"Inteligența nu înseamnă să nu faci greșeli, ci să vezi repede cum poți să le îndrepți"

Brelot Breckt

Dragul meu părinte bine te-am regăsit! Azi te invit să rezolvăm și să explicăm pas cu pas  împreună cateva exerciții la “Modulul unui număr intreg”.

Exercițiul 1: Completați pentru a obține propoziții adevarate:

a) \left \ | -11 \right \ |=?

b) \left \ | 13 \right \ |=?

c) \left \ | 0 \right \ |=?

d) \left \ | (-2)^2 \right \ |=?

e) \left \ | -3^4 \right \ |=?

f) \left \ | -7 +11 \right \ |=?

g) \left \ | -15 -6 \right \ |=?

h) \left \ | -2^2+3^2 \right \ |=?

i) \left \ | 2^{164}-3^{123} \right \ |=?

Rezolvare: 

Știm că modulul sau valoarea absolută  a unui număr întreg este valoarea pozitivă a acelui număr.

a) \left \| -11 \right \ |=11   ;     b) \left \ | 13 \right \ |=13   ;    c) \left \ | 0 \right \ |=0    ;        

d) \left \ | (-2)^2 \right \ |=?

Știm că semnul minus la putere pară obținem semnul + , astfel  (-2)^2=+ 4. Astfel obținem:

\left \ | (-2)^2 \right \ |=\left \ | 4 \right \ |=4

e)  \left \ | -3^4 \right \ |=?

Știm că semnul minus la putere impară obținem semnul - , astfel   -3^4=-81. Astfel obținem:

\left \ | -3^4 \right \ |=\left \ | -81 \right \ |=81

f) \left \ | -7 +11 \right \ |=?

Efectuăm calculele din modul după care explicităm modulul.

Știm că la adunarea a două numere întregi păstrăm semnul celui mai mare și efectuăm scădere între termini. Astfel obținem:

\left \ | -7 +11 \right \ |= \left \ | +4 \right \ |= 4

g) \left \ | -15 -6 \right \ |= ?

Efectuăm calculele din modul după care explicităm modulul.

Știm că la scăderea a două numere întregi negative păstrăm semnul  și efectuăm adunare între termini. Astfel obținem:

\left \ | -15 -6 \right \ |= \left \ | - 21 \right \ | = 21

h) \left \ | -2^2+3^2 \right \ |= ?

Mai întâi ridicăm numerele întregi la putere, apoi facem calculele după care explicităm modulul. Astfel obținem:

\left \ | -2^2+3^2 \right \ |= \left \ | - 4+9\right \ | = \left \ | +5\right \ | = 5

i) \left \ | 2^{164}-3^{123} \right \ |= ?

Pentru a putea explicita modului trebuie mai întâi să comparăm puterile:

Comparăm 2^{164}   cu  3^{123} .

Observăm că 164=4 \cdot 41 ,  iar  123= 3\cdot 41. Astfel obținem:

2^{4\cdot 41}   comparat cu 3^{3\cdot 41}. Aplicăm regulile de calcul cu puteri și obținem:

(2^{4})^{41} comparat cu  (3^{3})^{41}  \Rightarrow 16^{41} comparat cu  \Rightarrow 27^{41} .

Pentru că am obținut același exponent, comparăm bazele iar numărul cu baza mai mare va fii mai mare. Obținem astfel că : 2^{164} \lt 3^{123} \Rightarrow semnul rezultatului din modul va fii negative. În acest caz vom scoate termenii de sub modul cu semen schimbate.

\left \ | 2^{164}-3^{123} \right \ |= - 2^{164}+3^{123}

Pentru că avem puteri foarte mari lăsăm așa răspunsul final.

Exercițiul 2:  Rezolvați în Z ecuațiile:

a)   \left \| x \right \|=5

b) \left \| 2x-17 \right \|=21

c) 29-3\cdot \left \ | 2x-7 \right \ | \geq -4

d) 3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]-8=7

Rezolvare: 

a)  \left \| x \right \|=5 \Rightarrow x= \pm 5

b)  \left \| 2x-17 \right \|=21

Egalăm pe rând valoarea din modul cu 21 și cu -21.

  • \left \| 2\cdot x-17 \right \|=21 \Rightarrow 2\cdot x-17=21  \Rightarrow 2\cdot x=21+17 \Rightarrow 2\cdot x=38 \Rightarrow x=38 \ \ \ : \ \ \ 2 \Rightarrow x=19
  • \left \| 2x-17 \right \|=21\Rightarrow 2x-17=-21 \Rightarrow 2\cdot x=- 21+17 \Rightarrow 2\cdot x=- 4 \Rightarrow x=-4 \ \ \ : \ \ \ 2 \Rightarrow x=-2

x\in \left \{-2 \ \ ; \ \ 19 \right \}

d) 3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]-8=7

Aplicăm metoda mersului invers.

