octombrie 2017 archive

Exerciții rezolvate la Factorul Comun la Puteri

“Un ratat nu știe ce va face dacă pierde, dar vorbește despre ce va face dacă va castiga. Un învingător nu vorbește despre ce va face dacă va caștiga, dar știe ce va face dacă pierde.”
Eric Berne
Dragul meu părinte bine te-am regăsit! Azi îți propun să rezolvăm împreună cateva exerciții la “Factorul comun la Puteri”.

Exercițiul 1:

Efectuați calculele, folosind factorul comun:

a) 3^{96}+3^{98}+3^{100}

b) 2\cdot2^{47}+3\cdot2^{48}+2^{50}

c) 8^{300}-24\cdot8^{298}-64\cdot8^{297}

d) 3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}

e) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

  • Rezolvare: 
  • a) 3^{96}+3^{98}+3^{100}
  • Adunarea este o operație de gradul I și ridicarea la putere este o operație de gradul III, iar ordinea efectuării operațiilor ne spune că trebuie să facem mai întâi operațiile de gradul III și apoi cele de gradul I

Observăm că avem puteri foarte mari și nu putem ridica la putere așa că ne vom folosi de factorul comun și vom da factor comun puterea cea mai mică.

Observăm că 3^{96} este puterea cea mai mică asa ca îl dăm factor comun pe 3^{96} și obținem:

3^{96}\cdot(3^{96-96}+3^{98-96}+3^{100-96})

Scădem puterile și obținem:

3^{96}\cdot(3^{0}+3^{2}+3^{4})

Ridicăm la putere termenii din paranteza rotundă:

3^{96}\cdot(1+9+81)=3^{96}\cdot91

  • b)      2\cdot2^{47}+3\cdot2^{48}+2^{50}

Observăm că  2^{47} este puterea cea mai mică așa că îl dăm factor comun pe 2^{47} și obținem:

2^{47}\cdot(2\cdot2^{47-47}+3\cdot2^{48-47}+2^{50-47})

Scădem puterile și obținem:

2^{47}\cdot(2\cdot2^{0}+3\cdot2^{1}+2^{3})

Ridicăm la putere termenii din paranteza rotundă și obținem:

2^{47}\cdot(2\cdot 1+3\cdot2+8)

Efectuăm  înmulțirile și obținem:

2^{47}\cdot(2+6+8)=

Efectuăm adunarea din paranteză și obținem:

2^{47}\cdot 16=

Știm că 16 îl putem scrie în baza 2 ca 2^{4} și obținem

2^{47}\cdot2^{4}=

Aplicăm Regulile de calcul cu puteri și scriem baza și adunam exponenții:

2^{47+4}=2^{51}

  • c)   8^{300}-24\cdot8^{298}-64\cdot8^{297}

Observăm că 8^{297} este cea mai mică putere, îl dăm factor comun pe 8^{297} și obținem:

8^{297}\cdot(8^{300-297}-24\cdot8^{298-297}-64\cdot8^{297-297})

Scădem puterile și obținem:

8^{297}\cdot(8^{3}-24\cdot8^{1}-64\cdot8^{0})

Ridicăm la putere termenii din paranteză și obținem:

8^{297}\cdot(512-24\cdot8-64\cdot1) =

Efectuăm înmulțirile din paranteză și obținem:

  • 8^{297}\cdot(512-192-64) =

Efectuăm scăderea din paranteza rotundă și obținem:

8^{297}\cdot 256 =

Știm că putem scrie 8=2^3 și 256=2^8 și obținem:

(2^3)^{297}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri înmulțim puterile și obținem:

2^{3\cdot297}\cdot 2^8=2^{891}\cdot 2^8=

Aplicăm Regulile de calcul cu puteri, scriem baza și adunam puterile și obținem astfel:

2^{891+8}=2^{899}

  • d)  3^{2n+2}+7\cdot 3^{2n+1}-6\cdot3^{2n}=

Aplicăm Regulile de calcul cu puteri și obținem:

3^{2n}\cdot3^2+7\cdot 3^{2n}\cdot3^1-6\cdot3^{2n}=

Observăm că se repetă în fiecare termen al adunării 3^{2n},  îl dăm factor comun și obținem:

