noiembrie 2016 archive

Rădăcina pătrată a unui număr natural pătrat perfect

clasa a VII-aDragul meu părinte, bine te-am regăsit!Până în clasa a VII-a copilul tău a studiat următoarele Mulţimi de Numere: Mulţimea Numerelor Naturale, Mulţimea Numerelor Întregi şi Mulţimea Numerelor Raţionale.Capitolul II din programa de matematica pentru clasa a VII-a prevede studierea Numerelor Reale. Prima lecţie din acest capitol este Rădăcina pătrată a unui număr natural pătrat perfect. (mai mult…)

  • Definiţie:Un număr natural “a” se numeşte pătrat perfect dacă există un număr natural “n” astfel încât : n ^{2}=a
  • Rădăcina Pătrată:

    Fie “a” un număr natural pătrat perfect. Numărul natural “n” cu proprietatea: n ^{2}=a se numeşte rădăcină pătrată a numărului “a” şi se notează: n=\sqrt{a}

  • Exemple:   \sqrt{25}=\sqrt{5^{2}}=5
  •  \sqrt{100}=\sqrt{10^{2}}=10
  •  \sqrt{0}=\sqrt{0^{2}}=0

Observaţie:

 

Evident numai unul este număr natural : \sqrt{n}=n

 

 

 

 

 

 \sqrt{ 25\cdot a^{4}\cdot b^{2}}=\sqrt{ (5\cdot a^{2}\cdot b)^{2}}=\left \| 5\cdot a^{2}\cdot b \right \|=5\cdot a^{2}\cdot \left \| b \right \|

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

 

 

 

 

Pătratul unui număr natural

Clasa a V-aDragul meu părinte bine te-am regăsit! In articolul de azi vreau să îţi vorbesc despre “Pătratul unui număr natural”. În articolele anterioare am vorbit despre “Ridicarea la putere a unui număr natural” şi “ Regulile de calcul cu puteri”. Azi vom studia “Pătratele perfecte” .

(mai mult…)

Să analizăm următorul sir de pătrate:

 

  • Definiţie: Un număr obţinut prin ridicarea la puterea a doua aunui număr natural se numeşte pătrat perfect.

 

Exemple:     81=9 ^{2} putem spune că 81 este pătrat perfect

  • Observaţie: Pentru a arăta că un număr nu este pătrat perfect este suficient să arătăm că numărul este cuprin între două pătrate perfecte.

Exemplu: 115 nu este pătrat perfect pentru că 10 ^{2}=100 \lt 115 \lt121=11 ^{2}

Să analizăm următorul tabel:

patrat-perfect

  • Observăm că ultima cifră a unui pătrat perfect poate fi: 0,1, 4,5,  6 sau 9.
  • Numerele care au ultima cifră 2, 3, 7 sau 8 nu pot fi pătrate perfecte.
  • Observaţie: Nu întotdeauna numerele care au ultima cifră 0; 1; 4; 5; 6 sau 9  sunt pătrate perfecte
  • Exemplu: 10, 11, 15, 26 sau 39 nu sunt pătrate perfecte.

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Exerciții rezolvate la formulele de calcul prescurtat

Clasa a VIII-aBine te-am regăsit dragul meu părinte. În articolul anterior ţi-am prezentat “Formulele de Calcul Prescurtat” pentru numere reale.

Dragul meu părinte, ţi-am spus că aceste formule sunt foarte importante deoarece le vom folosi în Operaţiile cu rapoarte? Aceste rapoarte de numere compun un exerciţiu care se dă şi la examenul de capacitate. (Cel puţin în anul anterior  Examenul de Evaluare Naţională 2016 a avut un exerciţiu cu rapoarte).

