October 2014 archive

DIVIZOR. MULTIPLU

Clasa a V-a

Dragul meu părinte, dacă primele lecţii din clasa aV-a au avut noţiuni recapitulative din anii anteriori de studiu, iatădiuai copilului tău, uată că a sosit timpul ca să apară şi lecţii în care noţiunile sunt complet noi pentru copilul tău.

Cei drept aceste noţiuni se bazează pe cunoştinţe aprofundate în anii anteriori de studiu, cum ar fi împărţirea şi înmulţirea numerelor naturale, dar în această lecţie copilul tău ia contact cu noţiuni complet noi cum ar fi termenul de divizor sau termenul de multiplu.

(more…)

  • Dar hai să vedem, dragul meu parinte, ce este un divizor ?

Pentru a introduce noţiunea de divizor, să luăm întâi un exempu bazat pe cunoştinţele învăţate anterior de copilul tău.

  • Exemplu:    Într-o tabără merg 290 copii. Aceştia vor fi transportaţi cu autocare de 45 de locuri. De câte autocare ar fi nevoie?

  • Rezolvare:    290 : 45 = 6 (autocare)

                             290 = 45 · 6

Spunem în acest caz că:

  • 290 se divide cu 45 sau
  • 290 este divizibil cu 45, sau
  • 290 este multiplu de 45.

Dar să vedem, dragul meu părinte, cum se notează matematic aceste notiuni.

poza 1 divizor

poza 2 divizor

Să observăm:

poza 3 divizor

În general :

  • Numărul natural „b” divide numărul natural „a”, dacă există numărul natural „c”, astfel încât a = b · c.

poa 4 divizor

  • Numărul natural „b” nu divide numărul natural „a”, dacă pentru orice număr natural „c”, a = b · c.

poza 5 divizor

Exemplu:

  • Divizorii numărului 6 sunt: 1, 2, 3, 6.

  • Multiplii numărului 2 sunt: 0, 2, 4, 6, 8, ………………

Pentru m, d, c ϵ N care satisfac relaţia de mai jos, folosim denumirile:

poza 6 divizor

Dar să vedem, dragul meu părinte cum putem afla dacă un număr este divizibil cu altul?

Exemplu:

  • verificăm dacă 154 14322 ?

Efectuăm împărţirea: 14322 : 154 = 93

                                  14322 = 154 93

                                  Deci 154 14322.

  • verificăm dacă 3727 25 ?

Efectuăm împărţirea: 3727 : 25 = 149 rest 2

                                  3727 = 149 25 + 2

                                   Deci 3727 nu divide 25.

Dragul meu părinte, observăm că:

Pentru a afla dacă un număr natural „a” este divizibil cu un număr natural nenul „b” , împărţim „a” la „b” şi obţinem numerele naturale „c” şi „r”, astfel încât: a = b c + r, unde

r < b.

  • Dacă restul împărţirii lui „a” la „b” este 0, obţinem a = b c, deci a este divizibil cu b.

  • Dacă restul împărţirii lui „a” la „b” este diferit de 0, atunci a nu este divizibil cu b.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:mathmoreeasy@yahoo.com

De asemenea, te invit şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy?ref=hl

 

Exerciții rezolvate la Ordinea Efectuarii Operațiilor

Clasa a V-a

Dragul meu părinte, în postarea anterioară am vorbit despre „Ordinea Efectuării Operaţiilor”.

Ţi-am reamintit care sunt operaţiile de gradul I, operaţiile de gradul al II-lea şi am vorbit despre ordinea efectuării operaţiilor într-un exerciţiu în care apar parantezele rotunde, pătrate şi acoladele.

Hai să vedem, dragul meu părinte şi câteva exerciţii la această lecţie.

Voi aborda câteva exemple de exerciţii cu grad diferit de dificultate şi pe care le voi explica pas cu pas, astfel încât ţie, dragul meu părinte, îţi va fii foarte uşor să le explici copilului tău.

(more…)

  • Exerciţiul 1: Să se efectueze:

                        1320 +[48 · 23 +(340 · 11 – 60 ·5) – 235 ·7]=

Rezolvare:

  • Primul pas: efectuăm operaţiile de înmultire din paranteza rotundă

    1320 +[48 · 23 +(340 · 1160 ·5) – 235 ·7]=

     1320 + [ 48 · 23 + (3740300) – 235 ·7]=

  • Pasul doi:efectuăm operatia de scădere din paranteza rotundă, iar paranteza pătrată devine rotundă.