3^{2n}\cdot(3^2+7\cdot3^1-6\cdot1)=

Ridicăm la putere termenii din paranteza rotundă și obținem:

3^{2n}\cdot(9+7\cdot3-6)=

Efectuăm Înmulțirea din paranteză și obținem:

3^{2n}\cdot(9+21-6)=

Efectuăm calculele din paranteza rotundă și obținem:

3^{2n}\cdot 24=3^{2n}\cdot 3\cdot8=

Aplicăm Regulile de calcul cu puteri scriem baza și adunăm exponenții și obținem:

3^{2n+1}\cdot8

  • d) 6^{2n+1}+6\cdot 4^{n+1}\cdot 9^{n+2}+18^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri  transformăm bazele pe 6 îl scriem 6=2\cdot3 , pe 4=2^2, 9=3^2 , pe  18=2\cdot3^2  și obținem:

(2\cdot3)^{2n+1}+6\cdot (2^2)^{n+1}\cdot (3^2)^{n+2}+(2\cdot3^2)^{n+1}\cdot2^{n+1}

Aplicăm Regulile de calcul cu puteri, distribuim puterea și obținem:

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2\cdot(n+1)}\cdot 3^{2\cdot(n+2)}+2^{n+1}\cdot3^{2(n+1)}\cdot2^{n+1}

2^{2n+1}\cdot3^{2n+1}+6\cdot 2^{2n+2}\cdot 3^{2n+4}+2^{n+1}\cdot3^{2n+2}\cdot2^{n+1}

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n}\cdot2^1\cdot3^{2n}\cdot3^2\cdot2^{n}\cdot2^1

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{n+n}\cdot2^{1+1}\cdot3^{2n}\cdot3^2

2^{2n}\cdot2^1\cdot3^{2n}\cdot3^1+6\cdot 2^{2n}\cdot2^2\cdot 3^{2n}\cdot3^4+2^{2n}\cdot2^{2}\cdot3^{2n}\cdot3^2

Observăm că se repeta 2^{2n}\cdot3^{2n} și îl dăm factor comun, astfel obținem:

2^{2n}\cdot3^{2n}\cdot(2^1\cdot3^1+6\cdot2^2\cdot3^4+2^{2}\cdot3^2)

Ridicăm la putere termenii din paranteza rotundă:

2^{2n}\cdot3^{2n}\cdot(2\cdot3+6\cdot4\cdot81+4\cdot9)

Efectuăm înmulțirile din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot(6+1944+36)

Efectuăm calculele din paranteza rotundă și obținem:

2^{2n}\cdot3^{2n}\cdot 1986=(2\cdot3)^{2n}\cdot 6\cdot331=(6)^{2n}\cdot 6^1\cdot331=(6)^{2n+1}\cdot331

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în Clubul de “Matematică Math More Easy.” 

Exerciții rezolvate la Mijlocul unui Segment.

“Perseverența este obiceiul succesului dobândit prin muncă susținută.” -Herbert Harris

Dragul meu părinte bine te-am regăsit! Azi te invit să rezolvăm și să explicăm pas cu pas împreună câteva probleme la o lecție de geometrie foarte importantă: “Mijlocul unui segment dat”. (mai mult…)

Exercițiul 1:

Se dau patru puncte M, N, P,Q coliniare în această ordine, astfel încât \left [ MP \right ]=18 \ cm\left [ NP \right ]=8 \ cm\left [ PQ \right ]=6 \ cm și punctul X mijlocul segmentului \left [ MN \right ], iar punctul Y mijlocul segmentului \left [ NQ\right ]. Calculați lungimea segmentului \left [ XY\right ].

Rezolvare: 