(mai mult…)

EXERCIŢIUL 1:  Folosind formula pentru pătratul sumei sau diferenţei a doi termeni, calculaţi:

  • a)       (x+1) ^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=x şi b=+1. Aplicând formula obţinem:

 (x+1)^{2}=x^{2}+2\cdot x\cdot (+1)+(+1)^{2}

 (x+1)^{2}=x^{2}+2 x+1

  •     b)  (x - 2)^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=x şi b=-2. Aplicând formula obţinem:

 (x - 2)^{2}=x^{2}-2\cdot x\cdot 2 +(-2)^{2}

 (x - 2)^{2}=x^{2}-4 x +4

  • c)  (2x+\sqrt{3})^{2}

Rezolvare:

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru: a=2x şi b=\sqrt{3}. Aplicând formula obţinem:

 (2x+\sqrt{3})^{2}=(2x)^{2}+2\cdot 2x\cdot\sqrt{3}+(\sqrt{3})^{2}

 (2x+\sqrt{3})^{2}=4x^{2}+4\sqrt{3} x+3

  • d)  (5x-\sqrt{2})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru: a=5x şi b=\sqrt{2}. Aplicând formula obţinem:

 (5x-\sqrt{2})^{2}=(5x)^{2}-2\cdot 5x\cdot \sqrt{2}+(\sqrt{2})^{2}

 (5x-\sqrt{2})^{2}=25x^{2}-10 \sqrt{2}x+2

  • e) (\frac{2}{3}x+\frac{1}{3})^{2}=

Aplicăm formula de calcul prescurtat: (a+b) ^{2}=a^{2}+2\cdot a \cdot b+b^{2}.

În cazul exerciţiului  nostru:  a=\frac{2}{3}x şi  b=\frac{1}{3} . Aplicând formula obţinem:

 (\frac{2}{3}x+\frac{1}{3})^{2}=(\frac{2}{3}x)^{2}+2\cdot \frac{2}{3}x\cdot \frac{1}{3}+(\frac{1}{3})^{2}

 (\frac{2}{3}x+\frac{1}{3})^{2}=\frac{4}{9}x^{2}+ \frac{4}{9}x +\frac{1}{9}

  • f) (\frac{2}{7}x-\frac{7}{4})^{2}

Aplicăm formula de calcul prescurtat:  (a - b)^{2}=a^{2}-2\cdot a\cdot b +b^{2}

În cazul exerciţiului  nostru:  a=\frac{2}{7}x şi  b=\frac{7}{4}. Aplicând formula obţinem:

 (\frac{2}{7}x-\frac{7}{4})^{2}=(\frac{2}{7}x)^{2}-2\cdot \frac{2}{7}x\cdot \frac{7}{4}+(\frac{7}{4})^{2}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-\frac{28}{28}x+\frac{49}{16}

 (\frac{2}{7}x-\frac{7}{4})^{2}=\frac{4}{49}x^{2}-x+\frac{49}{16}

f)  (x+7)(x-7)

Aplicăm formula de calcul prescurtat:  (a+b)(a-b)= a^{2}-b^{2}

În cazul exerciţiului  nostru: a=x şi b=7. Aplicând formula obţinem:

 (x+7)(x-7)= x^{2}-7^{2}

 (x+7)(x-7)= x^{2}-49

EXERCIŢIUL 2:  Efectuaşi calculele :

  •  a)  (x+2)^{2}+ (x-1)^{2}

Aplicând formulele de calcul prescurtat obţinem:

 (x+2)^{2}+ (x-1)^{2}=x^{2}+2\cdot x\cdot 2+ 2^{2}+x^{2}-2\cdot x\cdot 1+1^{2}= aplicatii-formule-de-calcul-prescurtat-ex-2

  •  b) (x-\sqrt{2}) ^{2}-(\sqrt{2}x+1) ^{2}

Aplicând formulele de calcul prescurtat obţinem:

aplicatii-formule-de-calcul-prescurtat-ex-2-pct-b

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

Formulele de calcul prescurtat

Clasa a VIII-aDragul meu părinte, bine te-am regăsit. În articolul anterior ţi-am explicat  cum facem “Operaţii între numerele reale  reprezentate prin litere”. Am explicat pas cu pas cum facem “Adunarea şi scăderea numerelor reale reprezentate prin litere” , dar şi Înmulţirea, Împărţirea, ridicarea la puterea a numerelor reale reprezentate prin litere” . În articolul de azi vreau să îţi prezint formulele de calcul prescurtat pentru numere reale.