    1320 + [ 48 · 23 + (3740300) – 235 ·7]=

               1320 + ( 48 · 23 + 3440 – 235 ·7)=

  • Pasul trei:efectuăm operatiile de înmulţire din paranteza rotundă.

    1320 + ( 48 · 23 + 3440235 ·7)=

    1320 + ( 1104 + 34401645)=

  • Pasul patru:efectuăm operatia de adunare din paranteza rotundă.

    1320 + ( 1104 + 34401645)=

    1320 + ( 45441645)=

  • Pasul cinci:efectuăm operatia de scădere din paranteza rotundă.

               1320 + ( 45441645)=

              1320 + 2899=

  • Pasul şase: efectuăm operatia de adunare.

    1320 + 2899=

  • 4219   Răspuns corect

  • Exerciţiul 2: Să se efectueze:

                                   2307 + {3702 + [270 : 3 +3 · (280· 53 · 230)]}=

Rezolvare:

  • Primul pas: efectuăm operaţiile de înmultire din paranteza rotundă

    2307 + {3702 + [270 : 3 +3 · (280· 53 · 230)]}=

     2307 + {3702 + [270 : 3 +3 · (1400690)]}=

  • Pasul doi: efectuăm operatia de scădere din paranteza rotundă, iar paranteza pătrată devine rotundă, în timp ce acolada va devenii paranteză pătrată.

    2307 + {3702 + [270 : 3 +3 · (1400690)]}=

               2307 + [3702 + (270 : 3 +3 · 710)]=

  • Pasul trei: efectuăm operatiile de împărţire şi înmulţire din paranteza rotundă.

    2307 + [3702 + (270 : 3 +3 · 710)]=

     2307 + [3702 + ( 90+ 2130)]=

  • Pasul patru: efectuăm operatia de adunare din paranteza rotundă, iar paranteza pătrată va devenii paranteză rotundă.

    2307 + [3702 + ( 90 + 2130)]=

     2307 + (3702 + 2220)=

  • Pasul cinci: efectuăm operatia adunare din paranteza rotundă.

    2307 + (3702 + 2220)=

     2307 + 5922=

  • Pasul şase: efectuăm operatia de adunare.

    2307 + 5922=

  • 8229   Răspuns corect

  • Exerciţiul 3: Determinaţi numărul natural „x” pentru care are loc egalitatea        (320 + x) · 15 = 5100

Rezolvare:

  • Primul pas: împărţim întreaga egalitate la 15.

    (320 + x) · 15 = 5100 / : 15

    (320 + x) · 15 : 15= 5100 :15

     (320 + x ) · 1= 340

  • Pasul doi: efectuăm operatia de înmulţire din partea stângă a egalităţii si scăpăm de paranteza rotundă

                (320 + x ) · 1= 340

                 320 + x= 340

  • Pasul trei :scădem numărul natural 320 din ambele părţi ale egalităţii.

                320 + x= 340 / (- 320 )

                320 + x – 320= 340- 320

  • Pasul patru: efectuăm operatiiile de scădere din ambele părţi ale egalităţii.

    320 + x – 320= 340- 320

  •  x = 20

            x = 20    Răspuns corect

  • Exerciţiul 4: Determinaţi numărul natural „x” pentru care are loc egalitatea:
  • [15 · (10 · x – 11 ) – 120 ] · 10 – 125 = 25

Acest gen de exerciţiu se poate rezolva în 2 moduri.

  • Rezolvare primul mod:
  • Pentru a rezolva acest exerciţiu, în care ni se cere să-l aflăm pe x, trebuie să începem rezolvarea exerciţiului de la coadă la cap, astfel.
  • [15 · (10 · x – 11 ) – 120 ] · 10 – 125 = 25
  • Primul pas: adunăm în ambele părţi ale egalităţii pe 125.
  • [15 · (10 · x – 11 ) – 120 ] · 10 – 125 = 25 / (+125)
  • [15 · (10 · x – 11 ) – 120 ] · 10 – 125 +125 = 25 +125
  • [15 · (10 · x – 11 ) – 120 ] · 10 = 150
  • Pasul doi: împărţim întreaga egalitate la 10 .

