august 2018 archive

Exerciții rezolvate la Cel Mai Mare Divizor Comun (c.m.m.d.c)

„Dacă oamenii ar învăța să meargă și să vorbească așa cum sunt învățați să scrie și să citească, toată lumea ar șchiopăta și s-ar bâlbâi.”
Mark Twain
Dragul meu părinte bine te-am regăsit!
Azi îți propun să rezolvăm și să explicăm pas cu pas câteva exerciții  la cel mai mare divisor comun (c.m.m.d.c).

(mai mult…)

Exercițiul 1: Aflați cel mai mare divizor comun al următoarelor numere:

a) 24,\ \ \ \ 12, \ \ \ 18

b) 28,\ \ \ \ 147, \ \ \ 63

c) 120,\ \ \ \ 240, \ \ \ 360

d) 121,\ \ \ \ 330, \ \ \ 49

Rezolvare: Pentru a putea determina c.m.m.d.c-ul numerelor mai întâi le descompunem în factori primi și apoi le scriem ca produs de puteri. 

  • a) 24,\ \ \ \ 12, \ \ \ 18

24=2^3\cdot 3

12=2^2\cdot 3

18=2\cdot 3^2

(24,12,18)=2\cdot 3=6

Cel mai mare divizor comun este produsul factorilor comuni luați o singură dată la puterea cea mai mică. 

Analizând descompunerile observăm că 2 și 3 se repeată în toate cele 3 descompuneri asa că îi considerăm factori comuni, iar cea mai mica putere este 1. 

b) 28,\ \ \ \ 147, \ \ \ 63

28=2^2 \cdot 7

147=3 \cdot 7^2

63=3^2 \cdot 7

(28, 147, 63)=7

c) 120,\ \ \ \ 240, \ \ \ 360

120=2^3\cdot 3\cdot 5

240=2^4\cdot 3\cdot 5

360=2^3\cdot 3^2\cdot 5

(120, 240, 360)= 2^3 \cdot 3\cdot 5= 8\cdot 3\cdot 5=120

d) 121,\ \ \ \ 330, \ \ \ 49

121=11^2

330=2\cdot 3\cdot 5\cdot 11

49=7^2

(121, 330, 49)= 1

  • Observăm că nu avem factori comuni așa că c.m.m.d.c-ul este 1.

Exercițiul 2: Determinați 5 numere naturale care divid simultan următoarele numere: 1260, 3780, 6300.

Rezolvare:  Descompunem în factori primi numerele.

1260= 2^2\cdot 3^2\cdot5\cdot 7

3780= 2^2\cdot 3^3\cdot5\cdot 7

6300= 2^2\cdot 3^3\cdot5^2\cdot 7

(1260, 3780, 6300)= 2^2\cdot 3^2\cdot 5\cdot 7==4\cdot 9\cdot 5\cdot 7= 36\cdot 5\cdot 7=180\cdot 7=1260

Toate numerele formate din factorii c.m.m.d.c-ului mai mici decat 1260 vor divide cele trei numere.

Formam astfel 5 numere naturale:

2^2\cdot 5=4\cdot 5=20  \Rightarrow 20 \ \ \ \vdots \ \ \ 1260\ \ \ ;\ \ \ 20 \ \ \ \vdots \ \ \ 3780\ \ \ ; \ \ \ \ 20 \ \ \ \vdots \ \ \ 6300\ \ \

2^2\cdot 7=4\cdot 7=28 \Rightarrow 28 \ \ \ \vdots \ \ \ 1260\ \ \ ;\ \ \ 28 \ \ \ \vdots \ \ \ 3780\ \ \ ; \ \ \ \ 28 \ \ \ \vdots \ \ \ 6300\ \ \

3^2\cdot 5=9\cdot 5=45 \Rightarrow 45 \ \ \ \vdots \ \ \ 1260\ \ \ ;\ \ \ 45 \ \ \ \vdots \ \ \ 3780\ \ \ ; \ \ \ \ 45 \ \ \ \vdots \ \ \ 6300\ \ \

3^2\cdot 7= 9\cdot 7=63 \Rightarrow 63 \ \ \ \vdots \ \ \ 1260\ \ \ ;\ \ \ 63 \ \ \ \vdots \ \ \ 3780\ \ \ ; \ \ \ \ 63 \ \ \ \vdots \ \ \ 6300\ \ \

2^2\cdot 3^2\cdot 5=4\cdot 9\cdot 5=180 \Rightarrow 180 \ \ \ \vdots \ \ \ 1260\ \ \ ;\ \ \ 180 \ \ \ \vdots \ \ \ 3780\ \ \ ; \ \ \ \ 180 \ \ \ \vdots \ \ \ 6300\ \ \

Exercițiul 3:  Află două numere naturale care îndeplinesc simultan condițiile: 

(a,b)=25 și a-b=50      a; b \gt 101;    a;b\lt 199

Rezolvare: 

Dacă (a; b )=25  \Rightarrow a= 25\cdot x și  b= 25\cdot y iar (x,y)=1.

