})=m( \widehat{AOC})
  • \Rightarrow 5\cdot m( \widehat{BOC})+m( \widehat{BOC})=180^\circ
  • \Rightarrow 6\cdot m( \widehat{BOC})=180^\circ  \Rightarrow m( \widehat{BOC})=180^\circ\ \ \ :\ \ \ 6 \ \Rightarrow m( \widehat{BOC})=30^\circ
  • Știm că \Rightarrow m( \widehat{AOB})=5 \cdot m( \widehat{BOC}) \Rightarrow m( \widehat{AOB})=5 \cdot 30^\circ=150^\circ

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți 

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un 

grad de dificultate ridicat rezolvate și explicate pas cu pas te 

invit să te înscrii în Clubul de “Matematică Math More Easy.”

Exerciții rezolvate la Factorul Comun la Puteri

“Un ratat nu știe ce va face dacă pierde, dar vorbește despre ce va face dacă va castiga. Un învingător nu vorbește despre ce va face dacă va caștiga, dar știe ce va face dacă pierde.”
Eric Berne
Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună cateva exerciții la “Factorul comun la Puteri”.

(mai mult…)

Exercițiul 1:

Efectuați calculele, folosind factorul comun:

a) 3^{96}+3^{98}+3^{100}

b) 2\cdot2^{47}+3\cdot2^{48}+2^{50}

c) 8^{300}-24\cdot8^{298}-64\cdot8^{297}

d) 3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}

e) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

  • Rezolvare: 
  • a) 3^{96}+3^{98}+3^{100}
  • Adunarea este o operație de gradul I și ridicarea la putere este o operație de gradul III, iar ordinea efectuării operațiilor ne spune că trebuie să facem mai întâi operațiile de gradul III și apoi cele de gradul I

Observăm că avem puteri foarte mari și nu putem ridica la putere așa că ne vom folosi de factorul comun și vom da factor comun puterea cea mai mică.

Observăm că 3^{96} este puterea cea mai mică asa ca îl dăm factor comun pe 3^{96} și obținem:

3^{96}\cdot(3^{96-96}+3^{98-96}+3^{100-96})

Scădem puterile și obținem:

3^{96}\cdot(3^{0}+3^{2}+3^{4})

Ridicăm la putere termenii din paranteza rotundă:

3^{96}\cdot(1+9+81)=3^{96}\cdot91

  • b)      2\cdot2^{47}+3\cdot2^{48}+2^{50}

Observăm că  2^{47} este puterea cea mai mică așa că îl dăm factor comun pe 2^{47} și obținem:

2^{47}\cdot(2\cdot2^{47-47}+3\cdot2^{48-47}+2^{50-47})

Scădem puterile și obținem:

2^{47}\cdot(2\cdot2^{0}+3\cdot2^{1}+2^{3})

Ridicăm la putere termenii din paranteza rotundă și obținem:

2^{47}\cdot(2\cdot 1+3\cdot2+8)

Efectuăm  înmulțirile și obținem:

2^{47}\cdot(2+6+8)=

Efectuăm adunarea din paranteză și obținem:

2^{47}\cdot 16=

Știm că 16 îl putem scrie în baza 2 ca 2^{4} și obținem

2^{47}\cdot2^{4}=

Aplicăm Regulile de calcul cu puteri și scriem baza și adunam exponenții:

2^{47+4}=2^{51}

  • c)   8^{300}-24\cdot8^{298}-64\cdot8^{297}

Observăm că 8^{297} este cea mai mică putere, îl dăm factor comun pe 8^{297} și obținem:

8^{297}\cdot(8^{300-297}-24\cdot8^{298-297}-64\cdot8^{297-297})

Scădem puterile și obținem:

8^{297}\cdot(8^{3}-24\cdot8^{1}-64\cdot8^{0})

Ridicăm la putere termenii din paranteză și obținem:

8^{297}\cdot(512-24\cdot8-64\cdot1) =

Efectuăm înmulțirile din paranteză și obținem:

  • 8^{297}\cdot(512-192-64) =

Efectuăm scăderea din paranteza rotundă și obținem:

8^{297}\cdot 256 =

Știm că putem scrie 8=2^3 și 256=2^8 și obținem:

(2^3)^{297}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri înmulțim puterile și obținem:

2^{3\cdot297}\cdot 2^8=2^{891}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri, scriem baza și adunam puterile și obținem astfel:

2^{891+8}=2^{899}

  • d)  3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}=

Aplicăm Regulile de calcul cu puteri și obținem:

3^{2n}\cdot3^2+7\cdot 3^{2n}\cdot3^1-6\cdot3^{2n}=

Observăm că se repetă în fiecare termen al adunării 3^{2n},  îl dăm factor comun și obținem:

3^{2n}\cdot(3^2+7\cdot3^1-6\cdot1)=

Ridicăm la putere termenii din paranteza rotundă și obținem:

3^{2n}\cdot(9+7\cdot3-6)=

Efectuăm Înmulțirea din paranteză și obținem:

3^{2n}\cdot(9+21-6)=

Efectuăm calculele din paranteza rotundă și obținem:

3^{2n}\cdot 24=3^{2n}\cdot 3\cdot8=

Aplicăm Regulile de calcul cu puteri scriem baza și adunăm exponenții și obținem:

3^{2n+1}\cdot8

  • d) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri  transformăm bazele pe 6 îl scriem 6=2\cdot3 , pe 4=2^2, 9=3^2 , pe  18=2\cdot3^2  și obținem:

(2\cdot3)^{2n+1}+6\cdot (2^2)^{n+1}\cdot (3^2)^{n+2}+(2\cdot3^2)^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri, distribuim puterea și obținem:

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2\cdot(n+1)}\cdot 3^{2\cdot(n+2)}+2^{n+1}\cdot3^{2(n+1)}\cdot2^{n+1}

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2n+2}\cdot 3^{2n+4}+2^{n+1}\cdot3^{2n+2}\cdot2^{n+1}

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n}\cdot2^1\cdot3^{2n}\cdot3^2\cdot2^{n}\cdot2^1

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n+n}\cdot2^{1+1}\cdot3^{2n}\cdot3^2

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{2n}\cdot2^{2}\cdot3^{2n}\cdot3^2

Observăm că se repeta 2^{2n}\cdot3^{2n} și îl dăm factor comun, astfel obținem:

2^{2n}\cdot3^{2n}\cdot(2^1\cdot3^1+6\cdot2^2\cdot3^4+2^{2}\cdot3^2)

Ridicăm la putere termenii din paranteza rotundă:

2^{2n}\cdot3^{2n}\cdot(2\cdot3+6\cdot4\cdot81+4\cdot9)

Efectuăm înmulțirile din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot(6+1944+36)

Efectuăm calculele din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot 1986=(2\cdot3)^{2n}\cdot 6\cdot331=(6)^{2n}\cdot 6^1\cdot331=(6)^{2n+1}\cdot331

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în Clubul de “Matematică Math More Easy.” 

Segment de dreaptă. Semidreapta

“Singurul lucru mai rău decât să începi ceva și să ratezi…….. este să nu începi acel ceva”

Seth Godin

Dragul meu părinte bine te-am regăsit. Azi îți propun o nouă lecție de Geometrie în Plan.  În articolele anterioare am vorbit despre Dreaptă și Plan. Azi îți propun lecția  “Segment de dreaptă. Semidreapta”.

Segment de dreaptă:

  • Este o porțiune din acea dreaptă delimitat de două puncte distincte numite extremitățile segmentului sau capetele segmentului.
  • Se notează : \left [ AB \right ]

Segmentul de dreaptă închis:

  • Se notează: \left [ AB \right ]
  • Include cele două puncte A și B

Segmentul de dreaptă deschis:

  • Se notează: \left ( AB \right )
  • nu include cele două puncte A și B.

Segmentul de dreaptă nul:

  • Este segmentul de dreaptă care are proprietatea că punctele care delimitează segmentul coincid.

