March 2017 archive

Exerciții rezolvate la Înmulțirea fracțiilor zecimale

“Fă azi ce alţii nu fac ca să trăieşti mâine cum alţii nu pot.”

Zig Ziglar

Dragul meu părinte bine te-am regăsit! În articolul precedent am efectuat câteva exerciții ușoare la înmulțirea fracțiilor zecimale. Azi îți propun să rezolvăm împreună câteva exerciții cu un grad de dificultate mai ridicat!

(more…)

Exercițiul 1:

Dacă x \cdot (y-z)=2,4  și  x \cdot (z+t)=3,1 \Rightarrow  , atunci calculați:

 x \cdot 2,4 \cdot( y+ t )

Rezolvare:

 x \cdot (y-z)=2,4 \Rightarrow   x \cdot y- x \cdot z=2,4

 x \cdot (z+t)=3,1 \Rightarrow   x \cdot z+ x \cdot t=3,1

Adunăm cele două relații și obținem:

 x \cdot y- x \cdot z+x \cdot z+ x \cdot t=2,4 + 3,1

Observăm că  x \cdot z  se reduce și obținem:

  •  x \cdot y+ x \cdot t=5,5
  •  x \cdot( y+ t )=5,5
  • Înmulțim relația cu 2,4 și obținem:
  •  x \cdot( y+ t )=5,5 | \cdot 2,4
  •  x \cdot 2,4 \cdot( y+ t )=5,5 \cdot 2,4
  •  x \cdot 2,4 \cdot( y+ t )=13,20

Exercițiul 2 :

Dacă x+y=7,05 și y+z=14,1 atunci calculați:  (x+3y+2z) \cdot (z-x)

Rezolvare:

  • x+y=7,05         \Rightarrow   x+y =7,05
  • y+z=14,1   | \cdot 2    \Rightarrow  2y+2z=28,2

Adunam cele două relații si obținem:

  • x+y+2y+2z=7,05+28,2
  • x+3y+2z=35,25

Observăm ca am obținut prima paranteză.

Revenim la cele două relații inițiale:

  • x+y=7,05
  • y+z=14,1

Scădem din a doua relație prima relație  și obținem:

  • y+z-x-y=14,1-7,05
  • z-x=7,05

Înmulțim cele două relații obținute:

  •  (x+3y+2z)\cdot (z-x)=35,25 \cdot 7,05
  •  (x+3y+2z)\cdot (z-x)=248,5125

Exercițiul 3:

Determinați cifrele a și b care verifică relația:

Rezolvare:

Transformăm fracțiile zecimale în fracții ordinare și obținem:

Pentru ca avem peste tot același numitor putem scrie relația fară numitor:

Desfacem în baza 10 numerele:

   și obținem:

  •  (10 \cdot a + a+ 10 \cdot b +b)\cdot b=1287
  •  (11 \cdot a + 11 \cdot b )\cdot b=1287
  •  11 \cdot (a +b)\cdot b=1287 | : 11
  •  (a +b)\cdot b=117
  •  (a +b)\cdot b= 3^{{2}}\cdot 13
  • Verificăm varianta b=3
  •  (a+3)\cdot 3=117
  •  3a+9=117
  •  3a=117 -9
  •  3a=108
  •  a=108 : 3
  •  a=36

Această variantă nu ne convine deoarece a trebuie să fie cifră.

Verificăm cea de-a doua variantă  b=3 ^{2} =9 și obținem:

  •  (a+9)\cdot 9=117
  •  9a+81=117
  •  9a=117-81
  •  9a=36
  •  a=36:9
  •  a=4

Această variantă este ok deci obținem soluția  a=4 și b=9.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la Formulele de Calcul Prescurtat

“Invata tot ce poti, in orice moment disponibil, de la oricine si intotdeuna va veni o vreme cand te vei simti recompensat pentru ceea ce ai invatat.”
Sarah Caldwel

Bine te-am regăsit dragul meu părinte. Azi te invit să efectuăm  împreună câteva exerciții la formulele de calcul prescurtat.

