Archive of ‘Uncategorized’ category

Pătratul unui număr natural

Clasa a V-aDragul meu părinte bine te-am regăsit! In articolul de azi vreau să îţi vorbesc despre “Pătratul unui număr natural”. În articolele anterioare am vorbit despre “Ridicarea la putere a unui număr natural” şi “ Regulile de calcul cu puteri”. Azi vom studia “Pătratele perfecte” .

(more…)

Să analizăm următorul sir de pătrate:

patrate-perfecte

  • Definiţie: Un număr obţinut prin ridicarea la puterea a doua aunui număr natural se numeşte pătrat perfect.

Exemple:     81=9 ^{2} putem spune că 81 este pătrat perfect

  • Observaţie: Pentru a arăta că un număr nu este pătrat perfect este suficient să arătăm că numărul este cuprin între două pătrate perfecte.

Exemplu: 115 nu este pătrat perfect pentru că 10 ^{2}=100 \lt 115 \lt121=11 ^{2}

Să analizăm următorul tabel:

patrat-perfect

  • Observăm că ultima cifră a unui pătrat perfect poate fi: 0,1, 4,5,  6 sau 9.
  • Numerele care au ultima cifră 2, 3, 7 sau 8 nu pot fi pătrate perfecte.
  • Observaţie: Nu întotdeauna numerele care au ultima cifră 0; 1; 4; 5; 6 sau 9  sunt pătrate perfecte
  • Exemplu: 10, 11, 15, 26 sau 39 nu sunt pătrate perfecte.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la formulele de calcul prescurtat

Clasa a VIII-aBine te-am regăsit dragul meu părinte. În articolul anterior ţi-am prezentat “Formulele de Calcul Prescurtat” pentru numere reale.

Dragul meu părinte, ţi-am spus că aceste formule sunt foarte importante deoarece le vom folosi în Operaţiile cu rapoarte? Aceste rapoarte de numere compun un exerciţiu care se dă şi la examenul de capacitate. (Cel puţin în anul anterior  Examenul de Evaluare Naţională 2016 a avut un exerciţiu cu rapoarte).

(more…)

EXERCIŢIUL 1:  Folosind formula pentru pătratul sumei sau diferenţei a doi termeni, calculaţi:

  • a)       (x+1) ^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=x şi b=+1. Aplicând formula obţinem:

 (x+1)^{2}=x^{2}+2\cdot x\cdot (+1)+(+1)^{2}

 (x+1)^{2}=x^{2}+2 x+1

  •     b)  (x - 2)^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=x şi b=-2. Aplicând formula obţinem:

 (x - 2)^{2}=x^{2}-2\cdot x\cdot 2 +(-2)^{2}

 (x - 2)^{2}=x^{2}-4 x +4

  • c)  (2x+\sqrt{3})^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=2x şi b=\sqrt{3}. Aplicând formula obţinem:

 (2x+\sqrt{3})^{2}=(2x)^{2}+2\cdot 2x\cdot\sqrt{3}+(\sqrt{3})^{2}

 (2x+\sqrt{3})^{2}=4x^{2}+4\sqrt{3} x+3

  • d)  (5x-\sqrt{2})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=5x şi b=\sqrt{2}. Aplicând formula obţinem:

 (5x-\sqrt{2})^{2}=(5x)^{2}-2\cdot 5x\cdot \sqrt{2}+(\sqrt{2})^{2}

 (5x-\sqrt{2})^{2}=25x^{2}-10 \sqrt{2}x+2

  • e) (\frac{2}{3}x+\frac{1}{3})^{2}=

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru:  a=\frac{2}{3}x şi  b=\frac{1}{3} . Aplicând formula obţinem:

 (\frac{2}{3}x+\frac{1}{3})^{2}=(\frac{2}{3}x)^{2}+2\cdot \frac{2}{3}x\cdot \frac{1}{3}+(\frac{1}{3})^{2}

 (\frac{2}{3}x+\frac{1}{3})^{2}=\frac{4}{9}x^{2}+ \frac{4}{9}x +\frac{1}{9}

  • f) (\frac{2}{7}x-\frac{7}{4})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru:  a=\frac{2}{7}x şi  b=\frac{7}{4}. Aplicând formula obţinem:

 (\frac{2}{7}x-\frac{7}{4})^{2}=(\frac{2}{7}x)^{2}-2\cdot \frac{2}{7}x\cdot \frac{7}{4}+(\frac{7}{4})^{2}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-\frac{28}{28}x+\frac{49}{16}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-x+\frac{49}{16}

f)  (x+7)(x-7)

Aplicăm formula de calcul prescurtat:  (a+b)(a-b)= a^{2}-b^{2}

În cazul exerciţiului  nostru: a=x şi b=7. Aplicând formula obţinem:

 (x+7)(x-7)= x^{2}-7^{2}

 (x+7)(x-7)= x^{2}-49

EXERCIŢIUL 2:  Efectuaşi calculele :

  •  a)  (x+2)^{2}+ (x-1)^{2}

Aplicând formulele de calcul prescurtat obţinem:

 (x+2)^{2}+ (x-1)^{2}=x^{2}+2\cdot x\cdot 2+ 2^{2}+x^{2}-2\cdot x\cdot 1+1^{2}= aplicatii-formule-de-calcul-prescurtat-ex-2

  •  b) (x-\sqrt{2}) ^{2}-(\sqrt{2}x+1) ^{2}

Aplicând formulele de calcul prescurtat obţinem:

aplicatii-formule-de-calcul-prescurtat-ex-2-pct-b

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Formulele de calcul prescurtat

Clasa a VIII-aDragul meu părinte, bine te-am regăsit. În articolul anterior ţi-am explicat  cum facem “Operaţii între numerele reale  reprezentate prin litere”. Am explicat pas cu pas cum facem “Adunarea şi scăderea numerelor reale reprezentate prin litere” , dar şi Înmulţirea, Împărţirea, ridicarea la puterea a numerelor reale reprezentate prin litere” . În articolul de azi vreau să îţi prezint formulele de calcul prescurtat pentru numere reale.

(more…)

Aceste formule sunt foarte importante deoarece le vom folosi în Operaţiile cu rapoarte. Aceste rapoarte compun un exerciţiu care se dă şi la examenul de capacitate. (Cel puţin în anul anterior  Examenul de Evaluare Naţională 2016 a avut un exerciţiu cu rapoarte).

Avem următoarele formule:

 (a+b)^{2}=a^{2}+2\cdot a\cdot b+b^{2}

 (a-b)^{2}=a^{2}-2\cdot a\cdot b+b^{2}

 a^{2}-b^{2}=(a- b)(a+b)

 (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2\cdot a\cdot b+2\cdot a\cdot c+2\cdot b\cdot c

 (a-b+c)^{2}=a^{2}+b^{2}+c^{2}-2\cdot a\cdot b+2\cdot a\cdot c-2\cdot b\cdot c

 (a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2\cdot a\cdot b-2\cdot a\cdot c-2\cdot b\cdot c

 (a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2\cdot a\cdot b-2\cdot a\cdot c+2\cdot b\cdot c

 (a+b)^{3}=a^{3}+3\cdot a^{2}\cdot b+3\cdot a\cdot b^{2}+b^{3}

 (a-b)^{3}=a^{3}-3\cdot a^{2}\cdot b+3\cdot a\cdot b^{2}-b^{3}

a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})

a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})

Acestea  sunt cele mai importante şi uzuale formule de calcul prescurtat pentru numerele reale. În curând voi reveni şi cu un articol cu Aplicaţii la formulele de calcul prescurtat în care voi prezenta câteva exerciţii cu un grad de dificultate diferit.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

Exerciții Rezolvate la “Operaţii cu Numere Reale Reprezentate prin Litere”

Clasa a VIII-aDragul meu părinte bine te-am regăsit! Săptămâna aceasta ti-am prezentat în două articole “adunarea şi scăderea numerelor reale reprezentate prin litere”  şi “înmulţirea, împărţirea şi ridicarea la putere a numerelor reale reprezentate prin litere” , azi te invit să efectuăm împreună cateva exerciţii cu numere reale reprezentate prin litere.

(more…)

EXERCIŢIUL 1: Calculaţi:

a) x ^{2} y ^{2}\cdot (-2 y z ^{2})=

Înmulţim coeficientii între ei iar la partea literală scriem literele o singură dată şi adunăm exponenţii.

x ^{2} y ^{2}\cdot (-2 y z ^{2})=1\cdot (-2) x ^{2+0} y ^{2+1}z ^{0+2}=-2 x ^{2} y ^{3}z ^{2}

b)  \sqrt{3}x\cdot (-\sqrt{12}xy)=

Înmulţim coeficientii între ei  iar la partea literală scriem literele o singură dată şi adunăm exponenţii.

 \sqrt{3}x\cdot (-\sqrt{12}xy)=\sqrt{3}\cdot (-\sqrt{12})x^{1+1}y^{0+1}==(-\sqrt{3\cdot12})x^{2}y^{1}=(-\sqrt{36})x^{2}y^{1}=-6x^{2}y^{1}

c)  \frac{1}{2}xy \cdot 1\frac{1}{3}x^{2}y=

Mai întâi introducem întregul în fracţie la termenul al doilea, după care înmulţim coeficienţii între ei (fracţiile),  iar la partea literală scriem literele o singură dată şi adunăm exponenţii.

 \frac{1}{2}xy \cdot 1\frac{1}{3}x^{2}y=\frac{1}{2}xy \cdot \frac{1\cdot3+1}{3}x^{2}y=\frac{1}{2}\cdot\frac{4}{3} x^{1+2}y^{1+1}=\frac{4}{6} x^{3}y^{2}=\frac{2}{3} x^{3}y^{2}

d) 54 a^{3} b^{3}: (-6a^{2} b)=

Împărţim coeficienţii între ei, iar la partea literală scriem literele o singură dată şi scădem exponenţii.