Înlocuim în cea de-a doua relație pe care trebuie să o respectăm și obținem:

25\cdot x-25\cdot y=50

Dăm factor comun pe 25 și obținem:

25\cdot (x-y)=50 \ \ \ \ | \ \ \ :\ \ \ 25

 (x-y)=50 \ \ \ :\ \ \ 25

 x-y=2

Dar exercițiul ne spune în enunț că a și b sunt cuprinse între numerele 101 și 199.

In acest caz cel mai mic număr ar fi 125 \ \ \ \vdots \ \ \ 25 ., iar cel mai mare număr este 175 \ \ \ \vdots \ \ \ 25 .

Din această informație deduce că: x=5 \Rightarrow y=3 \Rightarrow a=125\Rightarrow b=75

Pentru x=6 \Rightarrow y=4 \Rightarrow (6,4)=2 \Rightarrow această variant nu este convenabilă.

Pentru x=7 \Rightarrow y=5 \Rightarrow a=175\Rightarrow b=125

Exercițiul 4: Calculați c.m.m.d.c-ul numerelor a și b știind că:

a=2^n\cdot 3^{n+2}+5^2\cdot 2^{n+1}\cdot3^n+7\cdot 6^n și b=2\cdot 35^{n+1}+5^{n+2}\cdot 7^n+5^n\cdot 7^{n+1}

Rezolvare: 

Aplicăm Regulile de calcul cu puteri și obținem:

a=2^n\cdot 3^n\cdot3^2+5^2\cdot 2^n\cdot2^1\cdot3^n+7\cdot (2\cdot3)^n

a=2^n\cdot 3^n\cdot3^2+5^2\cdot 2^n\cdot2^1\cdot3^n+7\cdot 2^n\cdot 3^n

Observăm că 2^n\cdot 3^n se repeată în toți termenii adunării așa că îi vom da factor comun:

a=2^n\cdot 3^n\cdot(3^2+5^2\cdot2^1+7)

a=2^n\cdot 3^n\cdot(9+25\cdot2+7)

a=2^n\cdot 3^n\cdot 66

a=2^n\cdot 3^n\cdot 2\cdot 3\cdot 11

a=2^{n+1}\cdot 3^{n+1}\cdot 11

Calculăm b=2\cdot 35^{n+1}+5^{n+2}\cdot 7^n+5^n\cdot 7^{n+1}

Aplicăm regulile de calcul cu puteri si obținem:

b=2\cdot 35^n\cdot 35^1+5^n\cdot 5^2\cdot 7^n+5^n\cdot 7^n\cdot 7^1

b=2\cdot 35^n\cdot 35^1+5^n\cdot 5^2\cdot 7^n+5^n\cdot 7^n\cdot 7^1

b=2\cdot 35^n\cdot 35^1+(5\cdot 7)^n\cdot 5^2+(5\cdot 7)^n\cdot 7^1

b=2\cdot 35^n\cdot 35^1+35^n\cdot 5^2+35^n\cdot 7^1

Observăm că 35^n se repeat în toți termenii și îl dăm factor comun:

b=35^n(2\cdot 35^1+5^2+7^1)

b=35^n\cdot (70+25+7)

b=35^n\cdot 102

b=(5\cdot 7)^n\cdot 102

b=5^n \cdot 7^n \cdot 102

Calculăm c.m.m.d.c-ul celor două numere:

a=2^{n+1}\cdot 3^{n+1}\cdot 11

b=5^n \cdot 7^n \cdot 102

Descompunem 102 și obținem:

a=2^{n+1}\cdot 3^{n+1}\cdot 11

b=5^n \cdot 7^n \cdot 2\cdot 3\cdot17

(a,b)= 2\cdot 3= 6

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”

Exerciții rezolvate Divizorul unui Număr Natural. Multiplul unui Număr Natural

“Educaţia ar fi mult mai eficientă dacă scopul acesteia ar fi ca la ieşirea din şcoală, fiecare copil să conştientizeze cât de multe lucruri nu ştie şi să fie cuprins de o dorinţă permanentă să le afle. – William Haley

Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm și să explicăm pas cu pas câteva exerciții la lecția Divizorul unui Număr Natural. Multiplul unui Număr Natural. (mai mult…)

Exercițiul 1: Scrieți divizorii proprii și divizorii improprii ai numărului 21.

Rezolvare: 

Divizorii proprii ai lui 21 sunt: 3 și 7.

Divizorii improprii ai lui 21 sunt: 1 și 21.

Exercițiul 2 :

Determinați numărul natural x știind că x-3 este divizorul numărului natural 15. 