  • [15 · (10 · x – 11 ) – 120 ] · 10 = 150 / :10
  • [15 · (10 · x – 11 ) – 120 ] ·10 : 10= 150 :10
  • [15 · (10 · x – 11 ) – 120 ] · 1 = 15
  • Pasul trei: efectuăm înmulţirea din partea stângă a egalităţii şi scăpăm de paranteza pătrată.
  • [15 · (10 · x – 11 ) – 120 ] · 1 = 15
  • 15 · (10 · x – 11 ) – 120 = 15
  • Pasul patru:adunăm în ambele părţi ale egalităţii pe 120.
  • 15 · (10 · x – 11 ) – 120 = 15 / (+120)
  • 15 · (10 · x – 11 ) – 120 + 120 = 15 + 120
  • 15 · (10 · x – 11 ) = 135

  • Pasul cinci:împărţim în ambele părţi ale egalităţii cu 15.
  • 15 · (10 · x – 11 ) = 135 / :15
  • 15 · (10 · x – 11 ) : 15 = 135 : 15
  • 1 · (10 · x – 11 ) = 9

  • Pasul şase: efectuăm înmulţirea din partea stângă a egalităţii şi scăpăm de paranteza rotundă.
  • 10 · x – 11 = 9

  • Pasul şapte:adunăm în ambele părţi ale egalităţii pe 11.
  • 10 · x – 11 = 9 / (+11)
  • 10 · x – 11 + 11= 9 + 11
  • 10 · x = 20

  • Pasul opt: împărţim în ambele părţi ale egalităţii cu 10.

  • 10 · x = 20 / :10
  • 10 · x :10 = 20 :10
  • x = 2
  •  x = 2 Răspuns corect

Rezolvare al doilea mod:

  • Pentru a rezolva acest exerciţiu, în care ni se cere să-l aflăm pe x, notăm paranteza (10 · x – 11 ) = a şi obţinem:[15 · a – 120 ] · 10 – 125 = 25, după care rezolvăm ecuaţia în necunoscuta „a” astfel:
  • [15 · a – 120 ] · 10 – 125 = 25
  • Primul pas: adunăm în ambele părţi ale egalităţii pe 125.
  • [15 · a – 120 ] · 10 – 125 = 25 / (+125)
  • [15 · a – 120 ] · 10 – 125 +125 = 25 +125
  • [15 · a – 120 ] · 10 = 150
  • Pasul doi:împărţim întreaga egalitate la 10 .

  • [15 · a – 120 ] · 10 = 150 / :10
  • [15 · a – 120 ] ·10 : 10= 150 :10
  • [15 · a – 120 ] · 1 = 15
  • Pasul trei: efectuăm înmulţirea din partea stângă a egalităţii şi scăpăm de paranteza pătrată.
  • [15 · a – 120 ] · 1 = 15
  • 15 · a – 120 = 15
  • Pasul patru:adunăm în ambele părţi ale egalităţii pe 120.
  • 15 · a – 120 = 15 / (+120)
  • 15 · a– 120 + 120 = 15 + 120
  • 15 · a = 135

  • Pasul cinci:împărţim în ambele părţi ale egalităţii cu 15.
  • 15 · a = 135 / :15
  • 15 · a : 15 = 135 : 15
  • 1 · a = 9
  • a = 9

  • Pasul şase:revenim la notaţia (10 · x – 11 ) = a ştiind căa = 9 şi obţinem egalitatea:
  • 10 · x – 11 = 9

  • Pasul şapte:adunăm în ambele părţi ale egalităţii pe 11.
  • 10 · x – 11 = 9 / (+11)
  • 10 · x – 11 + 11= 9 + 11
  • 10 · x = 20

  • Pasul opt: împărţim în ambele părţi ale egalităţii cu 10.
  • 10 · x = 20 / :10
  • 10 · x :10 = 20 :10
  • x = 2
  •  x = 2 Răspuns corect

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimite un e-mail la adresa:nistor_madalina2005@yahoo.com

Dacă ai în jurul tău un parinte sau un copil care are dificultăti în a înțelege matematica fă un gest frumos și invită-l să aprecieze pagina de Facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Cu mare drag şi mult respect Alina Nistor!

