Posts Tagged ‘capacitate 2017’

Exerciții rezolvate la Aducerea fracțiilor la același numitor

„Învățătorii îți deschid ușa, însă numai tu însuți poți trece dincolo de ea.”

-Proverb chinezesc

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții rezolvate  la Aducerea fracțiilor la același numitor!

(mai mult…)

Exercițiul 1: Se consider fracțiile:    \frac{3}{48}\frac{7}{72} ;  \frac{5}{56} ;  \frac{1}{45};

a) Calculați c.m.m.m.c-ul numitorilor fractiilor de mai sus;

b) Aduce-ți fracțiile la acelasi numitor.

Rezolvare:

a)  \frac{3}{48}\frac{7}{72} ;  \frac{5}{56} ;  \frac{1}{45};

Descompunem in factori primi numitorii:

Scriem numitorii ca produs de puteri:

48=2^{4} \cdot 3

72=2^{3} \cdot 3^{2}

56=2^{3} \cdot 7

45=3^{2} \cdot 5

Pentru a determina  c. m.m.m.c- ul luăm toate bazele la puterea cea mai mare.  [48; 72; 56; 45]=2^{4}\cdot 3^{2}\cdot 5^{1}\cdot 7^{1}   \Rightarrow [48; 72; 56; 45]=16 \cdot 9\cdot 5\cdot 7   \Rightarrow [48; 72; 56; 45]=5140

b) Pentru a aduce la același numitor fracțiile de mai sus trebuie sa le amplificam astfel incăt la numitor să obținem valoarea c.m.m.m.c-ului.Pentru a afla cu cat trebuie să amplificăm fiecare fracție împărțim valoarea c.m.m.m.c-ului la fiecare numitor.

5140 \ \ \ : \ \ \ 48=105 \Rightarrow Prima fracție o amplificăm cu 105.

5140 \ \ \ : \ \ \ 72=70  \Rightarrow A doua  fracție o amplificăm cu 70

5140 \ \ \ : \ \ \ 56 = 90  \Rightarrow A treia  fracție o amplificăm cu 90

5140 \ \ \ : \ \ \ 45 = 112 \Rightarrow A patra  fracție o amplificăm cu 112.

Astfel obținem:

_{}^{105)}\frac{3}{48}\ \ \ \ ; \ \ _{}^{70)}\frac{7}{72}\ \ \ \ ; \ \ _{}^{90)}\frac{5}{56}\ \ \ ; \ \ _{}^{112)}\frac{1}{45}\ \ \ \ ;     \Rightarrow \frac{105 \cdot 3}{{105 \cdot 48}}\ \ \ ; \ \ \frac{70 \cdot 7}{{70 \cdot 72}}\ \ \ ; \ \ \frac{90 \cdot 5}{{90 \cdot 56}}\ \ \ ; \ \ \frac{112 \cdot 1}{{112 \cdot 45}}

\Rightarrow \frac{315}{{5140}}\ \ \ ; \ \ \frac{490}{{5140}}\ \ \ ; \ \ \frac{450}{{5140}}\ \ \ ; \ \ \frac{112}{{5140}}

Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Aducerea fracțiilor la același numitor pentru copilul tău, pe care o gasești aici: Fisa de lucru Aducerea fractiilor la acelasi numitor

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

 

 

 

 

Compararea Fracțiilor (Numere Raționale)

„A-ţi dori să ai succes fară a munci din greu este ca şi cum ai încerca să culegi roadele pe care nu le-ai semănat vreodata.”

David Bly

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții rezolvate  la Compararea Numerelor Raționale (Fracții)! (mai mult…)

Exercițiul 1: Comparați fracțiile:

a) \frac{5}{{8}}    cu   \frac{7}{{8}}     ;          b) \frac{3}{{5}}  cu   \frac{3}{{4}}

c) 1\frac{5}{{7}}  cu 1\frac{3}{{7}}     ;          d) 2\frac{1}{{3}}  cu  1\frac{2}{{3}}

e)  4\frac{1}{{10}}  cu   \frac{41}{{10}}   ;       f) 3\frac{5}{{9}}    cu    \frac{33}{{9}}

Rezolvare: 

  • a) Pentru a compara două fracții care au același numitor comparăm numărătorii iar fracția cu numărătorul mai mare este mai mare.

 \frac{5}{{8}} \lt \frac{7}{{8}}

  • b)  Pentru a compara două fracții care au același numărător comparam numitorii, iar fracția cu numitorul  mai mic este mai mare.

 \frac{3}{{5}} \lt \frac{3}{{4}}

  • c) Pentru a compara cele două fracții  mai întâi introducem întregii în fracție și apoi comparăm cele două fracții.

 1\frac{5}{{7}} \ \ \ \ cu \ \ \ 1 \frac{3}{{7}}    \Rightarrow \frac{1\cdot 7+5}{{7}} \ \ \ \ cu \ \ \ \frac{1\cdot 7+3}{{7}}   \Rightarrow \frac{ 7+5}{{7}} \ \ \ \ cu \ \ \ \frac{ 7+3}{{7}}  \Rightarrow \frac{12}{{7}} \ \ \ cu \ \ \ \frac{10}{{7}}

Pentru că am obținut două fracții cu același numitor comparăm numărătorii

12 \gt 10 \Rightarrow \frac{12}{{7}} \ \ \gt \ \ \frac{10}{{7}}

  • d) 2 \frac{1}{{3}} \ \ \ cu \ \ \ 1\frac{2}{{3}}    \Rightarrow \frac{2\cdot 3+1}{{3}} \ \ \ cu \ \ \ \frac{1\cdot 3+2}{{3}}   \Rightarrow \frac{7}{{3}} \gt \frac{5}{{3}}
  • e) 4 \frac{1}{{10}} \ \ \ cu \ \ \ \frac{41}{{10}}     \Rightarrow \frac{4\cdot 10+1}{{10}} \ \ \ cu \ \ \ \frac{41}{{10}}  \Rightarrow \frac{41}{{10}} = \frac{41}{{10}}
  • f) 3 \frac{5}{{9}} \ \ \ \ cu \ \ \ \frac{33}{{9}}     \Rightarrow \frac{3\cdot 9+5}{{9}} \ \ \ \ cu \ \ \ \frac{33}{{9}}  \Rightarrow \frac{27+5}{{9}} \ \ \ \ cu \ \ \ \frac{33}{{9}} \Rightarrow \frac{32}{{9}} \ \ \ \ \lt \ \ \ \frac{33}{{9}}

Exercițiul 2: Comparați fracțiile:

a)  \frac{3}{{4}} \ \ \ \ cu \ \ \ \frac{1}{{2}}

b)  1\frac{1}{{3}} \ \ \ \ cu \ \ \ 1 \frac{5}{{12}}

c)   3\frac{1}{{8}} \ \ \ \ cu \ \ \ \frac{37}{{10}}

d)   \frac{25}{{6}} \ \ \ \ cu \ \ \ 4\frac{1}{{6}}

Rezolvare: 

a)   \frac{3}{{4}} \ \ \ \ cu \ \ \ \frac{1}{{2}}}

  • Pentru a compara două fracții care au numitorii diferiti, mai întâi le aducem la același numitor și apoi le comparăm.