(mai mult…)

Aceste formule sunt foarte importante deoarece le vom folosi în Operaţiile cu rapoarte. Aceste rapoarte compun un exerciţiu care se dă şi la examenul de capacitate. (Cel puţin în anul anterior  Examenul de Evaluare Naţională 2016 a avut un exerciţiu cu rapoarte).

Avem următoarele formule:

 (a+b)^{2}=a^{2}+2\cdot a\cdot b+b^{2}

 (a-b)^{2}=a^{2}-2\cdot a\cdot b+b^{2}

 a^{2}-b^{2}=(a- b)(a+b)

 (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2\cdot a\cdot b+2\cdot a\cdot c+2\cdot b\cdot c

 (a-b+c)^{2}=a^{2}+b^{2}+c^{2}-2\cdot a\cdot b+2\cdot a\cdot c-2\cdot b\cdot c

 (a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2\cdot a\cdot b-2\cdot a\cdot c-2\cdot b\cdot c

 (a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2\cdot a\cdot b-2\cdot a\cdot c+2\cdot b\cdot c

 (a+b)^{3}=a^{3}+3\cdot a^{2}\cdot b+3\cdot a\cdot b^{2}+b^{3}

 (a-b)^{3}=a^{3}-3\cdot a^{2}\cdot b+3\cdot a\cdot b^{2}-b^{3}

a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})

a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})

Acestea  sunt cele mai importante şi uzuale formule de calcul prescurtat pentru numerele reale. În curând voi reveni şi cu un articol cu Aplicaţii la formulele de calcul prescurtat în care voi prezenta câteva exerciţii cu un grad de dificultate diferit.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

Criterii de divizibilitate

Clasa a V-aBine te-am regăsit dragul meu părinte! În articolul anterior   ţi-am prezentat lecţia “Divizor.Multiplu”. Am învăţat împreună care sunt divizorii unui număr, care sunt multiplii unui număr natural şi cum arătăm dacă un număr natural divide sau nu un alt număr natural. Astăzi voi continua cu o noua lecţie la acest capitol “Criterii de divizibilitate” .

(mai mult…)

Criteriul de divizibilitate cu 2

  •  Un număr natural este divizibil cu 2 dacă şi numai dacă ultima cifră a numărului este o cifră pară.
  • numar-divizibil-cu-2

Criteriul de divizibilitate cu 5

  •  Un număr natural este divizibil cu 5 dacă şi numai dacă ultima cifră a numărului este 0 sau 5
  • numar-divizibil-cu-5

Criteriul de divizibilitate cu 10.

  • Un număr natural este divizibil cu 10 dacă şi numai dacă ultima cifră a numărului este 0.
  • numar-divizibil-cu-10

Criteriul de divizibilitate cu 100(1000, 10000, etc).

  • Un număr natural este divizibil cu 100(respectiv 1000, 10000, etc) dacă şi numai dacă ultimile două )respectiv trei, patru, etc) cifre ale numărului sunt egale cu 0.
  • numar-divizibil-cu-100

 

Criteriul de divizibilitate cu 3 (respectiv 9).

  • Un număr natural este divizibil cu 3 (respectiv 9) dacă şi numai dacă suma cifrelor sale se divide cu 3 (respectiv 9).
  • numar-divizibil-cu-3

Criteriul de divizibilitate cu 4.

  • Un număr natural este divizibil cu 4  dacă şi numai dacă numărul format din ultimele două cifre se divide cu 4
  • numar-divizibil-cu-4

Criteriul de divizibilitate cu 25.

  • Un număr natural este divizibil cu 25  dacă şi numai dacă  ultimele două cifre ale sale sunt 00, 25, 50 sau 75.
  • numar-divizibil-cu-25

    Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

    De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

    https://www.facebook.com/MathMoreEasy.

    Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

    Cu mare drag şi mult respect Alina Nistor!