  • Scriem datele problemei:
  • Realizăm desenul respectând datele problemei:
  • Analizând atent desenul realizat observăm că segmentul \left [ XY\right ]=\left [ XN\right ]+\left [ NY\right ]
  • Pentru ca nu cunoaștem demensiunile celor două segmente: \left [ XN\right ] și \left [ NY\right ] vom face cateva calcule ca să le aflăm.
  • Știm că punctul X \ \ \ mijloc \ \ \ de \ \ \ \left [ MN \right ]  \Rightarrow \left [ MX \right ] \equiv \left [ XN \right ]=\frac{\left [ MN \right ]}{2}
  • Nu știu dimensiunea segmentului \left [ MN \right ] dar cunosc dimensiunile segmentelor: \left [ MP \right ]=18 \ cm și \left [ NP \right ]=8 \ cm și îl pot afla pe \left [ MN \right ].
  • \left [ MN \right ]=\left [ MP \right ]-\left [ NP \right ]=18 cm - 8 cm =10 cm
  • Acum îl pot afla pe  \left [ XN \right ]= \frac{ \left [ MN \right ]}{2}=\frac{10 cm}{2}=5 cm
  • Trebuie sa îl aflăm și pe \left [ NY\right ].
  • Știu că Y \ \ \ mijloc \ \ \ de \ \ \ \left [ NQ \right ]\Rightarrow \left [ NY \right ] \equiv \left [ YQ \right ]  =\frac{\left [ NQ \right ]}{2}
  • Nu știu dimensiunea segmentului  \left [ NQ \right ] dar cunosc dimensiunile segmentelor  \left [ NP \right ] și  \left [ PQ \right ] și îl pot afla pe  \left [ NQ \right ].
  •  \left [ NQ \right ]= \left [ NP \right ]+ \left [ PQ \right ]= 8 cm + 6 cm =14 cm
  • Acum îl pot afla pe \left [ NY\right ]=\frac{\left [ NQ\right ]}{2}=\frac{14 cm}{2}=7 cm
  • Înlocuim în: \left [ XY\right ]=\left [ XN\right ]+\left [ NY\right ]=5 cm +7 cm=12 cm

Exercițiul 2:

Pe o dreaptă d se consideră trei puncte A, B, C coliniare în această ordine, astfel încât \left [ AB \right ]=8cm\left [ AC \right ]=20cm . Știind că M este mijlocul lui \left [ AB \right ] și N este mijlocul lui \left [ AC \right ], calculați lungimea segmentului \left [ MN \right ].

  • Rezolvare:
  • Scriem datele problemei:
  • Realizăm desenul:
  • Știm că M este mijlocul lui \left [ AB \right ]\Rightarrow \left [ AM \right ]\equiv \left [ MB \right ]=\frac{ \left [ AB \right ]}{{2}} =\frac{ 8 cm}{{2}}=4 cm.
  • Știm că N este mijlocul lui \left [ AC \right ]\Rightarrow \left [ AN \right ]\equiv \left [ NC \right ] =\frac{\left [ AC \right ]}{2}=\frac{20 cm}{2}= 10 cm
  • Analizând atent desenul observăm că \left [ BN\right ]=\left [ AN\right ]-\left [ AB\right ]=10 cm - 8 cm=2 cm
  • \left [ MN \right ]=\left [ MB \right ]+\left [ BN \right ]
  • \left [ MN \right ]=4 cm+2 cm=6 cm

Exercițiul 3: 

Pe o dreaptă d se consideră punctele: X, Y, Z, T coliniare în această ordine astfel încât \left [ XY\right ]=12 cm\left [ YZ\right ]=5 cm\left [ ZT\right ]=3 cm. Se știe că punctele M, N și P sunt mijloacele segmentelor: \left [ XY\right ]\ \ ,\ \ \ \left [ YZ\right ] și respectiv \left [ ZT\right ]. Aflați lungimea segmentelor: \left [ XZ\right ]\ \ ,\ \ \ \left [ XT\right ]\ \ ,\ \ \ \left [ YT\right ]\ \ ,\ \ \ \left [ XN\right ]\ \ ,\ \ \ \left [ YP\right ]

  • Rezolvare:
  • Scriem datele problemei
  • Realizăm desenul respectând datele problemei:

 

 

 

 