 \frac{3}{{4}} \ \ \ \ cu \ \ \ ^{2)}\textrm{ \frac{1}{{2}}}   \Rightarrow \frac{3}{{4}} \ \ \ \ cu \ \ \ \frac{2}{{4}}}  \Rightarrow \frac{3}{{4}} \ \ \ \ \gt \ \ \ \frac{2}{{4}}}

b) 1 \frac{1}{{3}} \ \ \ \ cu \ \ \ 1\frac{5}{{12}}}   \Rightarrow \frac{1\cdot 3+1}{{3}} \ \ \ \ cu \ \ \ \frac{1\cdot 12+5}{{12}}}  \Rightarrow \frac{4}{{3}} \ \ \ \ cu \ \ \ \frac{17}{{12}}}   \Rightarrow _{}^{4)}\textrm{\frac{4}{{3}} \ \ \ \ cu \ \ \ \frac{17}{{12}}}}

\Rightarrow \frac{16}{{12}} \ \ \ \ cu \ \ \ \frac{17}{{12}}}}   \Rightarrow \frac{16}{{12}} \ \ \ \ \lt \ \ \ \frac{17}{{12}}}}

c) 3 \frac{1}{{8}} \ \ \ \ cu \ \ \ \frac{37}{{10}}}}   \Rightarrow \frac{3\cdot 8+1}{{8}} \ \ \ \ cu \ \ \ \frac{37}{{10}}}}   \Rightarrow \frac{24+1}{{8}} \ \ \ \ cu \ \ \ \frac{37}{{10}}}}  \Rightarrow \frac{25}{{8}} \ \ \ \ cu \ \ \ \frac{37}{{10}}}}

\Rightarrow _{}^{5)}\textrm{} \frac{25}{{8}} \ \ \ \ cu \ \ \ _{}^{4)}\textrm{}\frac{37}{{10}}}}   \Rightarrow \frac{125}{{40}} \ \ \ \ cu \ \ \ \frac{148}{{40}}}}    \Rightarrow \frac{125}{{40}} \ \ \ \ \lt \ \ \ \frac{148}{{40}}}}

d)  \frac{25}{{6}} \ \ \ \ cu \ \ \ 4\frac{1}{{6}}}}  \Rightarrow \frac{25}{{6}} \ \ \ \ cu \ \ \ \frac{4\cdot 6+1}{{6}}}}    \Rightarrow \frac{25}{{6}} \ \ \ \ cu \ \ \ \frac{24+1}{{6}}}}   \Rightarrow \frac{25}{{6}} \ \ \ \ cu \ \ \ \frac{25}{{6}}}}  \Rightarrow \frac{25}{{6}} \ \ \ \ = \ \ \ \frac{25}{{6}}}}

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Compararea Fracțiilor  pentru copilul tău, pe care o gasești aici: Fisa de lucru Compararea fractiilor

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții Rezolvate la Graficul Funcției

“Nu îmi învăț niciodată studenții; tot ce fac este să le creez condițiile pentru ca ei să învețe.”
Albert Einstein

Dragul meu părinte bine te-am găsit!

Azi te invit să exersăm împreună câteva exerciții la Graficul unei Funcții! (mai mult…)

Exercițiul 1:

Fie funcția f \ \ \ : \ \ \ R \rightarrow R , f (x)=-2x+1.

a) Reprezentați grafic funcția.

b)Determinați numărul real a \in R, știind că punctul A(2a-1,\ \ \ a-2) este situate pe graficul funcției f(x).

c) Calculați suma S=f(0)+f(1)+f(2)+..........+f(2011)

Rezolvare:

a) Pentru a obține punctul în care graficul funcției intersectează axa OX punem condiția ca  y=0 \Rightarrow f(x)=0 .

  •  \cap OX :   y=0 \Rightarrow f(x)=0 \Rightarrow -2\cdot x+ 1=0

\Rightarrow  -2\cdot x=-1    \Rightarrow x=\frac{-1}{{-2}}

\Rightarrow   x=\frac{1}{{2}}   \Rightarrow A( \frac{1}{{2}} \ ; 0)

  • Pentru a obține punctul în care graficul funcției intersectează axa OX punem condiția ca  x=0
  • \cap OY:  x=0  \Rightarrow  f(0)= -2\cdot 0+ 1 = 1
  •                        B(0\ \ ;\ \ \ 1)

b) Pentru a arăta că punctul A(2a-1,\ \ \ a-2) aparține graficului funcției f(x) punem condiția ca : f(2a-1)= a-2 adică în forma funcției f(x)  înlocuim x cu 2a-1 și obținem:

f(2a-1)= a-2 \Rightarrow -2\cdot (2a-1) + 1 = a-2 \Rightarrow -4\cdot a+2 + 1 = a-2

\Rightarrow -4a+3 = a-2

Trecem toți termenii cu a într-o parte și toți termenii fară a în cealaltă parte.

\Rightarrow -4a-a=-2-3  \Rightarrow -5a=- 5 \ \ \ \ /:(-5)   \Rightarrow a= 1

c)  S=f(0)+f(1)+f(2)+... . . . . + f(2011)

Calculăm f(0), f(1), f(2), . . . . . , f(2011) și observăm că obținem Suma Gauss.

f(0)= -2 \cdot 0 + 1= 0+1=1

f(1)= -2 \cdot 1 + 1= - 2 +1= -1

f(2)= -2 \cdot 2 + 1= - 4 +1= -3

. . . . . . ..  .. . . . . . . .. . .. . . . .. . . . . . . .. . . . .

 f(2011)= -2 \cdot 2011 + 1= - 4 022+1= -4021

Obținem :

S= 1-1-3-5-. . .. . . . -4021  \Rightarrow S= -(3+5+. . .. . . . +4021)

Aplicăm Suma Gauss a numerelor impare :

n= (4021-3) \ \ \ : \ \ \ 2 +1  \Rightarrow n= 4018 \ \ \ : \ \ \ 2 +1  \Rightarrow n= 2009 +1 = 2010 (termeni)

S=-[2010\cdot (4021+3) \ \ \ : \ \ \ 2]

S=-[2010\cdot 4024 \ \ \ : \ \ \ 2]

S=-[2010\cdot 2012]

S=- 4 044 120

Exercițiul 2:

Se consideră funcția    f : R\rightarrow R  , f(x)= -\sqrt{3}x+2\sqrt{3}

a) Reprezentați grafic funcția

b) Determinați aria triunghiului format de graficul funcției și axele de coordinate.c

c) Determinați distanța de la punctul  O(0,0)   la graficul funcției f(x).