Semidreapta: 

  • Este un segment de dreaptă mărginit la un singur capăt.
  • Se notează: \left [ MN
  • M se numește origine

Semidreaptă închisă: 

  • Este semidreapta care își conține originea
  • Se notează: \left [ MN

Semidreaptă deschisă:

  • Este semidreapta care nu își conține originea.
  • Se notează: \left ( MN

Semidrepte opuse:

  • Sunt două semidrepte conținute în aceeași dreaptă, care au aceeași origine și sensuri diferite.

Semidrepte identice:

  • Sunt două semidrepte de acelasi fel (închise sau deschise), conținute în aceeași dreaptă, care au aceeași origine și același sens.

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții și probleme cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematic[ Math More Easy”. 

Exerciții rezolvate la Compararea puterilor

“Educația nu e cât de mult ai memorat sau cât știi. E capacitatea de a face diferența între ce știi și ce nu știi”.

Anatole France 

Dragul meu părinte bine te-am regăsit! Azi revin cu o lecție nouă la capitolul Numere Naturale: Exerciții rezolvate la Compararea Puterilor.

(mai mult…)

Exercițiul 1: Comparați numerele:

  • a) 4 ^{17} și 2 ^{34}
  • b) 3 ^{27} și 9 ^{13}
  • c) 8 ^{17} și  2^{52}

Rezolvare: 

  • 4 ^{17} și 2 ^{34}
  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că putem să-l scriem pe 4 ca bază 2 ^2.
  • ({2 ^2})^{17}    și 2 ^{34}
  • Aplicăm Regulile de Calcul cu Puteri pentru primul număr, înmulțim exponenții și obținem:
  • 2 ^{2\cdot 17}  și 2 ^{34} \Rightarrow 2 ^{34}   = 2 ^{34}

b) 3 ^{27}   și 9 ^{13}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că  putem modifica bazele atunci îl vom scrie pe 9=3 ^{2} și obținem:
  • 3 ^{27} și (3 ^{2}) ^{13} \Rightarrow 3 ^{27} și  3 ^{2\cdot 13}  \Rightarrow 3 ^{27}   \gt \ \ \ 3 ^{26}

c)  8 ^{17} și  2 ^{52}

    • Observăm că  putem modifica bazele atunci îl vom scrie pe 8= 2^{3} și obținem:
    • (2^{3})^{17} și 2^{52 \Rightarrow 2^{3\cdot 17} și  2^{52}  \Rightarrow 2^{51} \lt 2^{52}
Exercițiul 2:  Comparați numerele:
  • a)  2 ^{48}  și   3 ^{32}
  • b)  2 ^{60}  și  3 ^{36}
  • c)  3 ^{42}  și  5 ^{28}
  • d) { 2^2}^3  și (2^2)^3

Rezolvare: 

a) 2^{48} și 3^{32}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel  48=3\cdot16 și 32=2\cdot16. Obținem:
  • 2^{3\cdot16} și 3^{2\cdot16}  \Rightarrow (2^3)^{16} și  (3^2)^{16}
  • Ridicăm la putere știind că  2^3=8 și  3^2=9 obținem:
  •  8^{16} \lt 9^{16}
  • Numărul cu baza mai mică este mai mic.

b)  2^{60} și  3^{36}

  • Pentru a compara cele două numere trebuie mai întâi să le aducem ori la aceeași bază ori să egalăm exponenții. Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel: 60=10\cdot 6 și 36=6\cdot 6. Obținem:
  • 2^{10\cdot 6} și 3^{6\cdot 6} \Rightarrow (2^{10})^ 6 și (3^{6})^ 6
  • Ridicăm la putere știind că 2^{10}=1024 și 3^{6}=729. Obținem:
  •  1024^{6} \gt 729^6
  • Numărul cu baza mai mare este mai mare.

c) 3^{42} și 5^{28}

  • Observăm că nu putem schimba baza atunci vom egala exponenții și vom scrie astfel: 42=3\cdot 14  și 28=2 \cdot 14. Obținem:
  • 3^{3\cdot14} și 5^{2\cdot14}   \Rightarrow (3^3)^{14} și  (5^2)^{14}
  • Ridicăm la putere știind că  3^3= 27 și  5^2= 25 obținem:
  •  27^{14}\ \ \gt\ \ 25^{14}.