(more…)

EXERCIŢIUL 1: Efectuați, folosind formula de calcul prescurtat: 

  • a)       (2x+1) ^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=2x şi b=+1. Aplicând formula obţinem:

 (2x+1)^{2}=(2x)^{2}+2\cdot 2x\cdot (+1)+(+1)^{2}

 (2x+1)^{2}=4x^{2}+4 x+1

  •     b)  (4x - 7y)^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=4x şi b=7y . Aplicând formula obţinem:

 (4x - 7y)^{2}=(4x)^{2}-2\cdot 4x\cdot 7y +(7y)^{2}

 

 (4x - 7y)^{2}=16x^{2}-56xy +49y^{2}

  • c)  (2x+\sqrt{3})^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=2x şi b=\sqrt{3}. Aplicând formula obţinem:

 (2x+\sqrt{3})^{2}=(2x)^{2}+2\cdot 2x\cdot\sqrt{3}+(\sqrt{3})^{2}

 (2x+\sqrt{3})^{2}=4x^{2}+4\sqrt{3} x+3

  • d)  (5x-\sqrt{2})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=5x şi b=\sqrt{2}. Aplicând formula obţinem:

 (5x-\sqrt{2})^{2}=(5x)^{2}-2\cdot 5x\cdot \sqrt{2}+(\sqrt{2})^{2}

 (5x-\sqrt{2})^{2}=25x^{2}-10 \sqrt{2}x+2

  • e) (\frac{2}{3}x+\frac{1}{3})^{2}=

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru:  a=\frac{2}{3}x şi  b=\frac{1}{3} . Aplicând formula obţinem:

 (\frac{2}{3}x+\frac{1}{3})^{2}=(\frac{2}{3}x)^{2}+2\cdot \frac{2}{3}x\cdot \frac{1}{3}+(\frac{1}{3})^{2}

 (\frac{2}{3}x+\frac{1}{3})^{2}=\frac{4}{9}x^{2}+ \frac{4}{9}x +\frac{1}{9}

  • f) (\frac{2}{7}x-\frac{7}{4})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru:  a=\frac{2}{7}x şi  b=\frac{7}{4}. Aplicând formula obţinem:

 (\frac{2}{7}x-\frac{7}{4})^{2}=(\frac{2}{7}x)^{2}-2\cdot \frac{2}{7}x\cdot \frac{7}{4}+(\frac{7}{4})^{2}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-\frac{28}{28}x+\frac{49}{16}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-x+\frac{49}{16}

f)  (x+9)(x-9)

Aplicăm formula de calcul prescurtat:  (a+b)(a-b)= a^{2}-b^{2}

În cazul exerciţiului  nostru: a=x şi b=9. Aplicând formula obţinem:

 (x+9)(x-9)= x^{2}-9^{2}

 (x+9)(x-9)= x^{2}-81

EXERCIŢIUL 2:  Efectuaşi calculele :

  •  a)  (x+2)^{2}+ (x-1)^{2}

Aplicând formulele de calcul prescurtat obţinem:

 (x+2)^{2}+ (x-1)^{2}=x^{2}+2\cdot x\cdot 2+ 2^{2}+x^{2}-2\cdot x\cdot 1+1^{2}= aplicatii-formule-de-calcul-prescurtat-ex-2

  •  b) (2\sqrt{2}-3\sqrt{3}) ^{2}-2(\sqrt{3}+3\sqrt{2}) ^{2}

Aplicând formulele de calcul prescurtat obţinem:

 [(2\sqrt{2})^{2}-2\cdot 2\sqrt{2}\cdot 3\sqrt{3}+(3\sqrt{3})^{2}]-2[(\sqrt{3})^{2}+2\cdot \sqrt{3}\cdot 3\sqrt{2}+(3\sqrt{2})^{2}] =

 (4\cdot 2-12\sqrt{2\cdot3}+9\cdot 3)-2(3+6 \sqrt{2\cdot3}+9\cdot2)=

 8-12\sqrt{6}+27-6+12 \sqrt{6}-36=

 8+27-6+12 -36=5

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

Înmulțirea fracțiilor zecimale

„Este uimitor ce pot face oamenii obişnuiţi dacă se apucă de treabă fără idei preconcepute.” — Charles F. Kettering
Dragul meu părinte bine te-am regăsit. Data trecută am efectuat exerciții la “Adunarea și Scăderea Fracțiilor Zecimale”.  Astăzi te invit să efectuam împreună câteva exerciții la Înmulțirea fracțiilor zecimale.

(more…)

Exercițiul 1:
Efectuați următoarele înmulțiri:
  1.  2,75 \cdot 3=
  2.  125,75 \cdot 33=
  3.  0,7 \cdot 3,8=
  4.  2,57 \cdot 1,77=
  5.  12,4 \cdot 3,5 \cdot 5,2=
  • Rezolvare:
  1.    2,75 \cdot 3=

 

 

 

 

  • Înmulțim numerele ca la numerele naturale (facem excepție de virgulă).

  • Pentru că fracția zecimală 2,5  are o zecimală punem la produs virgula după o cifră numărând de la dreapta la stânga.