54 a^{3} b^{3}: (-6a^{2} b)=54 :(-6) a^{3-2} b^{3-1}=(-9) a b^{2}

e)  -35x^{3}y z^{3} :(-7x^{2}y z)=

Împărţim coeficienţii între ei, iar la partea literală scriem literele o singură dată şi scădem exponenţii.

 -35x^{3}y z^{3} :(-7x^{2}y z)=-35:(-7)x^{3-2}y^{1-1} z^{3-1}=5x^{1}y^{0} z^{2}=5x z^{2}

f) \sqrt{27} x^{5}y ^{2}:(-\sqrt{3} x^{3})=

Împărţim coeficienţii între ei (radicalii), iar la partea literală scriem literele o singură dată şi scădem exponenţii.

\sqrt{27} x^{5}y ^{2}:(-\sqrt{3} x^{3})=\sqrt{27}:(-\sqrt{3}) x^{5-3}y ^{2-0}}=-\sqrt{27:3}x^{2}y ^{2}}=-\sqrt{9}x^{2}y ^{2}}=-3x^{2}y ^{2}}

g) (-1\frac{1}{2}a ^{3} b^{3}):(-1\frac{1}{3}a ^{3} b^{2})=

Mai întâi introducem întregul în fracţie în cei doi termeni, după care împărţim coeficienţii între ei (fracţiile),  iar la partea literală scriem literele o singură dată şi scădem exponenţii.

(-1\frac{1}{2}a ^{3} b^{3}):(-1\frac{1}{3}a ^{3} b^{2})=(-\frac{1\cdot2+1}{2}a ^{3} b^{3}):(-\frac{1\cdot3+1}{3}a ^{3} b^{2})

=(-\frac{3}{2}a ^{3} b^{3}):(-\frac{4}{3}a ^{3} b^{2})=-\frac{3}{2}: (-\frac{4}{3})a ^{3-3} b^{3-2}=

=-\frac{3}{2}\cdot (-\frac{3}{4})a ^{3-3} b^{3-2}=\frac{3\cdot 3}{2\cdot 4}a ^{0} b^{1}=\frac{9}{8}b

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

Înmulţirea, împărţirea şi ridicarea la putere a numerelor reale reprezentate prin litere.

Clasa a VIII-aBine te-am regăsit dragul meu părinte. În articolul pe care l-am postat ieri pe blog am vorbit despre “adunarea şi scăderea numerelor reale reprezentate prin litere”.

În articolul de azi am să îţi vorbesc despre înmulţirea, împărţirea şi ridicarea la putere a numerelor reale reprezentate prin litere.

(more…)

Observaţie:Prin “Inmulţirea a două numere reale reprezentate prin litere” (nu neapărat termeni asemenea)  se obţine un termen nou care are coeficientul egal cu produsul coeficienţilor termenilor daţi, iar partea literală este formată din toate literele luate o singură dată, iar ca exponent fiecare literă va avea suma exponenţilor pe care  i-a avut în termenii daţi.

inmultirea-nr-reale-reprezentate-prin-litere

Observaţie: Prin “Împărţirea a două numere reale reprezentate prin litere” (nu neapărat termeni asemenea)  se obţine un termen nou care are coeficientul egal cu câtul coeficienţilor termenilor daţi, iar partea literală este formată din toate literele luate o singură dată, iar ca exponent fiecare literă va avea diferenţa exponenţilor pe care  i-a avut în termenii daţi.

impartirea-nr-reale-reprezentate-prin-litere

Observaţie: Prin “Ridicarea la puterea întreagă a unui număr real reprezentat prin litere”   se obţine un termen nou care are coeficientul egal cu puterea întreagă a coeficienţului iniţial, iar partea literală este formată din aceleaşi litere ca ale temenului iniţial, fiecare literă având exponent egal cu produsul dintre exponentul iniţial şi puterea la care s-a ridicat numărul real reprezentat prin literă.

ridicarea-la-putere-a-nr-reale

Observaţie: 

  • Operaţiile de adunare, scădere, înmulţire, împărţire şi ridicare la putere a expresiilor algebrice îşi pastrează aceleaşi reguli şi proprietăţi ca la numere reale.
  • La înmulţirea unui factor cu o paranteză (proprietatea de distributivitate a înmulţirii faţă de adunare şi scădere) înmulţim factorul din faţa parantezei cu fiecare termen din paranteză.
  • La înmulţirea a două paranteze înmulţim fiecare termen din prima paranteză cu fiecare termen din cea de-a doua paranteză, iar la final reducem termenii asemenea.
  • La împărţirea unei paranteze cu un factor împărţim fiecare termen din paranteză la factor, dacă operaţia de împărţire este posibilă, dacă nu scriem termenii ca fracţie.

inmultirea-si-impartirea-numerelor-reprezentate-prin-litereimpartirea-unei-paranteze-la-un-factor

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

Operaţii cu numere reale reprezentate prin litere.Adunarea şi Scăderea numerelor reprezentate prin litere.