  • Analizând desenul realizat observăm că:\left [ XZ\right ]= \left [ XY\right ]+\left [ YZ\right ]=12 cm +5 cm =17 cm
  • \left [ XT\right ]= \left [ XZ\right ]+\left [ ZT\right ]=17 cm +3 cm =20 cm
  • \left [ YT\right ]= \left [ YZ\right ]+\left [ ZT\right ]=5 cm +3 cm =8 cm
  • \left [ XN\right ]= \left [ XY\right ]+\left [ YN\right ]
  • Nu îl știm pe \left [ YN\right ] dar știm că N este mijlocul segmentului \left [ YZ\right ]\Rightarrow \left [ YN \right ]\equiv \left [ NZ \right ] \Rightarrow \left [ YN \right ]=\frac{\left [ YZ \right ]}{2}\Rightarrow \left [ YN \right ]=\frac{5 cm}{2}= 2,5 cm
  • \left [ XN\right ]= \left [ XY\right ]+\left [ YN\right ]= 12 cm + 2,5 cm=14,5 cm
  • \left [ YP\right ]= \left [ YZ\right ]+\left [ ZP\right ]
  • Nu cunoaștem dimensiunea lui \left [ ZP\right ] dar știm că punctul P este mijlocul lui \left [ ZT\right ] \Rightarrow \left [ ZP\right ]\equiv \left [ PT\right ]\Rightarrow \left [ ZP\right ]=\frac{\left [ ZT\right ]}{2}\Rightarrow \left [ ZP\right ]=\frac{\left [3 cm ]}{2}=1,5 cm
  • \left [ YP\right ]= \left [ YZ\right ]+\left [ ZP\right ]
  • \left [ YP\right ]= 5 cm +1,5 cm= 6,5 cm

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy”.

Exerciții Rezolvate la Descompunerea În Factori Primi

“Descurajarea și înfrângerile sunt unele dintre cele mai sigure căi către succes.”

Dale Carnegie

Dragul meu părinte bine te-am regăsit! Azi îți propun să lucrăm câteva exerciții la o lecție  extrem de importanta Descompunerea în Factori Primi a unui Număr Natural.  (mai mult…)

Exercițiul 1 :

Descompuneți în produs de factori primi următoarele numere naturale:

a) 120

b) 3528;

c)36000

Rezolvare: 

  • a) Pentru că 120 se divide cu 10 (numărul 120 se termină in 0), iar 10 nu este număr prim vom împărți mai întâi prin 2\cdot 5
  • Rămâne 12 care este un număr par și se divide cu 2.
  • Deci 120 descompus în factori primi este: 120=2^3 \cdot 3^1 \cdot 5^1
  • b) 3528

  • Pentru că 3528 este un număr par de divide cu 2.
  • Pentru că 441 este un număr impar și  nu se mai divide cu 2, verificăm criteriul de divizibilitate cu 3.
  • 4+4+1=9\ \ \ \vdots\ \ \ 3
  • Mai departe împărțim prin 3.
  • Pentru că 49 nu se mai divide cu 3 și nu se divide nici cu 5 încercăm cu următorul număr prim cu 7.
  • Astfel obținem 3528 descompus în factori primi: 3528=2^3 \cdot 3^2 \cdot7^2
  • c) 36000
  • Pentru că 36000 se termină în trei cifre de 0 înseamnă că de divide cu  1000=10^3=(2\cdot5)^3=2^3 \cdot 5^3
  • Deci obținem:
  • Astfel putem scrie 36000=2^5 \cdot 3^2 \cdot 5^3

 

Exercițiul 2 :

Determinați  numerele naturale “m”, “n” și “p”astfel încât să obțineți propoziții adevărate:

a) 36=2^n \cdot 3^p

b) 360=2^n \cdot 3^p\cdot 5^m

c) 720=2^n \cdot 3^p\cdot 5^m

Rezolvare:

Descompunem în factori primi numerele 36, 360 și 720.

descompunere in factori primi

  • Obținem astfel:
  • a) 36=2^n \cdot 3^p
  •  36=2^2\cdot 3^2 \Rightarrow n=2 și  p=2
  • b) 360=2^n \cdot 3^p\cdot 5^m
  •  360=2^3 \cdot 3^2\cdot 5^1 \Rightarrow n=3 \ \ \ ; \ \ \ p=2 și m=1
  • c) 720=2^n \cdot 3^p\cdot 5^m
  •  720=2^4 \cdot 3^2\cdot 5^1\Rightarrow n=4 \ ; \ \ \ p=2 și m=1

Dragul meu părinte, sper din tot sufletul ca aceste informații să îți

fie utile atunci când îți ajuți copilul la temele pentru acasă la matematică.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un

grad de dificultate ridicat rezolvate și explicate pas cu pas te

invit să te înscrii în “Clubul de Matematică Math More Easy”.