iulie 2014 archive

Exerciții rezolvate la Adunarea Numerelor Naturale. Suma Gauss

Clasa a V-aDragul meu părinte, în acest articol voi explica pas cu pas câteva exerciţii cu un grad de dificultate mai ridicat, frecvent întâlnite la lecţia Adunarea şi Scăderea numerelor naturale, având în vedere modul în care tu, părinte drag ar trebui te foloseşti de aceste informaţii şi să îi explici copilului tău aceste noţiuni.

(mai mult…)

 EXERCIŢIUL 1:

  • Calculaţi suma:     1+2+3+4+…………………….+80 = ?

Rezolvare:

 

Dragul meu părinte, acest exerciţiu pare unul complicat, însă nu este un exerciţiu greu.

La prima vedere, mulţi copii sunt tentaţi să piardă vremea făcând adunatea termen cu termen, însă aşa cum bine îti dai seama acest lucru este imposibil, iar dacă ar fii posibil ar necesita foarte mult timp de lucru. Pentru mulţi copii este mult mai simplu să-l abandoneze.

Dar să vedem cum îl putem rezolva împreună fără a pierde foarte mult timp cu calculele.

 

  • 1+2+3+4+…………………….+80 = ?

Din proprietăţile adunării pe care le-am enunţat la lecţia “Adunarea şi Scăderea numerelor naturale” ştim că aceasta este comutativă, adică putem schimba poziţia termenilor, rezultatul este acelaşi. Astfel în loc de:

  •    1+2+3+4+…………………….+80 = ?

putem scrie:

  • 1+80+2+79+3+78+4+77+………..= ?

De asemenea, tot din proprietăţile adunării (pe care le-am enunţat la lecţia “Adunarea şi Scăderea numerelor naturale” )  ştim că adunarea este asociativă.Dacă aplicăm această proprietate a asociativităţii in exerciţiul nostru obţinem:

  • (1+80)+(2+79)+(3+78)+(4+77)+………..= ?

Observăm că rezultatul fiecărei paranteze este 81, astfel exerciţiul nostru se rezumă la:

  • 81+81+81+81+………..= ?
  • Însă se pune problema câţi termeni avem în acest caz?

Ştim că între numărul natural 1 şi numărul natural 80 sunt 80 termeni.

Grupaţi câte doi, obţinem un număr de 80:2 termeni, adică 40 termeni care se repetă.

  • În cazul nostru vom avea 40 de termeni de 81.

Astfel obţinem în exerciţiul nostru 81 adunat de 40 de ori:

  • 81+81+81+81+………..+81= ?

Adică putem scrie :

  • 40 x 81=?

Făcând calculul înmulţirii obţinem: 3240

RĂSPUNS CORECT: 3240

EXERCIŢIUL 2:

  • Calculaţi suma: 1+3+5+…………………….+99= ?

Rezolvare:

Ca şi la exerciţiul anterior, acest exerciţiu este greu de calculat termen cu termen, asa că cea mai bună variantă este abordarea unei rezolvări utilizând proprietăţile matematicii:

  • 1+3+5+…………………….95+97+99= ?

Din proprietăţile adunării (pe care le-am enunţat la lecţia Adunarea şi Scăderea numerelor naturale” ) ştim că aceasta este comutativă, adică putem schimba poziţia termenilor, rezultatul este acelaşi. Astfel în loc de:

  • 1+3+5+…………………….+95+97+99 = ?

putem scrie:

  • 1+99+3+97+5+95+………..= ?

De asemenea, tot din proprietăţile adunării (pe care le-am enunţat la lecţia “Adunarea şi Scăderea numerelor naturale” )  ştim că adunarea este asociativă. Dacă aplicăm această proprietate a asociativităţii in exerciţiul nostru obţinem:

  • (1+99)+(3+97)+(5+95)+………..= ?

Observăm că rezultatul fiecărei paranteze este 100, astfel exerciţiul nostru se rezumă la:

  • 100+100+100+………..= ?
  • Însă se pune problema câţi termeni avem în acest caz?

Ştim că între numărul natural 1 şi numărul natural 100 sunt 100 termenidintre care 50 sunt numere naturale pare, iar 50 sunt numere naturale impare.

În cazul acestui exerciţiu avem de calculat suma numerelor naturale impare cuprinse între numărul natural 1 şi numărul natural 100. În concluzie avem 50 termeni.

Grupaţi câte doi, obţinem un număr de 50:2 termeni, adică 25 termeni care se repetă.

  • În cazul nostru vom avea 25 de termeni de 100.