Clasa a VIII-aDragul meu părinte bine te-am regăsit! În cel de-al doilea capitol de algebră în clasa a VIII-a se studiază “Calcule cu numere reale reprezentate prin litere”, iar prima lecţie din acest capitol este de “Operaţii cu numere reale reprezentate prin litere”. Totuşi copilul tău nu este străin de acest tip de calcul al numerelor reprezentate prin litere, ele au mai fost studiate şi în clasele anterioare doar ca în acest capitol aplicăm aceste informaţii pe “mulţimea numerelor reale”

  • Definiţie:Se numeşte expresie algebrică o succesiune de numere şi sau litere legate între ele prin operaţii aritmetice (adunare, scădere, înmulţire, împărţire, ridicare la putere).

Observaţii:

Expresia algebrică obţinută prin înmulţirea unui număr cu o literă se numeşte “termen al expresiei algebrice”.

  • Exemplu: 7\cdot x, 4x, 2\cdot\sqrt{3}\cdot x, 3\cdot\sqrt{5}\cdot x - 9z ^{3}.

Numărul care apare în scrierea unui termen se numeşte “coeficientul termenului”.

Literele care intră în componenţa unui termen alcătuiesc “partea literală”.

exemplu-nr-reprezentate-prin-litereObservaţie: Cu numerele reale reprezentate prin litere se pot efectua  operaţii de:
adunare, scădere, înmulţire, împărţire, ridicare la putere, ele având aceleşi proprietăţi ca şi la numere reale.

Adunarea şi Scăderea numerelor reprezentate prin litere.

Definiţie:Se numesc termeni asemenea acei termeni care conţin aceeaşi parte literală la acelaşi exponent.

termeni-asemenea-nr-reale

 

  • Adunarea şi scăderea cu termeni asemenea se numeşte “operaţia de reducere a termenilor asemenea”.
  • “Operaţia de reducere a termenilor asemenea” este operaţia prin care se obţine un termen asemenea celor doi, iar coeficientul noului termen este obţinut prin efectuarea operaţiei indicate asupra celor doi termeni asemenea.
  • “Forma canonică”  este expresia algebrică care nu conţine termeni asemenea

forma-canonica-buna

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

Exerciții rezolvate la numere reale!

Clasa a VIII-aBine te-am regăsit dragul meu părinte! În articolul pe care l-am publicat luni pe blog am rezolvat trei exerciţii la lecţia mulţimea numerelor reale. Astăzi revin cu un nou articol în care mai explic pas cu pas doua exemple de exerciţii cu un grad de dificultate mai ridicat pentru a veni în ajutorul tău şi al copilului tău.

 

(more…)

EXERCIŢIUL 1: Determinaţi elementele mulţimilor:

A=\left \{ x\epsilon N|  \frac{15}{2x+1}\epsilon N \} şi B=\left \{ x\epsilon Z| \frac{3x+9}{2x-3}\epsilon Z \}.

Rezolvare: Să aflăm întâi mulţimea A.

A=\left \{ x\epsilon N|  \frac{15}{2x+1}\epsilon N \}

Exerciţiul îmi cere să găsesc toate valorile numere naturale care îndeplinesc condiţia: \frac{15}{2x+1}\epsilon N \Rightarrow2x+1 \epsilon D_{{15}}.

Numitorul 2x+1 trebuie să aparţină mulţimii divizorilor lui 15, deoarece împărţirea 15 la 2x+1 trebuie să fie o împărţire exactă, astfel încât rezultatul să aparţină mulţimii numerelor naturale.

 D_{{15}}=\left \{ 1,3,5,15 \right \}

2x+1=1 | -1 \Rightarrow 2x=1-1 \Rightarrow2x=0| :2 \Rightarrow x=0

2x+1=3 | -1 \Rightarrow 2x=3 -1 \Rightarrow 2x=2 | :2 \Rightarrow x=1

2x+1=5 | -1 \Rightarrow 2x=5 -1 \Rightarrow 2x=4 | :2 \Rightarrow x=2

2x+1=15 | -1 \Rightarrow 2x=15 -1 \Rightarrow 2x=14 | :2 \Rightarrow x=7

Soluţie :x \epsilon \left \{ 0, 1,2,7\right \}.

  • Determinăm şi mulţimea B=\left \{ x\epsilon Z| \frac{3x+9}{2x-3}\epsilon Z \}.

La această mulţime trebuie să prelucrăm numărătorul în funcţie de numitor, astfel încât să găsim  mulţimea divizorilor unui număr întreg.