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]-8=7 \ \ \ \ \ \ | \ \ +8

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]=7+8

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]=15

3\cdot [ 2 \cdot \left \ | 2x- 3 \right \ | -9]=15\ \ \ \ \ \ | \ \ : \ \ 3

 2 \cdot \left \ | 2x- 3 \right \ | -9=15 \ \ : \ \ 3

 2 \cdot \left \ | 2x- 3 \right \ | -9=5 \ \ \ \ \ \ | \ \ +9

 2 \cdot \left \ | 2x- 3 \right \ | =5 +9

 2 \cdot \left \ | 2x- 3 \right \ | =14 \ \ \ \ \ \ | \ \ :2

 \left \ | 2x- 3 \right \ | =14 \ \ \ :\ \ \ 2

 \left \ | 2x- 3 \right \ | = 7

Egalăm pe rând valoarea din modul cu 7 și cu -7.

 \left \ | 2x- 3 \right \ | = 7\Rightarrow 2\cdot x-3=-7 \ \ \ | \ \ \ +3\Rightarrow 2\cdot x=-4 \ \ \ | \ \ \ : \ \ \ \ 2 \Rightarrow x=-2

 \left \ | 2x- 3 \right \ | = 7\Rightarrow 2\cdot x-3=7 \ \ \ | \ \ \ +3  \Rightarrow 2\cdot x=10 \ \ \ | \ \ \ : \ \ \ \ 2 \Rightarrow x=5

x\in \left \{ -2\ \ \ ;\ \ \ 5 \right \}

Exercițiul 3 :  Rezolvați în mulțimea numerelor întregi inecuațiile:

a) \left \| x \right \|\leq 5

b) \left \| x-6 \right \|\ \ \ \lt \ \ \ 3

c) 29- 3\cdot \left \| 2x-7 \right \| \geq -4

Rezolvare: 

a) \left \| x \right \|\leq 5 \Rightarrow -5 \leq x\leq 5 \Rightarrow x\in \left \{ -5\ ;\ \ \ -4\ ; \ \ \ -3;\ -2;\ -1;\ \ \ \ 0;\ \ \ \ 1;\ \ \ \ 2;\ \ \ 3;\ \ \ \ 4;\ \ \ \ 5 \right \}

b) \left \| x-6 \right \|\ \ \ \lt \ \ \ 3 \Rightarrow -3\ \ \ \ \lt \ \ \ \ x-6\ \ \ \ \lt \ \ \ \3\ \ \ \ | \ \ \ +6\Rightarrow -3+6\ \ \ \ \lt \ \ \ \ x\ \ \ \ \lt \ \ \ \3+6\ \  \Rightarrow 3\ \ \ \ \lt \ \ \ \ x\ \ \ \ \lt \ \ \ \9\ \\Rightarrow x\in \left \{ 4 \ ;\ \ \ \5\ ;\ \ \ \6\ ;\ \ \ \7\ ;\ \ \ \8 \right \}

c) 29-3\cdot \left \ | 2x-7 \right \ | \geq -4\ \ \ | \ \ \ -29

-3\cdot \left \ | 2x-7 \right \ | \geq -4-29

-3\cdot \left \ | 2x-7 \right \ | \geq -33 \ \ \ | \ \ \ \ :(-3)

În momentul în care înmulțim o inecuație cu un număr negativ se schimbă semnul. Astfel obținem:

\left \ | 2x-7 \right \ | \leq -33 \ \ \ \ :\ \ \ (-3)

\left \ | 2x-7 \right \ | \leq 11  \Rightarrow -11\leq 2x-7 \leq 11 \ \ \ | \ \ \ +7 \Rightarrow -11+7 \leq \ \ \ 2x \leq \ \ \ \ 11+7  \Rightarrow -4 \leq \ \ \ 2x \leq \ \ \ \ 18 \ \ \ | \ \ \ :\ \ 2  \Rightarrow -4\ \ \ :\ \ \ 2 \leq \ \ \ x \leq \ \ \ \ 18 \ \ \ :\ \ 2\Rightarrow - 2 \leq \ \ \ x \leq \ \ \ \ 9

\Rightarrow x\in \left \{ -2 \ ;\ \ \ \ -1\ ;\ \ \ \ 0 \ ;\ \ \ \ 1 \ ;\ \ 2 \ \ ;\ \ \ 3 \ ;\ \ \ \ 4\ ;\ \ \ \ 5\ ;\ \ \ \ 6\ ;\ \ \ \ 7\ ;\ \ \ \ 8\ ;\ \ \ \ 9\ \right \}

 

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Leave a Reply

Your email address will not be published.