2.   125,75 \cdot 33=

  • Înmulțim numerele ca la numerele naturale (facem excepție de virgulă)

  • Pentru că fracția zecimală  125,75   are două zecimale punem la produs virgula după două cifre numărând de la dreapta la stânga.

  •  0,7 \cdot 3,8=

  • Pentru că fracția zecimală 0,7   are o zecimală după virgulă iar fracția zecimală 3,8  are tot o zecimală după virgulă, am pus la produs virgula după două cifre numărând de la dreapta la stânga.
  •   2,57 \cdot 1,77 =

  • Pentru că fracția zecimală 2,57   are două zecimale după virgulă iar fracția zecimală 1,77   are tot două zecimale după virgulă, am pus la produs virgula după patru cifre numărând de la dreapta la stânga.
  •  12,4 \cdot 3,5 \cdot 5,2=

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

Probleme rezolvate Teorema lui Pitagora

„Cu putin talent şi o perseverenţă extraordinară toate lucrurile pot fi atinse.”

Thomas Foxwell Buxton

Dragul meu părinte, bine te-am regăsit. Astăzi te invit să exersăm câteva probleme de geometrie la Teorema lui Pitagora. Această teoremă este foarte importantă iar copilul tău trebuie să o înțeleagă foarte bine deoarece o vom utiliza foarte des în clasa a VIII-a la Geometria în spațiu.

(more…)

Problema 1: În triunghiul MNP, unghiul M este de 90 ^{\circ} și înălțimea

MQ \perp NP cu MQ = 12 cm, iar  m(\widehat{MNP})=30^{\circ} . Calculați laturile: MN, NP, MP, NQ și QP.

Rezolvare:

Scriem datele problemei:

Facem desenul respectând datele problemei.

Demonstrație:

  • Pentru că avem m(\widehat{MNP})=30^{\circ} aplicăm în \bigtriangleup MQN(m(\widehat{MQN})=90^{\circ}) teorema unghiului de 30^{\circ} care îmi spune că lungimea catetei care se opune unghiului de 30^{\circ} este jumătate din ipotenuză.

\bigtriangleup MQN(m(\widehat{MQN})=90^{\circ})   : m(\widehat{MNQ})=30^{\circ}  \Rightarrow MQ=\frac{MN}{{2}} \Rightarrow    \frac{MQ}{{1}}=\frac{MN}{{2}} \Rightarrow \frac{12 cm}{{1}}=\frac{MN}{{2}} \Rightarrow   MN=12 cm \cdot 2 \Rightarrow MN= 24 cm

Observăm că putem aplica Teorema lui Pitagora în triunghiul \bigtriangleup MQN(m(\widehat{MQN})= 90^{\circ})pentru a afla latura NQ.

\bigtriangleup MQN(m(\widehat{MQN})= 90^{\circ}) \Rightarrow (T.P) :  MN^{2}= NQ^{2}+MQ^{2} \Rightarrow

 24^{2}= NQ^{2}+12^{2} \Rightarrow     576= NQ^{2}+144 \Rightarrow

NQ^{2}= 576 - 144 \Rightarrow  NQ^{2}= 432 cm^{2} \Rightarrow

NQ= \sqrt{ 432 cm^{2}}  \Rightarrow  NQ=12 \sqrt{ 3} cm

  • Am aflat MN și NQ atunci putem aplica în \bigtriangleup MNP( m(\widehat{NMP}))= 90^{\circ} Teorema Catetei pentru cateta MN  și aflăm lungimea ipotenuzei BC.

\bigtriangleup MNP( m(\widehat{NMP}))= 90^{\circ} \Rightarrow (T.C.)  MN^{2} = NQ \cdot NP \Rightarrow  (24cm)^{2} = 12 \sqrt{3}cm \cdot NP  \Rightarrow   576cm^{2} = 12 \sqrt{3}cm \cdot NP  \Rightarrow  NP = \frac{576cm^{2} }{{12 \sqrt{3}cm }}   \Rightarrow QP = 16 \sqrt{3}cm -12 \sqrt{3}cm

Dacă am aflat NP putem afla și latura QP prin scădere.

QP = NP-NQ

 QP= 16 \sqrt{3}cm -12 \sqrt{3}cm

QP = 4 \sqrt{3}cm

Dacă știm MN și NP putem aplica teorema lui Pitagora în triunghiul MNP  \bigtriangleup MNP( m(\widehat{NMP}))= 90^{\circ}  pentru a  afla latura MP.