Rezolvare:

  • a) \cap OX :   y=0 \Rightarrow f(x)=0 \Rightarrow -\sqrt{3}\cdot x+2\sqrt{3} = 0

\Rightarrow -\sqrt{3}x=-2\sqrt{3}

\Rightarrow x=\frac{2\sqrt{3}}{\sqrt{3}}

\Rightarrow   x= __{{}}^{\sqrt{3})}\textrm{\frac{2\sqrt{3}}{\sqrt{3}} }

\Rightarrow   x=2  \Rightarrow A(2\ \ \ ; \ \ \ 0 )

  • \cap OY:  x=0  \Rightarrow  f(0)= -\sqrt{3}\cdot 0+2\sqrt{3} = 2\sqrt{3}
  •                        \Rightarrow B(0 , 2\sqrt{3})

b) Calculăm  A_{\bigtriangleup AOB }. Observăm că \bigtriangleup AOB este dreptunghic în unghiul O astfel putem aplica formula:

 A_{{\bigtriangleup AOB}}= \frac{c_{1}\cdot c_{2}}{2}= \frac{OA\cdot OB}{2}= \frac{2\cdot 2\sqrt{3}}{2}=2\sqrt{3} u.m^{{2}}

c)  Știm că distanța de la un punct la o dreaptă este perpendiculara din acel punct pe dreaptă. Adică înălțimea triunghiului AOB. Pentru a afla înălțimea ne folosim de aria triunghiului pe care am calculate-o deja. Folosim formula:

 A_{\triangle AOB}= \frac{b \cdot h}{{2}}   = \frac{AB \cdot OM}{{2}}

Calculăm  AB cu formula distanței dintre punctele A(2,0) și  B(0, 2\sqrt{3}) astfel:

AB= \sqrt{(x_{{B}}-x_{{A}})^2+(y_{{B}}-y_{{A}})^2}

x_{{A}}=2   și  y_{{A}}=0 iar x_{{B}}=0 și y_{B}=2\sqrt{3} , înlocuim in formula și obținem:

AB=\sqrt{(x_{{B}}-x_{{A}})^2+(y_{{B}}-y_{{A}})^2}

AB=\sqrt{{(2-0})^2+(2\sqrt{3}-0})^2}}   \Rightarrow AB=\sqrt{{2^2+(2\sqrt{3})^2}}

\Rightarrow AB=\sqrt{{4+2^2 \cdot 3}}  \Rightarrow AB=\sqrt{{4+12}}  \Rightarrow AB=\sqrt{{16}} = 4

Înlocuim în formula ariei și aflăm OM.

2\sqrt{3}u.m^2= \frac{4 u.m \cdot OM}{2} \ \ \ \ \ / \cdot 2

2 \cdot 2\sqrt{3}u.m^2= 4 u.m \cdot OM  \Rightarrow 4\sqrt{3}u.m^2= 4 u.m \cdot OM \ \ \ \ / \ \ : \ \ 4 u.m

\Rightarrow OM = \sqrt{3} \ \ u.m

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Graficul unei funcții  pentru copilul tău o gasești aici:Fisa de lucru Graficul unei functii

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.” 

Exerciții rezolvate la Mărimi direct proporționale

„Nu zi niciodată nu se poate, ci începe cu să vedem.”

Nicolae Iorga

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm și să explicăm pas cu pas câteva probleme Exerciții rezolvate la Marimi direct proporționale. (mai mult…)

Exercițiul 1:

Media aritmetică a două numere este egală cu 24.Aflați numerele știind că acestea sunt direct proporționale cu numerele 3 și 9.

Rezolvare:

Considerăm două numere a și b.

Scriem formula pentru media arithmetică a celor două numere.

M_{a}=\frac{a+b}{2}    \Rightarrow \frac{a+b}{2}=24 /\ \ \ \cdot 2   \Rightarrow a+ b=48

\left \{ a,b \right \} \overset{d.p}{\rightarrow} \left \{ 3,9 \right \}   \Rightarrow \frac{a}{{3}}=\frac{b}{{9}}=k

\Rightarrow \frac{a}{{3}}=k \Rightarrow a=3\cdot k

\Rightarrow \frac{b}{{9}}=k \Rightarrow b=9\cdot k

Înlocuim a și b în ecuația a+b=48 și obținem:

3 \cdot k + 9 \cdot k=48 \Rightarrow 12 \cdot k=48 / \ \ \ : \ \ 12  \Rightarrow k=48 \ \ \ : \ \ 12    \Rightarrow k=4

Înlocuim în  a și b și obținem:

 \Rightarrow a=3 \cdot k=3 \cdot 4  \Rightarrow a=12

 \Rightarrow b=9 \cdot k=9 \cdot 4   \Rightarrow b=36.

Exercițiul 2:

Suma a trei numere este 84. Aflați numerele știind că acestea sunt direct proporționale cu numerele: 1,(4)\ \ ; \ \ \ \ 1,(5) \ \ \ \ ; \ \ 1,(6)

Rezolvare:

Considerăm trei  numere a , b și c.

Problema ne spune ca suma lor este 84.

a+b+c=84

\left \{ a,b,c\right \} \overset {d.p }{\rightarrow} \left \{ 1,(4): \ \ 1,(5); \ \ 1,(6)\right \}

Transformăm fracțiile periodice în fracții ordinare:

 1,(4) =\frac{14-1}{{9}}= \frac{13}{{9}}

 1,(5) =\frac{15-1}{{9}}= \frac{14}{{9}}

 1,(6) =\frac{16-1}{{9}}= \frac{15}{{9}}

Și obținem:  \left \{ a,b,c\right \} \overset {d.p }{\rightarrow} \left \{ \frac{13}{{9}}; \ \ \frac{14}{{9}}; \ \ \frac{15}{{9}}\right \}  \Rightarrow

\Rightarrow \frac{a}{{\frac{13}{{9}}}}=\frac{b}{{\frac{14}{{9}}}}=\frac{c}{{\frac{15}{{9}}}}=k

Scoatem numerele a, b ;I c ]n func’ie de valoarea lui k.

\Rightarrow \frac{a}{{\frac{13}{{9}}}}=k   \Rightarrow \frac{a}{{1}} \ \ : \ \ {\frac{13}{{9}}}}=k \Rightarrow \frac{a}{{1}} \ \cdot \ \ {\frac{9}{{13}}}}=k  \Rightarrow \frac{9a}{{13}} =k  \Rightarrow a = \frac{13 \cdot k}{{9}}

\Rightarrow \frac{b}{{\frac{14}{{9}}}}=k  \Rightarrow \frac{b}{{1}} \ \ : \ \ {\frac{14}{{9}}}}=k  \Rightarrow \frac{b}{{1}} \ \cdot \ \ {\frac{9}{{14}}}}=k   \Rightarrow \frac{9\cdot b}{{14}} =k  \Rightarrow b = \frac{14 \cdot k}{{9}}

\Rightarrow \frac{c}{{\frac{15}{{9}}}}=k  \Rightarrow \frac{c}{{1}} \ \ : \ \ {\frac{15}{{9}}}}=k  \Rightarrow \frac{c}{{1}} \ \cdot \ \ {\frac{9}{{15}}}}=k  \Rightarrow \frac{9\cdot c}{{15}} =k  \Rightarrow c = \frac{15 \cdot k}{{9}}