d) { 2^2}^3 și (2^2)^3

  • Observăm că la primul număr avem puterea unei puteri cu alte cuvinte exponentul este tot o putere 2^3. Mai întâi ridicăm la putere exponentul știind că 2^3 = 8 și obținem: { 2^2}^3=2^8.
  • La cel de-al doilea număr aplicăm Regulile de calcul cu puteri,  înmulțim puterile și obținem: (2^3)^2=2^{3\cdot 2}= 2^6
  • { 2^2}^3 și (2^2)^3\Rightarrow 2^8 \ \ \gt \ \ 2^6

Exercițiul 3: Comparați numerele:

a) 8^{18} - 7\cdot 8^{17} și 16^{14} - 15\cdot 16^{13}

c) (9^{15}\cdot 3^{14})^4  și (81^{3}\cdot 27^{7})^3 \cdot 243 ^{15}

Rezolvare:

a) 8^{18} - 7\cdot 8^{17} și 16^{14} - 15\cdot 16^{13}

  • Pentru a putea compara cele două numere trebuie să le aducem la o formă mai simplă. Pentru că avem operația de scădere între termenii celor două numere trebuie să dam factor comun baza care se repetă la puterea cea mai mică
  • 8^{17}\cdot (8^{18-17} - 7\cdot 8^{17-17}) și 16^{13}\cdot (16^{14-13} - 15\cdot 16^{13-13})
  • 8^{17}\cdot (8^{1} - 7\cdot 8^{0})   și 16^{13}\cdot (16^{1} - 15\cdot 16^{0})
  • Știm că orice număr la puterea 0 este egal cu 1  \Rightarrow 8^0=1 și \Rightarrow 16^0=1
  • Obținem:
  • 8^{17}\cdot (8 - 7\cdot 1) și 16^{13}\cdot (16 - 15\cdot 1)
  • 8^{17}\cdot (8 - 7) și 16^{13}\cdot (16 - 15)
  • 8^{17}\cdot 1 și 16^{13}\cdot 1 \Rightarrow 8^{17} și 16^{13}
  • Pentru a putea compara cele două numere trebuie să le aducem la aceeași bază.
  • Știm că putem scrie:8=2^{3} și 16=2^{4} astfel obținem:
  • (2^{3})^{17} și (2^{4})^{13} \Rightarrow 2^{3\cdot 17} și 2^{4\cdot 13} \Rightarrow 2^{51} \lt 2^{52}

b) (9^{15}\cdot 3^{14})^4 și (81^{3}\cdot 27^{7})^3 \cdot 243 ^{15}

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy”.  

Planul

” Dacă începi astăzi, vei vedea rezultate cu o zi mai devreme decât dacă aștepți până mâine. Începe astăzi! “

Dragul meu părinte bine te-am regăsit! Azi te invit sa parcurgem împreună încă o lecție de Geometrie: Planul. 

(mai mult…)

Planul:
  • Ni-l imaginăm ca o suprafață netedă, întinsă la nesfârșit în toate direcțiile, alcătuită din puncte.
  • Îl notăm cu o literă din alfabetul grecesc:  \alpha, \beta, \gamma, \Delta ,\Psi , \Omega ............., sau cu trei litere mari într-o paranteză rotundă cu condiția să reprezinte trei puncte necoliniare ce-i aparțin (ABC).

Pozițiile Relative A  Unui Punct Față De Un Plan:

  • Punct Interior unui plan: 

  • Punct Exterior unui plan:

Dreaptă inclusă în plan:

Dacă o dreaptă d are toate punctele într-un plan \alpha, atunci dreapta este inclusă în planul \alpha. Se notează: d \subset \alpha .

Observație: 

Dacă A \in \alpha și B \in \alpha\Rightarrow AB \subset \alpha

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor 

dacă ai întrebări sau nevoie de ajutor.

                                          Cu mare drag și mult respect Alina Nistor!

1 2 3 4