\bigtriangleup MNP( m(\widehat{NMP}))= 90^{\circ}  \Rightarrow (T.P)  NP^{{2}}= MP^{{2}}+MN^{{2}} \Rightarrow  (16 \sqrt{3}cm )^{{2}}= MP^{{2}}+(24cm)^{{2}}  \Rightarrow

768 cm = MP ^{2} + 576 cm  \Rightarrow

MP ^{2} = 768 cm-576 cm  \Rightarrow

MP ^{2} = 192 cm ^{2}  \Rightarrow

MP= \sqrt{192 cm^{2} }  \RightarrowMP =8\sqrt{3} cm

Problema 2:

În triunghiul dreptunghic MNP cu unghiul \Delta MNP (m(\widehat{NMP})= 90^{\circ}) : , are înălțimea MQ \perp NP, Q \in (NP), \frac{NQ}{QP} = \frac{9}{16} , iar perimetrul triunghiului P_{{\bigtriangleup MNP}} = 120 cm . Aflați:

a) Dimensiunea laturilor: MN, MP și NP;

b) Lungimea înălțimii MQ;

Rezolvare:

Pornim de la raportul: \frac{NQ}{QP} = \frac{9}{16}  și scoatem dimensiunea laturii NQ în funcție de QP.

16 \cdot NQ = 9\cdot QP \Rightarrow  NQ = \frac{9 \cdot QP}{{16}}

Aflăm dimensiunea laturii NP în funcție de QP.

 NP = NQ + QP \Rightarrow  NP = \frac{9 \cdot QP}{{16}}+ _{}}^{16)}QP{} \Rightarrow

NP = \frac{9 \cdot QP+16 QP}{{16}}\Rightarrow

NP= \frac{25 \cdot QP}{{16}}

Aplicăm în triunghiul dreptunghic MNP Teorema Catetei pentru catetele: MN și MP și determinăm lungimile acestora în functie de latura QP.

\Delta MNP (m(\widehat{NMP})= 90^{\circ}) :  \Rightarrow(T.C)\Rightarrow   MN^{{2}}= NQ \cdot NP \Rightarrow

 MN^{{2}}= \frac{9 \cdot QP}{{16}} \cdot \frac{25 \cdot QP}{{16}} \Rightarrow

 MN^{{2}}= \frac{225 \cdot QP^{{2}}}{{256}} \Rightarrow    MN = \sqrt{\frac{225 \cdot QP^{{2}}}{{256}} }\Rightarrow

 MN = \frac{15 \cdot QP}{{16}} }

\Delta MNP (m(\widehat{NMP})= 90^{\circ}) :   \Rightarrow(T.C)\Rightarrow   MP^{{2}}= QP \cdot NP \Rightarrow

 MP^{{2}}= \frac{QP}{{1}} \cdot \frac{25 \cdot QP}{{16}} \Rightarrow    MP^{{2}}= \frac{25 QP^{{2}}} {{16}}\Rightarrow

 MP^{{2}}= \sqrt{\frac{25\cdot QP^{{2}}} {{16}}} \Rightarrow

 MP= \frac{5\cdot QP} {{4}}}

După ce am obținut toate dimensiunile laturilor  \Delta MNP  în funcție de latura QP le înlocuim în Perimetrul  \Delta MNP  și îl aflăm de aici pe QP.

P_{{\bigtriangleup MNP}} = 120 cm

P_{{\bigtriangleup MNP}} = MN + MP + NP      \Rightarrow

{}}^{16)}120 cm = \frac{15 \cdot QP}{{16}} } + {}}^{4)}\frac{{5\cdot QP}} {{ 4}}} + \frac{25 \cdot QP}{{16}}   \Rightarrow

1920 cm =15 QP + 20 QP +25 QP   \Rightarrow

 60 QP = 1920 cm \Rightarrow

 QP = 32 cm

 NQ = \frac{9}{{16}} \cdot 32 cm \Rightarrow NQ = 18 cm

 MN = \frac{15}{{16}} \cdot 32 cm \Rightarrow MN = 30 cm

 MP = \frac{5}{{4}} \cdot 32 cm \Rightarrow MP = 40 cm

 NP = \frac{25}{{16}} \cdot 32 cm \Rightarrow NP = 50 cm

b) Pentru rezolvarea punctului b) aplicăm Teorema Înălțimii în triunghiul dreptunghic  \Delta MNP.

\Delta MNP (m(\widehat{NMP})= 90^{\circ}) :   \Rightarrow(T.I)\Rightarrow   MQ^{{2}}= NQ \cdot QP \Rightarrow

 MQ^{{2}}= 18 cm \cdot 32 cm \Rightarrow    MQ^{{2}}= 576 cm^{{2}} \Rightarrow

MQ^{{2}}= \sqrt{576 cm^{{2}} } \Rightarrow MQ= 24 cm

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică. Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăți în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!