Exerciții rezolvate la Pătrate Perfecte!

"Nu poți împinge pe nimeni să urce pe o scară dacă nu este dispus să o urce singur "

Andrew Carnegie

Dragul meu părinte bine te-am regăsit! În articolul anterior am prezentat cateva "Exerciții Rezolvate la Ultima Cifră a unui Număr Natural". Astăzi te invit să rezolvăm și să explicăm câteva exerciții la Pătrate Perfecte. Să vedem cum putem arăta că un număr foarte mare poate fi sau nu pătrat perfect!
 
Exercițiul 1: 

Arătați că numărul a=2003 + 2\cdot (1+2+3+................+ 2002) este pătrat perfect.

  • Rezolvare: Pentru a arăta că numărul "a" este pătrat perfect trebuie să arătam că numărul "a"se poate scrie ca un număr natural la puterea a doua.
  • Observăm că în paranteză avem  Suma Gauss a primelor 2002 numere naturale consecutive așa că vom aplica formula de calcul a lui Gauss.
  • a=2003 + 2\cdot (1+2+3+................+ 2002)
  • a=2003 + 2\cdot [2002\cdot (2002+1)\ : \ 2]
  • a=2003 + 2\cdot [2002\cdot 2003 \ : \ 2]
  • Pentru că înmulțirea și împărțirea sunt operații de același ordin putem efectua mai întâi operația de împărțire.
  • a=2003 + 2\cdot [2002\ \ : \ 2 \cdot 2003]
  • a=2003 + 2\cdot 1001 \cdot 2003
  • a=2003 + 2002 \cdot 2003
  • Dăm factor comun pe 2003.
  • a=2003\cdot (1 + 2002)
  • a=2003\cdot 2003
  • a=2003^2.
  • \Rightarrow numarul \ este pătrat perfect.
Exercițiul 2: 

Arătați că numărul  a=81+81 \cdot 2+ 81 \cdot 3+.....................+81 \cdot 49 este pătrat perfect.

  • Rezolvare: Pentru a arăta că numărul "a" este pătrat perfect trebuie să arătam că numărul "n"se poate scrie ca un număr natural la puterea a doua.
  • Observăm că 81 se repetă și îl putem da factor comun.
  • a=81\cdot (1+ 2+ 3+.....................+49).
  • În paranteză obținem   Suma Gauss a primelor 49 numere naturale consecutive așa că vom aplica metoda de calcul a lui Gauss.
  • a=81\cdot [49 \cdot(49+1) \ \ : \ 2 ]
  • a=81\cdot [49 \cdot 50 \ \ : \ 2 ]
  • a=81\cdot 49 \cdot 25
  • a=9^2\cdot 7^2 \cdot 5^2
  • Aplicăm Regulile de Calcul cu Puteri și obținem:
  • a=(9\cdot 7 \cdot 5)^2
  • a=315^2
Exercițiul 3:  

Arătați că numărul   n= 27^9 \cdot 32^{11} \ \ : \ \ 2 - 16^6\cdot 2\cdot 6^{27} este pătrat perfect.

  • Rezolvare:  Pentru a arăta că numărul "n" este pătrat perfect trebuie să arătăm că se poate scrie ca un număr natural la puterea a doua.
  • Observăm că pe 27 îl putem scrie ca bază 3, pe 16 și 32 îi putem scrie ca baza 2 iar pe 6 îl putem scrie ca produsul 2\cdot 3
  • n= (3^3)^9 \cdot (2^5)^{11} \ \ : \ \ 2^1 - (2^4)^6\cdot 2^1 \cdot (2\cdot3)^{27}
  • Aplicăm Regulile de calcul cu puteri și obținem:
  • n= 3^{3\cdot9} \cdot 2^{5\cdot 11} \ \ : \ \ 2^1 - 2^{4\cdot 6}\cdot 2^1 \cdot 2^{27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{55} \ \ : \ \ 2^1 - 2^{24}\cdot 2^1 \cdot 2^{27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{55-1} - 2^{24+1+27}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{54} - 2^{52}\cdot 3^{27}
  • n= 3^{27} \cdot 2^{52} \cdot 2^2 - 2^{52}\cdot 3^{27}
  • Observăm că se repetă  3^{27} \cdot 2^{52} și îi dăm factor comun.
  • n= 3^{27} \cdot 2^{52} \cdot (2^2 - 1)
  • n= 3^{27} \cdot 2^{52} \cdot (4 - 1)
  • n= 3^{27} \cdot 2^{52} \cdot 3
  • n= 3^{27} \cdot 2^{52} \cdot 3^1
  • n= 3^{27+1} \cdot 2^{52}
  • n= 3^{28} \cdot 2^{52}
  • n= (3^{14} \cdot 2^{26} )^2 \Rightarrow n este pătrat perfect
Exercițiul 4:  

Arătați că numărul  n= 2^{2011}- 2^{2010}-2^{2009}-2^{2008}  este pătrat perfect.