 

Ordinea Efectuării Operaţiilor

Clasa a V-aDragul meu părinte, noţiunile de la această lecţie nu îi sunt străine copilului tău. O parte din noţiunile de la această lecţie le-a învăţat şi în anul anterior de studiu, însă acum sunt completate şi de noţiuni noi. Dar să vedem, dragul meu părinte, ce trebuie să reţină copilul tău la această lecţie:

(more…)

  • Adunarea şi Scăderea Numerelor Naturale sunt operaţii de de ordinul I

  • Înmulţirea este o adunare repetată.
  • Exemplu: 3 x 4 = 4 + 4 +4   (4 se adună de 3 ori)
  • Împărţirea este o scădere repetată.
  • Exemplu: 12 : 4 = 12 – 4 – 4 – 4 (4 se scade de 3 ori)
  • Înmulţirea şi Împărţirea sunt operaţii de de ordinul II.

  • Într-un exerciţiu fără paranteze, se efectuează întâi înmulţirile şi împărţirile , în ordinea în care sunt scrise; apoi adunările şi scăderile, în ordinea în care sunt scrise.

Exemplu:   5 x 12 + 7 – 12 : 6 = 60 + 7 – 2 = 67 – 2 = 65

 

Cum utilizăm Parantezele?

Dragul meu părinte, copilul tău a învăţat în clasele anterioare ordinea efectuării operaţiilor, deci nu este pentru prima oară când intră în contact cu aceste informaţii.

Dacă avem de efectuat următorul calcul:

220- (2 · 3 + 7 · 2)

  • Dacă într-un exerciţiu sunt folosite paranteze rotunde, atunci efectuăm întâi operaţiile din paranteze după care efectuam restul operaţiilor în ordinea în care sunt scrise.

  • Exemplu :

    220 – (2 · 3 + 7 · 2) = 220 – (6 +14) = 220 – 20 = 200

 

  • Dacă într-un exerciţiu sunt folosite paranteze rotunde si paranteze pătrate atunci efectuăm întâi operaţiile din parantezele rotunde după care efectuăm operaţiile din parantezele pătrate, iar la final efectuăm restul operaţiilor în ordinea în care sunt scrise.

 

  • Exemplu : 145 + 47 · [215 · 110 – 83 ·(405 – 18 ·16)]=

  • Primul pas: efectuăm operatia de înmultire din paranteza rotundă

    145 + 47 · [215 · 110 – 83 ·(405 – 18 ·16)]=

    145 + 47 · [215 · 110 – 83 · (405 – 288)]=

  • Pasul doi: efectuăm operatia de scădere din paranteza rotundă, iar paranteza pătrată devine rotundă.

    145 + 47 · [215 · 110 – 83 · (405 – 288)]=

               145 + 47 · (215 · 110 – 83 · 117 ) =

  • Pasul trei:efectuăm operatiile de înmulţire din paranteza rotundă,

               145 + 47 · (215 · 11083 · 117 ) =

               145 + 47 · (236509711 ) =

  • Pasul patru:efectuăm operatia de scădere din paranteza rotundă.

              145 + 47 · (236509711 ) =

               145 + 47 · 13939 =

  • Pasul cinci: efectuăm operatia de înmulţire.

               145 + 47 · 13939 =

               145 + 655133 =

  • Pasul şase:efectuămoperatia de adunare.

              145 + 655133 =

  • 655278 Răspuns corect

  • Dacă într-un exerciţiu sunt folosite paranteze rotunde, paranteze pătrate şi acolade atunci efectuăm întâi operaţiile din parantezele rotunde, după care efectuăm operaţiile din parantezele pătrate, apoi operaţiile din acolade, iar la final efectuăm restul operaţiilor în ordinea în care sunt scrise.

    Exemplu :

    {123 · 35 + 10 · [47 + 10 · (407+ 2405 : 65)] – 2785} · 10=

  • Primul pas: efectuăm operatia de împărţire din paranteza rotundă

    {123 · 35 + 10 · [47 + 10 · (407+ 2405 : 65)] – 2785} · 10=

    {123 · 35 + 10 · [47 + 10 · (407 + 37)] – 2785} · 10=

  • Pasul doi:efectuăm operatia de adunare din paranteza rotundă, iar acolada va deveni paranteză pătrată in timp ce paranteza patrată va devinii paranteza rotundă.

    {123 · 35 + 10 · [47 + 10 · (407 + 37)] – 2785} · 10=

    [123 · 35 + 10 · (47 + 10 · 444) – 2785] · 10=

  • Pasul trei:efectuăm operatia de înmulţire din paranteza rotundă.

    [123 · 35 + 10 · (47 + 10· 444) – 2785] · 10=

    [123 · 35 + 10 · (47 + 4440) – 2785] · 10=

  • Pasul patru:efectuăm operatia de adunare din paranteza rotundă , iar paranteza pătrată se va transforma în paranteză rotundă.