Înlocuim a, b și c în sumă și determinăm valoarea lui k.

a+b+c=84 \Rightarrow \frac{13 \cdot k}{{9}} + \frac{14\cdot k}{{9}} + \frac{15 \cdot k}{{9}} = 84

\Rightarrow \frac{13 \cdot k+14\cdot k+15\cdot k}{{9}} = 84  \Rightarrow \frac{42 \cdot k}{{9}} = 84

\Rightarrow 42 \cdot k = 84 \cdot 9 \Rightarrow 42 \cdot k = 756 \Rightarrow 42 \cdot k = 756 / \ \ \ : \ \ \ 42

\Rightarrow k = 756 \ \ \ : \ \ \ 42

\Rightarrow k = 18

Înlocuim valoarea lui k în numerele natural și determinăm valoare lui a, b și c.

 a = \frac{13 \cdot k}{{9}}   \Rightarrow a = \frac{13 \cdot 18}{{9}}  \Rightarrow a = \frac{234}{{9}}  \Rightarrow a = 26

 b = \frac{14 \cdot k}{{9}}   \Rightarrow b = \frac{14 \cdot 18}{{9}}   \Rightarrow b = \frac{252}{{9}}   \Rightarrow b = 28

 c = \frac{15 \cdot k}{{9}}   \Rightarrow c = \frac{15 \cdot 18}{{9}}  \Rightarrow c = \frac{270}{{9}}   \Rightarrow c = 30

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Exerciții la Mărimi direct proporționale  pentru copilul tău o gasești aici  Fisa de lucru marimi direct proportionale 

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Probleme cu Procente Rezolvate

“Un copil inteligent nu este un copil care învață absolut tot, ci un copil căruia nu îi este frică să învețe orice”

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm și să explicăm pas cu pas câteva probleme cu procente rezolvate. Acest tip de Probleme cu Procente s-au dat de multe ori  la Examenul de Evaluare Națională. (mai mult…)

Problema 1:

O rochie costă 540 lei. Prețul rochiei se reduce cu 15%. Cât va costa rochia după reducere?

Rezolvare:

Calculăm cât reprezintă 15% din 540 lei.

15% \ \ din \ \ \ 540= \frac{15}{{100}} \cdot 540= \frac{15}{{10\emptyset}} \cdot \frac{54\emptyset}{{1}}= \frac{15\cdot 54}{{10}}= \frac{81\emptyset}{{1\emptyset}}= 81 lei

Pentru că prețul rochiei se reduce scădem din prețul initial cei 81 lei.

540\ \ lei - 81 \ \ lei=459 \ \ lei (noul preț al rochiei)

Problema 2: Un călător parcurge o distanţă în 3 zile astfel: în prima zi parcurge 20% din drum, a doua zi parcurge 50% din rest şi în a treia zi parcurge ultimii 60 km.

a) Aflaţi lungimea totală pe care călătorul a parcurs-o în cele trei zile.

b) Cât la sută din lungimea totală a parcurs călătorul a doua zi dacă tot traseul are 150km?

Rezolvare:

a) Notăm cu x lungimea inițială a drumului.

Calculăm câți km i-au rămas călătorului după prima zi.

x- 20% din x= x - \frac{20}{{100}}\cdot x= x - \frac{1}{{5}}\cdot x= ^{5)}\textrm{x - \frac{1}{{5}}\cdot x=} \frac{5\cdot x }{{5}}- \frac{1\cdot x }{{5}}= \frac{4\cdot x }{{5}}  (rest)

Calculăm câți km i-au rămas călătorului după a doua zi.

Din restul rămas după prima zi scădem 50% din acest rest!

\frac{4\cdot x }{{5}} - 50% \ \ \cdot \ \ \frac{4\cdot x }{{5}}=\frac{4\cdot x }{{5}} - (\frac{50 }{{100}} \ \ \cdot \ \ \frac{4\cdot x }{{5}} )= \frac{4\cdot x }{{5}} - (\frac{1 }{{2}} \ \ \cdot \ \ \frac{4\cdot x }{{5}} )= \frac{4\cdot x }{{5}} - \frac{4\cdot x }{{10}}= _{{}}^{2)}\textrm{\frac{4\cdot x }{{5}} - \frac{4\cdot x }{{10}}=} \frac{8\cdot x }{{10}} - \frac{4\cdot x }{{10}}=  \frac{4\cdot x }{{10}}  (al doilea rest care reprezintă ultimii km parcurși in a treia zi)

Egalăm ultimul rest cu 60km.

 \frac{4\cdot x }{{10}} = 60 km \Rightarrow \frac{4\cdot x }{{10}} = 60 km / \cdot 10  \Rightarrow 4\cdot x = 600 km / \ \ : \ \ 4

 \Rightarrow x = 600\ \ km \ \ : \ \ 4  \Rightarrow x = 150\ \ km

b)  \frac{4}{10} \cdot 150 \ \ km =   \frac{4}{1\emptyset} \cdot 15\emptyset \ \ km =  60\ \ km  

Problema 3:

Un aparat  costă 960 lei . Prețul se majorează cu 40%  apoi scade cu 25%.

a) Care este noul preț al aparatului ?

b) Care este procentul final de majorare ?

Rezolvare:

a)  Calculăm prețul după prima majorare.

960 + 40% din 960 = 960 + \frac{40}{{100}}\cdot 960= 960 + \frac{4\emptyset}{{1\emptyset\emptyset}}\cdot 96\emptyset=960 + 4 \cdot 96=

960 + 384=  1344 (prețul după prima majorare)

Calculăm prețul după scăderea cu 25%.

1344- (25% din 1344)=   1344 - \frac{25}{{100}}\cdot 1344=  1344 - \frac{25\cdot 1344}{{100}}=  1344 - \frac{33600}{{100}}= 1344 - \frac{336\emptyset\emptyset}{{1\emptyset\emptyset}}=  1344 - 336=1008  (preț final)

b) Trebuie să aflăm p%.

960 + p% din 960 = 1008\Rightarrow 960 + p% din 960 = 1008 / -960

\Rightarrow p% din 960 = 1008 -960

\Rightarrow p% din \ \ 960 = 48\Rightarrow \frac{p}{{100}}\cdot 960 = 48

\Rightarrow \frac{p}{{10\emptyset}}\cdot 96\emptyset = 48 \Rightarrow \frac{p}{{10}}\cdot 96= 48 / \cdot 10

 \Rightarrow p\cdot 96= 480   \Rightarrow p\cdot 96= 480 / \ \ : \ \ 96

 \Rightarrow p= 480 \ \ : \ \ 96  \Rightarrow p= 5 %

PS: Dragul meu părinte am pregătit si o Fișă de lucru  cu Probleme cu Procente pentru copilul tău o gasești aici:Fisa de lucru probleme cu Procente

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Procente.

” Tăria minții vine prin exercițiu nu prin repaos”.

Alexander Pope

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas câteva Exerciții  rezolvate la Procente. (mai mult…)

Exercițiul 1:  Calculați:

a) 75 % din 1600

b) 1,25 % din 2000

c) 25 % din 16 % din 750

d) 4,(2) % din 7200 .