\frac{3x+9}{2x-3}\epsilon Z \Rightarrow\frac{6x+18}{2x-3}\epsilon Z \Rightarrow\frac{6x-9+27}{2x-3}\epsilon Z \Rightarrow\frac{3(2x-3)}{2x-3}+\frac{27}{2x-3}\epsilon Z \Rightarrow3+\frac{27}{2x-3}\epsilon Z

Deoarece 3\epsilon Z ,  este suficient să demonstrez că \frac{27}{2x-3}\epsilon Z \Rightarrow{2x-3}\epsilon D_{27}

Deoarece sunt pe multimea Z, \Rightarrow D_{27}=\left \{ \pm1, \pm3,\pm9, \pm27 \right \}

2x-3=1| +3 \Rightarrow 2x=1+3 \Rightarrow 2x=4| :2 \Rightarrow x=2

2x-3=-1| +3 \Rightarrow 2x=-1+3 \Rightarrow 2x=2| :2 \Rightarrow x=1

2x-3=3| +3 \Rightarrow 2x=3+3 \Rightarrow 2x=6| :2 \Rightarrow x=3

 2x-3=-3| +3 \Rightarrow 2x=-3+3 \Rightarrow 2x=0 \Rightarrow x=0

 2x-3=9|+3 \Rightarrow 2x=9+3 \Rightarrow 2x=12| :2 \Rightarrow x=6 2x-3=-9|+3 \Rightarrow 2x=-9+3 \Rightarrow 2x=-6| :2 \Rightarrow x=-3

2x-3=27|+3 \Rightarrow 2x=27+3 \Rightarrow 2x=30| :2 \Rightarrow x=15

2x-3=-27|+3 \Rightarrow 2x=-27+3 \Rightarrow 2x=-24| :2 \Rightarrow x=-12

Soluţie : x\in \left \{ -12;-3;0;1;2;6;15 \right \}

 

EXERCIŢIUL 2: Determinaţi x\in Z pentru care \frac{\sqrt{7+4\sqrt{3}}+\sqrt{52-14\sqrt{3}}}{2x-1}\in Z

Rezolvare: Pentru a determina valorile pe care le poate lua x trebuie sa determinam numarătorul. Vom scrie cei doi radicali de la numărător cu ajutorul formulelor de calcul prescurtat ca un număr la puterea a doua.

Astfel vom scrie \sqrt{7+4\sqrt{3}}=\sqrt{(2+\sqrt{3})^2} , iar \sqrt{52-14\sqrt{3}}=\sqrt{(7-\sqrt{3})^2}.

Obţinem astfel: \frac{\sqrt{(2+\sqrt{3})^2}+\sqrt{(7-\sqrt{3})^2}}{2x-1}\in Z \Rightarrow\frac{\left \| 2+\sqrt{3} \right \|+\left \| 7-\sqrt{3} \right \|}{2x-1}\in Z

Considerăm \sqrt{3}\simeq 1,73 obţinem: 2+ 1,73 =3,73 şi 7-1,73 =5,27

Deoarece \left \| 2+\sqrt{3} \right \| şi \left \| 7-\sqrt{3} \right \| sunt numere pozitive, sunt mai mari decît 0,ambele numere  ies de sub modul cu sumnul +, adica 2+\sqrt{3} şi 7-\sqrt{3}.

Obţinem astfel: \frac{ 2+\sqrt{3} +7-\sqrt{3} }{2x-1}\in Z \Rightarrow\frac{ 2 +7 }{2x-1}\in Z \Rightarrow\frac{ 9 }{2x-1}\in Z \Rightarrow2x-1\in D_{9} .

D_{9} =\left \{ \pm1;\pm3;\pm9 \right \}.

 

2x-1=1| +1 \Rightarrow 2x=1 +1 \Rightarrow 2x=2| :2 \Rightarrow x=1
2x-1=-1| +1 \Rightarrow 2x=-1 +1 \Rightarrow 2x=0| :2 \Rightarrow x=0

2x-1=3| +1 \Rightarrow 2x=3 +1 \Rightarrow 2x=4| :2 \Rightarrow x=2

2x-1=-3| +1 \Rightarrow 2x=-3 +1 \Rightarrow 2x=-2| :2 \Rightarrow x=-1

2x-1=9| +1 \Rightarrow 2x=9 +1 \Rightarrow 2x=10| :2 \Rightarrow x=5 2x-1=-9| +1 \Rightarrow 2x=-9 +1 \Rightarrow 2x=-8| :2 \Rightarrow x=-4

Soluţie: x\in \left \{ -4;-1; 0; 1; 2; 5 \right \}

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăti în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

Exerciții Rezolvate la Numere Reale

Clasa a VIII-a

Dragul meu părinte bine te-am regăsit!

În ultimul articol pe care l-am  postat am vorbit despre multimea numerelor reale. Astăzi te invit să rezolvăm împreună câteva aplicaţii la această lecţie. Unele exerciţii au un grad de dificultate mai scăzut, iar unele au grad de dificultate ridicat. De aceea o să le explic pas cu pas, pentru a veni în ajutorul tuturor celor care nu înţeleg foarte bine matematica.

(more…)

EXERCIŢIUL 1:Se dau următoarele fracţii: \frac{1}{2} , \frac{61}{37}\frac{2}{6}\frac{55}{1133}\frac{4}{21}\frac{3}{9}\frac{8}{15}\frac{14}{2\cdot7}\frac{85}{15}\frac{35}{56}\frac{19}{72}\frac{4\cdot3\cdot5}{60}

Determinaţi din şirul de fracţii de mai sus  fracţiile:

–  ireductibile; subunitare;supraunitare;echiumitare.