    [123 · 35 + 10 · (47 + 4440 ) – 2785] · 10=

    (123 · 35 + 10 · 4487 – 2785)· 10=

  • Pasul cinci:efectuăm operaţiile de înmulţire din paranteza rotundă.

    (123 · 35+ 10 · 4487– 2785)· 10=

    (4305 + 44870 – 2785)· 10=

  • Pasul şase:efectuăm operatia de adunare din paranteza rotundă.

    (4305 + 44870 – 2785)· 10=

    (49175 – 2785)· 10=

  • Pasul şapte:efectuăm operatia de scădere din paranteza rotundă.

    (49175 – 2785)· 10=

                 46390 · 10=

  • Pasul opt:efectuăm operatia de înmulţire.

               46390· 10=

  •     463900   Răspuns corect.

Dacă dorești să ai acces la mai multe exemple de exerciții cu un grad de dificultate ridicat rezolvate și explicate pas cu pas accesează link-ul de mai jos:

http://mathmoreeasy.ro/exercitii-rezolvate-la-ordinea-efectuarii-operatiilor/

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:

mathmoreeasy@yahoo.com

De asemenea, te invit şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy?ref=hl.

MULŢIMI DE NUMERE

Dragul meu părinte, această lecţie „Mulţimi de numere” este o lecţie recapitulativă.

Copilul tău a învăţat în clasele anterioare noţiunile folosite la această lecţie, însă este necesară recapitularea lor deoarece pe parcursul clasei a VIII-a vor fi des utilizate. (more…)

La această lecţie copilul tău îşi va reaminti că:

  • Mulţimea „Numerelor Întregi” se notează cu Z şi

  • Z={-3,-2,-1,0,1,2,3,…….,…}.

  • Dacă adunăm, scădem sau înmulţim două sau mai multe numere întregi obţinem tot un număr întreg.

  •   \subseteq Z

Dragul meu părinte, tot la această lecţie copilul tau trebuie să-şi amintească şi „Relaţia de Divizibilitate în Z”.

Def: Un număr întreg „a” se numeşte „divizor” al unui număr întreg „b”, dacă există un număr întreg „c” astfel încât: b = a·c.

 

  •  Notăm:               Citim:
  • a | b”                  „a” divide „b” sau „a” este un divizor al lui „b”

  • b ⁞ a”                  „b” se divide cu „a” sau „b” este multiplu de „a”.

  • a | b”                  „a” nu divide pe „b” sau

                                       „b” nu este multiplu de „a”.

Pentru numere întregi nenule, relaţia de divizibilitate se poate exprima cu ajutorul relaţiei de împărţire astfel:

  • Dacă  a·b = c , atunci c : b=a şi c : a=b .

Însă, ce se întâmplă dacă deîmpărţitul nu este multiplu al împărţitorului?

Observăm în acest caz că rezultatul nu mai este un număr întreg.

Dragul meu părinte, copilul tău a învăţat în anii anteriori şi fracţiile, pe care este necesar să le amintim în această lecţie.

  • Mulţimea numerelor raţionale se notează cu Q şi

  • Q={x/ x=  \frac{m}{n}, m,  \in N }

  • Numerele raţionale se pot scrie în două forme echivalente: cu ajutorul liniei de fracţie (reprezentare fracţionară   \frac{m}{n} ) sau cu ajutorul virgulei (reprezentare zecimală m,n)

  •   \subseteq Q

  •   \subseteq   \subseteq Q

Dragul meu părinte, copilul tău a mai învăţat în anii anteriori şi „Numerele Iraţionale”.

  • Numerele Iraţionale nu pot fi reprezentate de fracţii în care numărătorul şi numitorul sunt numere întregi.

  • In scrierea cu virgulă, numerele iraţionale au o infinitate de zecimale care nu se repetă periodic.

  • Numerele raţionale împreună cu cele iraţionale formează „Mulţimea Numerelor Reale”.

  • Mulţimea Numerelor Reale” se notează cu R.

  • Suma, diferenţa şi produsul a două sau mai multe numere naturale sunt tot numere reale.

  • Rezultatul împărţirii a două sau mai multe numere reale nenule este tot un număr real.

  • N   \subseteq Z   \subseteq Q   \subseteq R.

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să-ţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.

Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:mathmoreeasy@yahoo.com    mathmoreeasy@yahoo.com

De asemenea, te invit şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy?ref=hl.