Rezolvare:

a)  75 % din 1600 =  \frac{75}{{100}} \cdot 1600=  \frac{75\cdot 16\emptyset\emptyset}{{1\emptyset\emptyset}}=  75\cdot 16=  1200

b) 1,25 % din 2000 = \frac{1,25}{100} \cdot 2000=  \frac{1,25\cdot 20\emptyset\emptyset}{1\emptyset\emptyset}= 1,25\cdot 20=25

c) 25 % din 16 % din 750 =  25% \cdot (\frac{16}{{100}} \cdot 750)= \frac{25}{{100}} \cdot (\frac{16 \cdot 75\emptyset}{{10\emptyset}})= \frac{25}{{100}} \cdot (\frac{16 \cdot 75}{{10}})= \frac{25}{{100}} \cdot (\frac{1200}{{10}})= \frac{25}{{100}} \cdot (\frac{120\emptyset}{{1\emptyset}})= \frac{25}{{100}} \cdot 120= \frac{25}{{10\emptyset}} \cdot 12\emptyset= \frac{25\cdot 12}{{10}}= \frac{300}{{10}}= \frac{30\emptyset}{{1\emptyset}}= \frac{30}{{1}}=30

d) 4,(2) % din 7200 =  \frac{4,(2)}{{100}} \cdot 7200 =  \frac{4,(2)\cdot 72\emptyset\emptyset}{{1\emptyset\emptyset}} =  4,(2)\cdot 72 =   \frac{42-4}{{9}} \cdot 72=  \frac{38}{{9}} \cdot 72= \frac{38 \cdot 72}{{9}} = \frac{2736}{{9}} =304

Exercițiul 2:   Aflați un număr x știind că :

a)  20% din el este 80;

b) 2,75 % din el este 3,30;

c) 3,(6)% din el este 36,3.

Rezolvare:

a)  20% din x este 80  \Rightarrow \frac{20}{{100}} \cdot x = 80 \Rightarrow \frac{20}{{100}} \cdot x = 80 / \ \ \ \cdot 100 \Rightarrow 20 \cdot x = 80 \cdot 100 \Rightarrow 20 \cdot x = 8000 / \ \ \ :\ \ 20 \Rightarrow x = 8000 \ \ :\ \ 20 \Rightarrow x = 400

b) 2,75 % din el este 3,30 \Rightarrow \frac{2,75}{{100}} \cdot x = 3,30  \Rightarrow \frac{2,75}{{100}} \cdot x = 3,30 / \cdot100  \Rightarrow 2,75 \cdot x = 3,30 \cdot100  \Rightarrow 2,75 \cdot x = 330

\Rightarrow \frac{275}{{100}} \cdot x = 330 \Rightarrow \frac{275}{{100}} \cdot x = 330 /\cdot 100 \Rightarrow {275}\cdot x = 330 \cdot 100

\Rightarrow {275}\cdot x = 33000 \Rightarrow {275}\cdot x = 33000 / \ \ \ : \ \ 275\Rightarrow x = 33000 \ \ : \ \ 275

\Rightarrow x = 120

c) 3,(6)% din x este 36,3 \Rightarrow \frac{3,(6)}{{100}} \cdot x = 36,3 \Rightarrow \frac{3,(6)}{{100}} \cdot x = 36,3 / \cdot 100 \Rightarrow 3,(6) \cdot x = 36,3 \cdot 100

\Rightarrow \frac{36-3}{{9}} \cdot x = 3630

\Rightarrow \frac{33}{{9}} \cdot x = 3630 / \cdot 9 \Rightarrow 33\cdot x = 3630 \cdot 9

\Rightarrow 33\cdot x = 32670 / \ \ \ : \ \ \ 33 \Rightarrow x = 32670 \ \ \ : \ \ \ 33

\Rightarrow x = 990

PS: Dragul meu părinte am pregătit si o fișă de lucru pentru copilul tău o gasești aici:Fișă de lucru Procente

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate la Rapoarte.

„Nimic nu este prea dificil dacă împarți în pași mici ceea ce ai de făcut.”

Henry Ford

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună și să explicăm pas cu pas  Exerciții  rezolvate la Rapoarte! (mai mult…)

Exercițiul1: Aflați termenul necunoscut din următoarele rapoarte:

a) \frac{x}{5}=\frac{21}{3}

b) \frac{5}{x}=0,20

c) \frac{6,(4)}{x}=8

Rezolvare:

a)  \frac{x}{5}=\frac{21}{3}

Înmulțim pe diagonală și obținem :

 \Rightarrow 3 \cdot x=21\cdot5  \Rightarrow 3 \cdot x=105  \Rightarrow x=105 \ \ \ :\ \ \ 3  \Rightarrow x=35

b) \frac{5}{x}=0,20

Transformăm fracția zecimală 0,20 în fracție ordinară și obținem:

\Rightarrow \frac{5}{{x}}=\frac{20}{{10}}\Rightarrow \frac{5}{{x}}=\frac{2}{{1}} \Rightarrow 5\cdot 1=x \cdot 2 \Rightarrow 2x=5 \ \ \ \ \ /:\ \ 2\Rightarrow x=\frac{5}{{2}}

c) \frac{6,(4)}{x}=8 \Rightarrow \frac{6,(4)}{x}=\frac{8}{1}\Rightarrow 6,(4)\cdot 1=8 \cdot x

Transformăm fracția periodică  6,(4) în fracție ordinară  astfel 6,(4)=\frac{64-6}{{9}}=\frac{58}{{9}} și obținem:

\Rightarrow 6,(4)\cdot 1=8 \cdot x  \Rightarrow \frac{58}{{9}}\cdot \frac{1}{{1}}=\frac{8\cdot x}{{1}} \Rightarrow \frac{58}{{9}}=\frac{8\cdot x}{{1}} \Rightarrow 58 \cdot 1 =9 \cdot 8\cdot x \Rightarrow 58=72\cdot x \Rightarrow 58=72\cdot x \ \ \ /\ \ \ \ :\ \ 72  \Rightarrow x = \frac{58}{{72}}^{{(2}}

 \Rightarrow x = \frac{29}{{36}}

Exercițiul 2: Se consideră numerele a= 1+2+3+.........................+2018 și b = 2+4+6+.........................+4036. Calculați :

a) Raportul dintre a și b;

b) Raportul dintre suma și diferența numerelor b și a;

Rezolvare:

Calculăm mai întâi numărul a ca să îl aducem la o formă mai simplă. Recunoaștem suma Gauss a primelor 2018 numere naturale consecutive și aplicăm formula lui Gauss.

a = 1+2+3+.........................+2018

 a = 2018\cdot(2018+1) \ \ \ : \ \ \ 2

 a = 2018\cdot 2019 \ \ \ : \ \ \ 2

 a = 2018 \ \ \ : \ \ \ 2 \cdot 2019

 a = 1009 \cdot 2019

PS: Dacă nu îți mai amintești Suma lui Gauss găsești aici PDF-ul gratuit : Suma Gauss

Calculăm și numărul b pentru a obține o formă mai simplă.

b = 2+4+6+.........................+4036.