Rezolvare: Observăm că unele fracţii pot fi simplificate aşa că mai întâi vom aduce şirul la forma cea mai simplă simplificând fracţiile care permit această operaţie:

 \frac{2}{6}^{(2}=\frac{1}{3} \frac{55}{1133}^{(11}=\frac{5}{103} \frac{3}{9}^{(3}=\frac{1}{3};

 \frac{14}{2\cdot7}=\frac{14}{14}^{(14}=\frac{1}{1}=1;   \frac{85}{15}^{(5}=\frac{17}{3};   \frac{35}{56}^{(7}=\frac{5}{8} \frac{4\cdot3\cdot5}{60}=\frac{60}{60}^{(60}=1

Obţinem astfel şirul: \frac{1}{2} , \frac{61}{37} \frac{1}{3} \frac{5}{103}\frac{4}{21}, \frac{1}{3} , \frac{8}{15}1\frac{17}{3}\frac{5}{8}\frac{19}{72}1.

– fracţii ireductibile: (fracţii care nu se poate simplifica, numărătorul şi numitorul , sunt numere prime între ele):

\frac{1}{2} , \frac{61}{37}\frac{4}{21}, \frac{8}{15}\frac{19}{72}.

-fracţii subunitare: (fracţii care au numărătorul mai mic decât numitorul):

\frac{1}{2} \frac{2}{6}\frac{55}{1133}\frac{4}{21},\frac{3}{9} , \frac{8}{15}\frac{35}{56}\frac{19}{72}

 

– fracţii supraunitare: (fracţii care au numărătorul mai mare decât numitorul):

\frac{61}{37}; \frac{85}{15}

– fracţii echiunitare: (fracţii care au numărătorul egal cu numitorul):

\frac{14}{2\cdot7}; \frac{4\cdot3\cdot5}{60}.

EXERCIŢIUL 2: Amplificaţi fracţiile: \frac{7}{15}, \frac{3}{12}, \frac{5}{16}, \frac{3}{10}, \frac{11}{24} , astfel încât să aibă acelaşi numitor comun.

Rezolvare: Determinăm numitorul comun calculând c.m.m.m.c (cel mai mic multiplu comun) al numerelor de la numitor.

Pentru a determina c.m.m.m.c-ul numitorilor trebuie sa desfacem în factori primi numerele după care luăm toate numerele prime o singură dată la puterea cea mai mare.exercitiul-2-aplicatii-nr-reale

 

În concluzie putem scrie:

15= 3\cdot5

12= 2^{2}\cdot3

16= 2^{4}

10= 2\cdot5

24= 2 ^{3}\cdot3

c.m.m.m.c= 2 ^{4}\cdot3\cdot5=16\cdot3\cdot5=240.

Pentru a ştii cu cât amplific fiecare fracţie impart 240 la numitor:ex-2-nr-reale-impartiriObţin astfel următoarele fracţii:

ex-2-nr-reale-amplificarea

EXERCIŢIUL 3:Fie mulţimeaA= \left \{ (-2)^{2}\right \ ; (-3)^{-2} ; \sqrt{0,09} ; \sqrt{5\frac{5}{9}} ;  (-1)^{4}; \sqrt{18} ; \sqrt{1\frac{2}{25}} ; (-\frac{1}{{2}}) ^{-1}; \sqrt{5\frac{3}{9}}  \}.

Calculaţi:  A\bigcap_{}^{}N ; A\bigcap_{}^{}Z; A\bigcap_{}^{}Q; A\bigcap_{}^{}(Q\setminus Z); A\bigcap_{}^{}R; A\bigcap_{}^{}(R\setminus Q)

Rezolvare: Observăm că trebuie să rescriem mulţimea efectuând calculele:

(-2) ^{2}= 4

(-3) ^{-2}= \frac{1}{3 ^2}=\frac{1}{9}

\sqrt{0,09}= 0,3 =\frac{3}{10}

\sqrt{5\frac{5}{9}}= \sqrt{\frac{5\cdot9+5}{9}}}=\sqrt{\frac{50}{9}}}=\frac{5\sqrt2}{3}

 (-1)^{4}= 1

\sqrt{18}= \sqrt{9\cdot2}=3 \sqrt{2}

\sqrt{1\frac{2}{25}}= \sqrt{\frac{1\cdot25+2}{25}}}=\sqrt{\frac{27}{25}}}=\frac{3\sqrt3}{5}

(-\frac{1}{2}) ^{-1}=(-2)

\sqrt{5\frac{3}{9}}= \sqrt{\frac{5\cdot9+3}{9}}}=\sqrt{\frac{48}{9}}}=\frac{4\sqrt3}{3}

Obţinem astfel mulţimea: A= \left \{ 4;\frac{1}{9} ; \frac{3}{10} ; \frac{5\sqrt{2}}{3} ; 1; 3\sqrt{2} ; \frac{3\sqrt{3}}{5} ; (-2); \frac{4\sqrt{3}}{3} \}.