Rezolvare: 

 x-3 \in D_{15} \Rightarrow x-3 \in \left \{ 1,3,5,15 \right \}

Deoarece pe noi ne interesează valorile pe care le poate lua x vom egala cu fiecare număr si vom afla multimea valorilor lui x.

 x-3=1 \ \ \ /+3 \Rightarrow x=1+3 \Rightarrow x=4

 x-3=3 \ \ \ /+3 \Rightarrow x=3+3 \Rightarrow x=6

 x-3=5 \ \ \ /+3 \Rightarrow x=5+3 \Rightarrow x=8

 x-3=15 \ \ \ /+3 \Rightarrow x=15+3 \Rightarrow x=18

Soluție: x\in \left \{ 4, 6, 8, 18 \right \}

Exercițiul 3:  Determinați: 

a)  D_{{28}} \cup D_{{12}}

b)  D_{{28}} \cap D_{{12}};

Rezolvare: 

Scriem mulțimea divizorilor lui 28.

D_{{28}}=\left \{ 1\ \ \ ;\ \ \ 2\ \ \ ;\ \ \ 4\ \ \ ;\ \ \ 7\ \ \ ;\ \ \ 14\ \ \ ;\ \ \ 28 \right \}

Scriem mulțimea divizorilor lui 12.

D_{{12}}=\left \{ 1\ \ \ ;\ \ \ 2\ \ \ ;\ \ \ 3\ \ \ ;\ \ \ 4\ \ \ ;\ \ \ 6\ \ \ ;\ \ \ 12\ \ \right \}

a) Reunim cele două mulțimi și obținem: D_{{28}} \cup D_{{12}}=\left \{ 1\ \ \ ;\ \ \ 2\ \ \ ;\ \ \ 3\ \ \ ;\ \ \ 4\ \ \ ;\ \ \ 6\ \ \ ;\ \ \ 7\ \ \ ;\ \ \ 12\ \ \ ;\ \ \ 14\ \ \ ;\ \ \ 28 \right \}

  • Reamintim că Reuniunea a două mulțimi A și B este mulțimea notată A \cup B, formată din toate elementele celor două mulțimi comune și necomune, luate o singură dată.

b)  Intersectăm cele două mulțimi și obținem: D_{{28}} \cap D_{{12}}=\left \{ 1\ \ \ ;\ \ \ 2\ \ \ ;\ \ \ 4\ \ \right \}

  • Reamintim că  Intersecția: a două mulțimi A și B este mulțimea notată A\cap B , formată din toate elementele comune celor două mulțimi, luate o singură data.

Exercițiul 4:  Se consider inecuația 4\cdot x -1 \leq 39-x

a) Care dintre soluțiile inecuației sunt divizori ai numărului natural 12?

b) Care dintre soluțiile inecuației sunt multiplii lui 3?

Rezolvare: 

Rezolvăm inecuația: 4\cdot x -1 \leq 39-x.

Mutăm toți termenii care îl conțin pe x într-o parte iar ceilalti termini în cealaltă parte având grijă să schimbăm semnele.

4\cdot x +x \leq 39 +1

5\cdot x \leq 40

5\cdot x \leq 40 \ \ \ /\ \ \ :\ \ 5

x \leq 40 \ \ \ :\ \ 5 \Rightarrow x \leq 8  \Rightarrow x \in \left \{ 0\ \ \ ;\ \ \ 1\ \ \ ;\ \ \ 2\ \ \ ;\ \ \ 3\ \ \ \ ;\ \ \ \ 4\ \ \ ; \ \ \ 5\ \ \ ;\ \ \ 6\ \ \ ;\ \ \ 7\ \ \ ;\ \ \ 8\ \ \ \right \}

a) Scriem mulțimea divizorilor lui 12:

D_{{12}}= \left \{ 1\ \ \ ;\ \ \ 2\ \ \ ;\ \ \ 3\ \ \ ;\ \ \ 4\ \ \ ;\ \ \ 6\ \ \ ;\ \ \ 12\ \ \right \}

Acum intersectăm cele două mulțimi și obținem mulțimea

 \left \{ 1\ \ \ ;\ \ \ 2\ \ \ ;\ \ \ 3\ \ \ ;\ \ \ 4\ \ \ ;\ \ \ 6\ \ \right \}

b) Scriem mulțimea multiplilor lui 3

M_{3} =\left \{ 3\ \ \ ;\ \ \ 6\ \ \ ;\ \ \ 9\ \ \ ;\ \ \ 12\ \ \ ;\ \ \ 18\ ............ \right \}

Intersectăm mulțimea valorilor lui x cu mulțimea multiplilor lui 3 și obținem mulțimea: \left \{ 3\ \ \ ;\ \ \ 6\ \ \right \}

Dragul meu părinte, sper din tot sufletul ca aceste informații să  îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy.”