Dăm factor comun pe 2 și obținem din nou Suma Gauss a primelor 2018 numere naturale consecutive.

 b =2 \cdot (1+2+3+...............+2018)

 b =2 \cdot [2018\cdot (2018+1) \ \ :\ \ \ 2]

 b =2 \cdot [2018\ \ :\ \ \ 2 \cdot (2018+1) ]

 b =2 \cdot [2018\ \ :\ \ \ 2 \cdot 2019 ]

 b =2 \cdot 1009 \cdot 2019

 b =2018 \cdot 2019

  • a) Facem raportul   \frac{a}{b} = \frac{1009 \cdot 2019}{2018 \cdot 2019} ^{{(1009 \cdot 2019}}  \Rightarrow \frac{a}{b} = \frac{1}{2}
  • b) Calculăm raportul     \frac{a+b}{b-a}=  \frac{1009\cdot 2019+2018\cdot 2019}{2018\cdot 2019-1009\cdot 2019}=

Observăm că putem da factor comun pe 1009\cdot2019 și la numărător și la numitor și obținem:

 \frac{1009\cdot 2019\cdot (1+2)}{1009\cdot 2019\cdot(2-1)}= \frac{1009\cdot 2019\cdot 3}{1009\cdot 2019\cdot 1}=

Observăm că putem simplifica raportul prin 1009\cdot2019 și obținem:

 \frac{1009\cdot 2019\cdot 3}{1009\cdot 2019\cdot 1}^{{(1009\cdot 2019}} =\frac{3}{1}=3

Exercițiul 3:

Știind că  \frac{a}{b} = \frac{7}{2}  calculați valoarea raportului:

a)  \frac{12\cdot a+6\cdot b}{6\cdot a-b} = ?

b) \frac{3\cdot a+5\cdot b}{2\cdot a+b} = ?

Rezolvare:

a) Știind raportul  \frac{a}{b} = \frac{7}{2}  înmulțim pe diagonală și scoatem a în funcție de b

 \Rightarrow 2\cdot a= 7 \cdot b \Rightarrow a=\frac{7\cdot b }{{2}}

Înlocuim a în raportul pe care îl avem de calculat și obținem:

 

\Rightarrow \frac{12\cdot \frac{7\cdot b }{{2}}+6\cdot b}{6\cdot \frac{7\cdot b }{{2}}-b} =  \frac{ \frac{84\cdot b }{{2}}+6\cdot b}{ \frac{42\cdot b }{{2}}-b} =

\frac{ {42\cdot b }+6\cdot b}{ 21\cdot b -b} =  \frac{ {48\cdot b }}{ 20\cdot b } ^{(4\cdot b} =  \frac{ {12 }}{ 5 }

b) Știind raportul  \frac{a}{b} = \frac{7}{2}  înmulțim pe diagonală și scoatem a în funcție de b

 \Rightarrow 2\cdot a= 7 \cdot b \Rightarrow a=\frac{7\cdot b }{{2}}

Înlocuim a în raportul pe care îl avem de calculat și obținem:

\frac{3\cdot a+5\cdot b}{2\cdot a+b} =  \frac{3\cdot \frac{7\cdot b }{{2}} +5\cdot b}{2\cdot \frac{7\cdot b }{{2}}+b} =  \frac{\frac{21\cdot b }{{2}} + 5\cdot b}{ \frac{14\cdot b }{{2}}+b} =  \frac{\frac{21\cdot b }{{2}} + _{{}}^{2)}{5\cdot b}}{ \frac{14\cdot b }{{2}}+_{{}}^{2)}{ b}} =  \frac{\frac{21\cdot b }{{2}} + {\frac{10\cdot b }{{2}}} }{ \frac{14\cdot b }{2}+{{{\frac{2\cdot b }{{2}}}}  = \frac{\frac{31\cdot b }{{2}} }{ \frac{16\cdot b }{2}} =  {\frac{31\cdot b }{{2}} }\ \ \ :\ \ \ { \frac{16\cdot b }{2}} =   {\frac{31\cdot b }{{2}} } \cdot { \frac{2}{16\cdot b}} =  {\frac{31 }{{16}} }

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții Rezolvate la Unghiuri complementare. Unghiuri Suplementare

Cel mai mare neajuns al nostru este că renunțăm prea repede. Cel mai corect drum către succes este să mai încerci o dată.” Thomas Edison

Dragul meu părinte bine te-am regăsit! Azi îți propun o nouă lecție de geometrie în plan și te invit să rezolvăm și să explicăm pas cu pas împreună câteva exerciții la “Unghiuri Complementare. Unghiuri Suplementare”. (mai mult…)

Exercițiul 1 :

Unghiul  \widehat{MON} și  \widehat{NOP} sunt adiacente și complementare. Știind că  m(\widehat{MON}) este \frac{3}{2} din  m(\widehat{NOP}) să se calculeze   m(\widehat{NOP})   și  m(\widehat{MON}) ..

  • Rezolvare: 
  • Scriem datele problemei:
  • Realizăm desenul:
  • Analizând desenul observăm că  m(\widehat{MON})+ m(\widehat{NOP})=90^\circ
  • Știm că  m(\widehat{MON})=\frac{3}{{2}}\cdot m(\widehat{NOP})  \Rightarrow \frac{3}{{2}}\cdot m(\widehat{NOP})+m(\widehat{NOP})=90^\circ \ \ \ | \ \ \cdot \ \ 2
  •  \Rightarrow 3\cdot m(\widehat{NOP})+2 \cdot m(\widehat{NOP})=2\cdot 90^\circ
  •  \Rightarrow 5\cdot m(\widehat{NOP})=180^\circ \ \ \ | \ \ \ \cdot \ \ \ 5
  •  \Rightarrow m(\widehat{NOP})=180^\circ\ \ \ : \ \ \ 5
  •  \Rightarrow m(\widehat{NOP})=36^\circ
  • Înlocuim și  aflăm și măsura unghiului  \widehat{MON}
  •  m(\widehat{MON})=\frac{3}{{2}}\cdot m(\widehat{NOP}) \Rightarrow m(\widehat{MON})=\frac{3}{{2}}\cdot 36^\circ \Rightarrow m(\widehat{MON})=\frac{3\cdot36^\circ}{{2}} \Rightarrow m(\widehat{MON})=\frac{108^\circ}{{2}}=54^\circ
  • m(\widehat{MOP})= m(\widehat{MON})+ m(\widehat{NOP})
  •  m(\widehat{MOP})=36^\circ+54^\circ=90^\circ

Exercițiul 2:

Măsura m(\widehat{XOY}) este \frac{7}{8} din măsura suplementului său unghiul m(\widehat{YOZ}). Aflați măsura m(\widehat{XOY}) și m(\widehat{YOZ}).

