Archive of ‘Calcul Algebric’ category

Exerciții rezolvate la Formulele de Calcul Prescurtat

“Invata tot ce poti, in orice moment disponibil, de la oricine si intotdeuna va veni o vreme cand te vei simti recompensat pentru ceea ce ai invatat.”
Sarah Caldwel

Bine te-am regăsit dragul meu părinte. Azi te invit să efectuăm  împreună câteva exerciții la formulele de calcul prescurtat.

(more…)

EXERCIŢIUL 1: Efectuați, folosind formula de calcul prescurtat: 

  • a)       (2x+1) ^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=2x şi b=+1. Aplicând formula obţinem:

 (2x+1)^{2}=(2x)^{2}+2\cdot 2x\cdot (+1)+(+1)^{2}

 (2x+1)^{2}=4x^{2}+4 x+1

  •     b)  (4x - 7y)^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=4x şi b=7y . Aplicând formula obţinem:

 (4x - 7y)^{2}=(4x)^{2}-2\cdot 4x\cdot 7y +(7y)^{2}

 

 (4x - 7y)^{2}=16x^{2}-56xy +49y^{2}

  • c)  (2x+\sqrt{3})^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=2x şi b=\sqrt{3}. Aplicând formula obţinem:

 (2x+\sqrt{3})^{2}=(2x)^{2}+2\cdot 2x\cdot\sqrt{3}+(\sqrt{3})^{2}

 (2x+\sqrt{3})^{2}=4x^{2}+4\sqrt{3} x+3

  • d)  (5x-\sqrt{2})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=5x şi b=\sqrt{2}. Aplicând formula obţinem:

 (5x-\sqrt{2})^{2}=(5x)^{2}-2\cdot 5x\cdot \sqrt{2}+(\sqrt{2})^{2}

 (5x-\sqrt{2})^{2}=25x^{2}-10 \sqrt{2}x+2

  • e) (\frac{2}{3}x+\frac{1}{3})^{2}=

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru:  a=\frac{2}{3}x şi  b=\frac{1}{3} . Aplicând formula obţinem:

 (\frac{2}{3}x+\frac{1}{3})^{2}=(\frac{2}{3}x)^{2}+2\cdot \frac{2}{3}x\cdot \frac{1}{3}+(\frac{1}{3})^{2}

 (\frac{2}{3}x+\frac{1}{3})^{2}=\frac{4}{9}x^{2}+ \frac{4}{9}x +\frac{1}{9}

  • f) (\frac{2}{7}x-\frac{7}{4})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru:  a=\frac{2}{7}x şi  b=\frac{7}{4}. Aplicând formula obţinem:

 (\frac{2}{7}x-\frac{7}{4})^{2}=(\frac{2}{7}x)^{2}-2\cdot \frac{2}{7}x\cdot \frac{7}{4}+(\frac{7}{4})^{2}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-\frac{28}{28}x+\frac{49}{16}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-x+\frac{49}{16}

f)  (x+9)(x-9)

Aplicăm formula de calcul prescurtat:  (a+b)(a-b)= a^{2}-b^{2}

În cazul exerciţiului  nostru: a=x şi b=9. Aplicând formula obţinem:

 (x+9)(x-9)= x^{2}-9^{2}

 (x+9)(x-9)= x^{2}-81

EXERCIŢIUL 2:  Efectuaşi calculele :

  •  a)  (x+2)^{2}+ (x-1)^{2}

Aplicând formulele de calcul prescurtat obţinem:

 (x+2)^{2}+ (x-1)^{2}=x^{2}+2\cdot x\cdot 2+ 2^{2}+x^{2}-2\cdot x\cdot 1+1^{2}= aplicatii-formule-de-calcul-prescurtat-ex-2

  •  b) (2\sqrt{2}-3\sqrt{3}) ^{2}-2(\sqrt{3}+3\sqrt{2}) ^{2}

Aplicând formulele de calcul prescurtat obţinem:

 [(2\sqrt{2})^{2}-2\cdot 2\sqrt{2}\cdot 3\sqrt{3}+(3\sqrt{3})^{2}]-2[(\sqrt{3})^{2}+2\cdot \sqrt{3}\cdot 3\sqrt{2}+(3\sqrt{2})^{2}] =

 (4\cdot 2-12\sqrt{2\cdot3}+9\cdot 3)-2(3+6 \sqrt{2\cdot3}+9\cdot2)=

 8-12\sqrt{6}+27-6+12 \sqrt{6}-36=

 8+27-6+12 -36=5

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!