A\bigcap {N}= \left \{ 4;1 \right \}

A\bigcap {Z}= \left \{-2;1; 4 \right \}

A\bigcap {Q}= \left \{ 4; \frac{1}{{9}}; \frac{3}{10}; 1; (-2)  \}

A\bigcap(Q\setminus Z)= \left \{ \frac{1}{9};\frac{3}{10} \right \}

A\bigcap {R}= A

A\bigcap {(R\setminus Q)}= \left \{\frac{5\sqrt{2}}{3};3\sqrt{2};\frac{3\sqrt{3}}{5}; \frac{4\sqrt{3}}{3} \right \} .

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul să se pregătească şi să aibă numai note bune in  noul an şcolar.

Dacă ţi-a plăcut articolul te invit sa distribui acest material şi să inviţi şi alţi părinţi să viziteze acest blog!

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:mathmoreeasy@yahoo.com
De asemenea, te invit şi pe pagina de facebook a blogului:
https://www.facebook.com/MathMoreEasy

 

Mulţimi de numere reale.

Clasa a VIII-a

Dragul meu părinte, bine te-am regasăsit. Revin după o pauză cam lungă, cu un nou articol.
De data aceasta prima lecţie de algebră pentru clasa a VIII-a: “Mulţimi de numere reale”.

 

(more…)

 

  •  În clasa a V-a s-a studiat “Mulţimea numerelor Naturale” pe care am notat-o cu N={0,1,2,3,4,5,………, +∞}.
  • În clasa a VI-a s-a studiat Mulţimea Numerelor Întregi pe care am notat-o cu:  Z={-∞, ……., -2,-1,0,1,2,3,4,5,………, +∞}.
  • În clasa a VII-a s-a studiat Mulţimea Numerelor Raţionale pe care am notat-o cu: Q={\frac{a}{{b}} ∕ a \in Z, b \in Z*}.

 

  • Observaţie:– Mulţimea Numerelor Raţionale este stabilă în raport cu operaţiile de adunare, scădere, înmulţire şi împărţire, adică suma, diferenţa, înmulţirea şi împărţirea a două numere raţionale sunt tot numere raţionale.

 

Observaţie: Pentru orice număr rational nenul “q” , există o unică fracţie ireductibilă   \frac{a}{b} , cu a  \in Z, b  \in Z*  astfel încât q =\frac{a}{b} .

  • Un număr raţional poate fi reprezentat prin fractii ordinare echivalente sau printr-o fracţie zecimală finită sau periodică.

Exemplu:

  • Fracţie ordinară: \frac{5}{6}
  • Fracţie zecimală finită: 2,4
  • Fracţie zecimală periodică: 41,(6)

Mulţimea numerelor reale se notează cu R.
Mulţimea numerelor reale nenule se notează cu R*.

Mulţimea numerelor iraţionale se notează cu R\Q.

  • Observaţie:ℕ ⊂ℤ ⊂ ℚ ⊂ ℝ
  • Observaţie: Orice număr irational este reprezentat de o fracţie zecimală infinită şi neperiodică.
  • Observaţie: Reciproc, dacă un număr real este reprezentat de o fracţie zecimală infinită şi neperiodică, atunci numărul este irational.

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor. Cu mare drag şi mult respect Alina Nistor!

Test Initial Propus Şi Rezolvat

Clasa a V-aDragul meu părinte, bine te-am regasăsit . De ieri 15.09.2016 a început oficial anul şcolar 2016-2017.Urez pe această cale “Mult succes tuturor şcolarilor, părinţilor dar şi profesorilor”.

Cum bine ştim deja din experienţa anilor trecuţi, un nou an şcolar debutează cu recapitularea noţiunilor învăţate pe parcursul anului de studiu anterior şi cu un test iniţial. Având în vedere structura acestui an 2016-2017 (15 septembrie a picat joi), majoritatea elevilor vor susţine testul iniţial săptămâna viitoare.

Dragul meu părinte, m-am gândit să propun spre exersare un model de test iniţial  pentru  clasa a V-a rezolvat, pentru a venii în ajutorul părinţilor şi a copiilor care urmaresc blogul meu.Aşadar iată prima propunere un test iniţial rezolvat pentru clasa a V-a.

Test iniţial Anul Şcolar 2016-2017

  • Subiectul I:(Pentru fiecare răspuns corect completat se primeşte cu 0,5 puncte )

Completaţi spaţiile libere:

  1. Cel mai mic număr natural de trei cifre distincte este:  ….102….

Rezolvare: Numere distincte înseamnă numere diferite. Obţinem astfel numărul 102 drept cel mai mic număr natural de trei cifre distincte.

 

2. Diferenţa numerelor 1243 şi 756 este: ……487…………….

Rezolvare: Diferenţa numerelor înseamnă operaţia de scădere. Obţinem astfel numărul 1243-756= 487 .