  • Rezolvare:
  • Scriem datele problemei:
  • Realizăm desenul:
  • Analizând desenul observăm că: m(\widehat{XOY})+m(\widehat{YOZ})=180^\circ
  • Știm că m(\widehat{XOY})=\frac{7}{{8}}\cdot m(\widehat{YOZ})
  • \Rightarrow\frac{7}{{8}}\cdot m(\widehat{YOZ})+m(\widehat{YOZ})= 180^\circ \ \ \ | \ \ \cdot8
  • \Rightarrow 7\cdot m(\widehat{YOZ})+8\cdot m(\widehat{YOZ})=8\cdot180^\circ
  • \Rightarrow 15 \cdot m(\widehat{YOZ})= 1440^\circ
  • \Rightarrow 15 \cdot m(\widehat{YOZ})= 1440^\circ \ \ \ | \ \ : \ \ \ 15
  • \Rightarrow m(\widehat{YOZ})= 1440^\circ \ \ : \ \ \ 15
  • \Rightarrow m(\widehat{YOZ})= 96^\circ
  • Înlocuim și aflăm măsura  m(\widehat{XOY}):
  • m(\widehat{XOY})=\frac{7}{{8}}\cdot m(\widehat{YOZ}) \Rightarrow m(\widehat{XOY})=\frac{7}{{8}}\cdot 96^\circ \Rightarrow m(\widehat{XOY})=\frac{7\cdot 96^\circ}{{8}}\Rightarrow m(\widehat{XOY})=\frac{672^\circ}{{8}}=84^\circ

Exercițiul 3: 

Determinați măsura unghiului m(\widehat{MON}) știind că măsura complementului suplementului său este de 63^\circ.

  • Rezolvare:
  • Dacă citim atent enunțul problemei aceasta ne precizează că complementul suplementului unghiului  \widehat{MON} este 63^\circ . Scriem matematic această informație:
  • Notăm suplementul unghiului \widehat{MON} cu \widehat{NOP} și obținem informația:
  • m(\widehat{MON})+m(\widehat{NOP})=180^\circ
  • Notăm complementul unghiului \widehat{NOP} cu \widehat{NOQ} și obținem informația:
  • m(\widehat{NOP})+m(\widehat{NOQ})=90^\circ
  • Scriem datele problemei:
  • Realizăm desenul:
  • Plecăm de la informația furnizată de enunțul problemei că:
  • m(\widehat{NOP})+m(\widehat{NOQ})=90^\circ
  • Știm că m(\widehat{NOQ})=63^\circ \Rightarrow m(\widehat{NOP})+63 ^\circ=90^\circ \ \ \ | \ \ -63^\circ \Rightarrow m(\widehat{NOP})=90^\circ -63^\circ \Rightarrow m(\widehat{NOP})=27^\circ
  • Mai știm din enunțul problemei că: m(\widehat{MON})+m(\widehat{NOP})=180^\circ
  • Înlocuim m(\widehat{NOP})=27^\circ și obținem:
  • m(\widehat{MON})+27^\circ=180^\circ \ \ \ | \ \ -27^\circ
  • \Rightarrow m(\widehat{MON})=180^\circ -27^\circ
  • \Rightarrow m(\widehat{MON})=153^\circ

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în Clubul de “Matematică Math More Easy”.

Exerciții rezolvate la Unghiuri Adiacente. Bisectoarea unui unghi

Fără educație, ce este omul? Un splendid sclav, un sălbatic al rațiunii.”

Joseph Addison

Dragul meu părinte bine te-am regăsit! Azi îți propun câteva exerciții rezolvate și explicate pas cu pas la o lecție nouă de Geometrie: “Exerciții rezolvate la Unghiuri Adiacente. Bisectoarea unui unghi”. (mai mult…)

Exercițiul 1:

În figura de mai jos unghiurile \widehat{XOY} și \widehat{YOZ} sunt adiacente. Știind că m(\widehat{XOY} )=69^\circ și m(\widehat{XOZ} )=123^\circ , determinați m(\widehat{YOZ} ).

  • Rezolvare:

Scriem datele problemei:

Realizăm desenul:

Analizând desenul observăm că îl putem determina  m(\widehat{YOZ} ) ca fiind:

m(\widehat{YOZ} )=m(\widehat{XOZ} )-m(\widehat{XOY} )\Rightarrow m(\widehat{YOZ} )=123^\circ - 69^\circ=54^\circ

 

Exercițiul 2:

 Unghiurile \widehat{ABC} și \widehat{CBD} sunt adiacente astfel încât m(\widehat{ABC})=45^\circ iar m(\widehat{CBD})=25 % \ \ \ din \ \ \ 180^\circ. Demonstrați că \left [ BC este bisectoarea unghiului \widehat{ABD}.

Rezolvare:

Scriem datele problemei:

Ca să arătăm că \left [ BC este bisectoarea unghiului  \widehat{ABD} trebuie să arătăm că \widehat{ABC}\equiv \widehat{CBD}.

Calculăm dimensiunea unghiului m(\widehat{CBD}) = 25 % \ \ \ din \ \ \ 180^\circ

 m(\widehat{CBD}) = \frac{25}{{100}}\cdot 180^\circ  \Rightarrow m(\widehat{CBD}) = \frac{25\cdot180^\circ}{{100}}  \Rightarrow m(\widehat{CBD}) = \frac{4500^\circ}{{100}}=45^\circ \Rightarrow m(\widehat{CBD}) \equiv m(\widehat{ABC})  \Rightarrow \left [ BC bisectoarea   \widehat{ABD}.

Realizăm desenul:

Exercițiul 3:

Se dau două unghiuri adiacente  \widehat{AOB} și  \widehat{BOC}. Știind că bisectoarele \left [ OM și \left [ ON ale celor două unghiuri sunt perpendiculare și că m( \widehat{AOB})=5\cdot m( \widehat{BOC}) să se determine m( \widehat{AOB}) și m( \widehat{BOC}).

Rezolvare: 

  • Scriem datele problemei:
  • Analizând datele problemei observăm că nu știm exact dimensiunile unghiurilor  \widehat{AOB} și  \widehat{BOC} deci este destul de greu de realizat desenul.
  • Dar știm că bisectoarele celor două unghiuri sunt perpendiculare deci formează un unghi   \widehat{MON}=90^\circ
  • Mai știm că \left [ MO bisectoarea  \widehat{AOB}  \Rightarrow \widehat{AOM}\equiv \widehat{MOB}
  • Și că \left [ ON bisectoarea  \widehat{BOC} \Rightarrow \widehat{BON}\equiv \widehat{NOC}
  • Dar  \widehat{MOB}+\widehat{BON}=90^\circ
  • Din aceste relații \Rightarrow 2m ( \widehat{MOB})+2 m ( \widehat{BON})=m( \widehat{AOC})
  •  \Rightarrow 2[m ( \widehat{MOB})+ m ( \widehat{BON})]=m( \widehat{AOC})
  • \Rightarrow 2\cdot m ( \widehat{MON})=m( \widehat{AOC})
  • \Rightarrow 2\cdot 90^\circ=m( \widehat{AOC})  \Rightarrow m( \widehat{AOC})=180^\circ .
  • Realizăm desenul:
  • Observăm din desen că m( \widehat{AOB})+m( \widehat{BOC})=m( \widehat{AOC})
  • \Rightarrow 5\cdot m( \widehat{BOC})+m( \widehat{BOC})=180^\circ
  • \Rightarrow 6\cdot m( \widehat{BOC})=180^\circ  \Rightarrow m( \widehat{BOC})=180^\circ\ \ \ :\ \ \ 6 \ \Rightarrow m( \widehat{BOC})=30^\circ
  • Știm că \Rightarrow m( \widehat{AOB})=5 \cdot m( \widehat{BOC}) \Rightarrow m( \widehat{AOB})=5 \cdot 30^\circ=150^\circ

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți 

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un 

grad de dificultate ridicat rezolvate și explicate pas cu pas te 

invit să te înscrii în Clubul de “Matematică Math More Easy.”