  • Rezolvare: Pentru a arăta că numărul "n" este pătrat perfect trebuie să arătăm că se poate scrie ca un număr natural la puterea a doua.
  • Aplicând Regulile de Calcul cu Puteri  putem scrie: 2^{2011}= 2^{2008}\cdot 2^{3}2^{2010}= 2^{2008}\cdot 2^{2} și 2^{2009}= 2^{2008}\cdot 2^{1}. Obținem astfel:
  •  n= 2^{2008}\cdot 2^{3} - 2^{2008}\cdot 2^{2} - 2^{2008}\cdot 2^{1} -2^{2008}
  • Observăm că se repetă  2^{2008} și putem sa îl dăm factor comun:
  •  n= 2^{2008}\cdot (2^{3} - 2^{2} - 2^{1} - 1)
  •  n= 2^{2008}\cdot (8 - 4 - 2 - 1)
  •  n= 2^{2008}\cdot 1
  •  n= 2^{2008}
  •   n= (2^{1004})^2 \Rightarrow n este pătrat perfect

 

Exercițiul 5: 

Arătați că numărul a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002}   nu este pătrat perfect.

  • Rezolvare: Observăm că avem Suma Gauss a puterilor lui 2. Pentru a rezolva acest exercițiu înmultim întreaga expresie matematică cu un 2. 
  • a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002} | \ \ \ \cdot2
  • 2\cdot a= 2\cdot 2^{1504} + 2\cdot 2^{1505} + 2\cdot 2^{1506} +..............+2\cdot 2^{2002}
  • 2\cdot a= 2^{1504+1} + 2^{1505+1} + 2^{1506+1} +..............+ 2^{2002+1}
  • 2\cdot a= 2^{1505} + 2^{1506} + 2^{1507} +.............+2^{2002}+ 2^{2003}
  • Scădem cele două relații și obținem:
  • suma gauss a puteror lui 2
  •  a = 2^{2003} - 2^{1504}
  • Pentru a demonstra că numărul  a = 2^{2003} - 2^{1504} nu este pătrat perfect trebuie să arătăm că Ultima cifră a lui a aparține mulțimii: \left \{ 2,3, 7,8 \right \}.
  • Calculăm Ultima cifră a numărului a = 2^{2003} - 2^{1504}
  •  U(a) = U(2^{2003} - 2^{1504})
  •  U(a) = U(2^{2003}) - U(2^{1504})
  • Calculăm  U(2^{2003}) .
  • Mai întâi calculăm puterilelui 2.
  • Observăm că ultima cifră se schimbă din 4 în 4.
  • Împărțim 2003 la 4 și obținem câtul 500 și restul 3.
  •  U(2^{2003})=U(2^{4\cdot 500+3})=U[(2^4)^{500}\cdot 2^3]=U[(2^4)^{500}]\cdot U(2^3)
  • Dacă privim atent puterile lui 2 observăm ca ultima cifră a lui 2^4 este 6 și astfel obținem:
  • U[(2^4)^{500}]\cdot U(2^3)= U[U(6^{500})\cdot 8]
  • Știm că 6 ridicat la orice putere are ultima cifra tot 6.
  • Și obținem: U[U(6^{500})\cdot 8]=U(6 \cdot 8)= U(48)=8
  • Am obținut că  U(2^{2003})=8
  • Calculăm  U(2^{1504}).
  • Împărțim 1504 la 4 și obținem câtul 376.
  •  U(2^{1504})=U(2^{4\cdot 376})=U[(2^4)^{376}]
  • U(2^4)=6\Rightarrow U[(2^4)^{376}]=U(6^{376})=6
  • Am obținut astfel:  U(a) = U(2^{2003}) - U(2^{1504})=8-6=2
  • Știm că ultima cifră a unui pătrat perfect nu poate fi 2 \Rightarrow  a= 2^{1504} + 2^{1505} + 2^{1506} +..............+ 2^{2002} nu este pătrat perfect

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poți lăsa aici în rubrica de comentarii sau îmi poți trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi și pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poți găsi și aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag și mult respect Alina Nistor!

Leave a Reply

Your email address will not be published.