3. Produsul numerelor 137 şi 125 este: ……17125……………

Rezolvare: Produsul numerelor înseamnă operaţia de înmulţire. Obţinem astfel numărul 137\cdot125= 17125 .

4. Numărul cu 1325 mai mare decât 23 este: ……1348……………

Rezolvare: Facem operatie de adunare 1325+23=1348 .

5. Valoarea fracţiei \frac{3}{8} din 64 este: …24………….

Rezolvare: Pentru a calcula valoarea unei fracţii dintr-un număr împărţim pe 64 cu numitorul 8 si înmulţim cu numărătorul 3  .Obţinem astfel (64 : 8) \cdot 3= 8 \cdot 3 = 24

Subiectul II: (Pentru fiecare răspuns corect completat se primeşte cu 0,5 puncte )

Alege răspunsul corect:

  1. Numărul care împărţit la 7 dă câtul 10 şi restul 3 este :

a)    66;     b) 76;    c) 63;    d) 73.

Rezolvare: Aplicăm teorema împărţirii cu rest care îmi spune

deîmpărţitul=împărţitorul \cdot cîtul +restul

În cayul nostru deîmpărţitul = 7 \cdot 10 + 3 = 70+3 = 73

Răspuns corect punctul d)

 

  1. Ştiind că a=7 şi b=3 atunci 2a+3b este egal cu:

a)    27;     b) 23;    c) 5;    d) 15.

Rezolvare : Înlocuim “a” şi “b” şi obţinem : 2a+3b= 2 \cdot 7 + 3 \cdot 3=14 + 9 = 23

  1. Cel mai mic număr care se poate forma din numerele 7, 3 şi 2 este numărul:

a)    237;     b) 273;    c) 732;    d) 327.

Rezolvare : Numerele pe care le putem forma cu cele trei numere sunt: 732, 723, 372, 327, 273, 237. Observăm ca cel mai mic număr este 237.

  1. Perimetrul unui dreptunghi care are lungimea egală cu 25cm  şi lăţimea egală cu 10cm este egal cu:

a)    50cm;     b) 20cm;    c) 70cm;    d) 250cm.

Rezolvare : Ştim că perimetrul unei figuri geometrice este egal cu suma tuturor laturilor. Mai ştim deasemenea că dreptunghiul are 2 lungimi şi 2 lăţimi.

P = 2\cdotL+2\cdotl = 2\cdot25cm+2\cdot10cm = 50cm + 20 cm= 70 cm

  1. Succesorul numărului 5399 este:

a)    5398;     b) 5400;    c) 5300;    d) 5310.

Rezolvare : Ştim că predecesorul ete numărul dinaintea lui 5399 adică 5398, iar succesorul este primul număr după , adica 5400.

Subiectul III: (Pentru fiecare rezolvare corectă se obţine 1 punct).

   Calculaţi respectând ordinea efectuării operaţiilor:

  1. (320 : 8 + 44) – 18×3 =

Rezolvare : Întâi facem operaţiile din paranteză:

(320 : 8 + 44) – 18×3 = (40 + 44) – 54 = 84 – 54 = 30

2.   2 + 10 x [ 632 + 10 x (14 +14 :7)]=

Rezolvare : Facem operaţiile din paranteza rotundă întâi împărţirea apoi adunarea restul exerciţiului îl copiem aşa cum este scris:

2 + 10 x [ 632 + 10 x (14 +14 :7)]=2 + 10 x [ 632 + 10 x (14 +2)]

=2 + 10 x ( 632 + 10 x16)= 2 + 10 x ( 632 + 160)= 2 + 10 x 792 = 2 + 7920 =7922.

Subiectul IV: (Pentru rezolvarea corectă se obţine cu 2 puncte)

În trei lăzi sunt 480 mere. În lada a doua sunt de 3 ori mai multe mere decât în prima, iar în a treia de 2 ori mai multe decât în a doua. Câte mere sunt în fiecare ladă?

Rezolvare : Este o problemă care se rezolvă cu ajutorul metodei grafice.

test-initial-cls-v-pb-sub-4Observăm că avem 10 segmente în figura de mai sus.

Împărţim 480 la 10 şi obţinem astfel numărul de mere din prima ladă.

480 : 10 = 48 (mere în prima ladă)

48 \cdot 3 = 144 (mere în a doua ladă)

144 \cdot 2 = 288 (mere în a treia ladă)

Probă : 48 + 144 + 288 = 480 (mere în total)

Observatie: Se acordă un punct din oficiu.

Timp estimative: 50 min.

  • Succes tuturor copiilor şi să obţineţi note mari! 
Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul să se pregătească şi să aibă numai note bune in  noul an şcolar.

Dacă ţi-a plăcut articolul te invit sa distribui acest material şi să inviţi şi alţi părinţi să viziteze acest blog!

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:mathmoreeasy@yahoo.com
De asemenea, te invit şi pe pagina de facebook a blogului:
https://www.facebook.com/MathMoreEasy

 

1 2 3 4