Exerciții rezolvate la Factorul Comun la Puteri

“Un ratat nu știe ce va face dacă pierde, dar vorbește despre ce va face dacă va castiga. Un învingător nu vorbește despre ce va face dacă va caștiga, dar știe ce va face dacă pierde.”
Eric Berne
Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună cateva exerciții la “Factorul comun la Puteri”.

(mai mult…)

Exercițiul 1:

Efectuați calculele, folosind factorul comun:

a) 3^{96}+3^{98}+3^{100}

b) 2\cdot2^{47}+3\cdot2^{48}+2^{50}

c) 8^{300}-24\cdot8^{298}-64\cdot8^{297}

d) 3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}

e) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

  • Rezolvare: 
  • a) 3^{96}+3^{98}+3^{100}
  • Adunarea este o operație de gradul I și ridicarea la putere este o operație de gradul III, iar ordinea efectuării operațiilor ne spune că trebuie să facem mai întâi operațiile de gradul III și apoi cele de gradul I

Observăm că avem puteri foarte mari și nu putem ridica la putere așa că ne vom folosi de factorul comun și vom da factor comun puterea cea mai mică.

Observăm că 3^{96} este puterea cea mai mică asa ca îl dăm factor comun pe 3^{96} și obținem:

3^{96}\cdot(3^{96-96}+3^{98-96}+3^{100-96})

Scădem puterile și obținem:

3^{96}\cdot(3^{0}+3^{2}+3^{4})

Ridicăm la putere termenii din paranteza rotundă:

3^{96}\cdot(1+9+81)=3^{96}\cdot91

  • b)      2\cdot2^{47}+3\cdot2^{48}+2^{50}

Observăm că  2^{47} este puterea cea mai mică așa că îl dăm factor comun pe 2^{47} și obținem:

2^{47}\cdot(2\cdot2^{47-47}+3\cdot2^{48-47}+2^{50-47})

Scădem puterile și obținem:

2^{47}\cdot(2\cdot2^{0}+3\cdot2^{1}+2^{3})

Ridicăm la putere termenii din paranteza rotundă și obținem:

2^{47}\cdot(2\cdot 1+3\cdot2+8)

Efectuăm  înmulțirile și obținem:

2^{47}\cdot(2+6+8)=

Efectuăm adunarea din paranteză și obținem:

2^{47}\cdot 16=

Știm că 16 îl putem scrie în baza 2 ca 2^{4} și obținem

2^{47}\cdot2^{4}=

Aplicăm Regulile de calcul cu puteri și scriem baza și adunam exponenții:

2^{47+4}=2^{51}

  • c)   8^{300}-24\cdot8^{298}-64\cdot8^{297}

Observăm că 8^{297} este cea mai mică putere, îl dăm factor comun pe 8^{297} și obținem:

8^{297}\cdot(8^{300-297}-24\cdot8^{298-297}-64\cdot8^{297-297})

Scădem puterile și obținem:

8^{297}\cdot(8^{3}-24\cdot8^{1}-64\cdot8^{0})

Ridicăm la putere termenii din paranteză și obținem:

8^{297}\cdot(512-24\cdot8-64\cdot1) =

Efectuăm înmulțirile din paranteză și obținem:

  • 8^{297}\cdot(512-192-64) =

Efectuăm scăderea din paranteza rotundă și obținem:

8^{297}\cdot 256 =

Știm că putem scrie 8=2^3 și 256=2^8 și obținem:

(2^3)^{297}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri înmulțim puterile și obținem:

2^{3\cdot297}\cdot 2^8=2^{891}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri, scriem baza și adunam puterile și obținem astfel:

2^{891+8}=2^{899}

  • d)  3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}=

Aplicăm Regulile de calcul cu puteri și obținem:

3^{2n}\cdot3^2+7\cdot 3^{2n}\cdot3^1-6\cdot3^{2n}=

Observăm că se repetă în fiecare termen al adunării 3^{2n},  îl dăm factor comun și obținem:

3^{2n}\cdot(3^2+7\cdot3^1-6\cdot1)=

Ridicăm la putere termenii din paranteza rotundă și obținem:

3^{2n}\cdot(9+7\cdot3-6)=

Efectuăm Înmulțirea din paranteză și obținem:

3^{2n}\cdot(9+21-6)=

Efectuăm calculele din paranteza rotundă și obținem:

3^{2n}\cdot 24=3^{2n}\cdot 3\cdot8=

Aplicăm Regulile de calcul cu puteri scriem baza și adunăm exponenții și obținem:

3^{2n+1}\cdot8

  • d) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri  transformăm bazele pe 6 îl scriem 6=2\cdot3 , pe 4=2^2, 9=3^2 , pe  18=2\cdot3^2  și obținem:

(2\cdot3)^{2n+1}+6\cdot (2^2)^{n+1}\cdot (3^2)^{n+2}+(2\cdot3^2)^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri, distribuim puterea și obținem:

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2\cdot(n+1)}\cdot 3^{2\cdot(n+2)}+2^{n+1}\cdot3^{2(n+1)}\cdot2^{n+1}

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2n+2}\cdot 3^{2n+4}+2^{n+1}\cdot3^{2n+2}\cdot2^{n+1}

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n}\cdot2^1\cdot3^{2n}\cdot3^2\cdot2^{n}\cdot2^1

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n+n}\cdot2^{1+1}\cdot3^{2n}\cdot3^2

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{2n}\cdot2^{2}\cdot3^{2n}\cdot3^2

Observăm că se repeta 2^{2n}\cdot3^{2n} și îl dăm factor comun, astfel obținem:

2^{2n}\cdot3^{2n}\cdot(2^1\cdot3^1+6\cdot2^2\cdot3^4+2^{2}\cdot3^2)

Ridicăm la putere termenii din paranteza rotundă:

2^{2n}\cdot3^{2n}\cdot(2\cdot3+6\cdot4\cdot81+4\cdot9)

Efectuăm înmulțirile din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot(6+1944+36)

Efectuăm calculele din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot 1986=(2\cdot3)^{2n}\cdot 6\cdot331=(6)^{2n}\cdot 6^1\cdot331=(6)^{2n+1}\cdot331

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în Clubul de “Matematică Math More Easy.” 

1 2 3 4