Astfel obţinem în exerciţiul nostru numărul natural 100 adunat de 25 de ori:

  • 100+100+100+100+………..+100= ?

Adică putem scrie :

  • 25 x 100=?

Făcând calculul înmulţirii obţinem: 2500

RĂSPUNS CORECT: 2500

EXERCIŢIUL 3:

  • Calculaţi suma: 3+6+9+12+…………………….+2001 = ?

Rezolvare:

Dragul meu părinte, acest exerciţiu pare şi mai complicat faţă de cele oreyentate anterior deoarece avem de calculat mult mai multe numere, însă nu este un exerciţiu greu.

Dacă la exerciţiile anterioare era dificil de efectuat o adunare termen cu termen, în cazul acestui exerciţiu este aproape imposibil să abordezi o astfel de metoda a adunării termen cu termen. Pentru mulţi copii este mult mai simplu să abandoneze reuolvarea unui astfel de exerciţiu.

 Dar să vedem cum îl putem rezolva împreună fără a pierde foarte mult timp cu calculele.

  • 3+6+9+12+…………………….+2001 = ?

După cum bine observi, dragul meu părinte, exerciţiul ne cere să adunăm termenii din 3 în 3, cuprinşi între numerele naturale 3 şi 2001.

Se pune problema câţi termeni numere naturale sunt între 3 şi 2001, număraţi din 3 în 3?

Pentru a afla răspunsul la acestă întrebare, îl împărţim pe 2001 la 3 si obţinem astfel:

  • 2001 : 3 = 667 termeni.

Observăm că numărul natural 667 este un număr impar, acest lucru înseamnă că dacă vrem să grupam termenii 2 câte 2, obţinem 666 termeni pe care îi grupăm 2 câte 2 plus încă un termen.

  • 667 : 2 = 333 termeni + 1 termen liber

Dar care este numărul natural care are rolul de termen liber?

Dacă încercăm să grupăm termenii 2 câte 2, obţinem:

  • 3+6+9+12+…………………….+1992+1995+1998+2001 = ?
  • 3+2001+6+1998+9+1995+12+1992+……………….= ?
  • (3+2001)+(6+1998)+(9+1995)+(12+1992)+………..+termenul liber = ?

Avem astfel 333 paranteze +termenul liber .termenul liber.

Observăm că rezultatul din fiecare paranteză este 2004.

Obţinem astfel 2004 adunat de 333 de ori + termenul liber .

  • 2004+2004+2004+2004+…………………….+termenul liber = ?

Adică:

  • 333 x 2004 + termenul liber = ?
  • Însă, dragul meu părinte, problema se pune ce număr natural este termenul liber?

Pentru a afla termenul liber, împărţim:

  • 2004 : 2 =1002

Obţinem astfel:

  • 333 x 2004 + 1002= ?

Efectuând calculele obţinem:

  • 667 332+ 1002= ?
  • 668 334.

RĂSPUNS CORECT: 668 334

PS: Dragul meu părinte, dacă vrei mai multe exemple rezolvate de exerciţii cu Suma Gauss descarcă Pdf-ul gratuit de aici:

 

Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului:

https://www.facebook.com/MathMoreEasy.

Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

Cu mare drag şi mult respect Alina Nistor!

 

Adunarea și Scăderea Numerelor Naturale

Clasa a V-a

Dragul meu părinte,

copilul tău trebuie să reţină că:

(mai mult…)

  • Adunarea a două sau mai multe numere naturale este un număr numit suma numerelor naturale şi se notează:

    a + b = c 

  • unde „a” şi „b” se numesc termenii sumei iar „c” se numeşte suma numerelor naturale.

De asemenea, este esenţial să reţină proprietăţile adunării:

  • Comutativitatea:(dacă schimbăm poziţia termenilor rezultatul rămâne neschimbat).

a+b=b+a

 

  • Exemplu:
  • 3+4 = 4+3 = 7

  • 3+4 = 42+3+5 = 3+5+2 = 5+3+2 = 10
  • Asociativitatea:

 (a+b)+c=a+(b+c)

  • Exemplu:
  • (2+3)+5 = 2+(3+5) = 10
  • Element neutru: pe 0.

    Elementul neutru este un număr natural care adunat la un număr, suma celor 2 numere este egală cu numărul natural dat.

a+0=0+a=a

  • Exemplu:
  • 3+0 = 0+3 = 3.

SCĂDEREA NUMERELOR NATURALE:

Scăderea a două (sau mai multe) numere naturale este un număr natural unic, numit diferenţă şi se notează: „a -b” cu proprietatea că a>b ;

  • a” şi „b” se numesc termenii diferenţei.
a – b = c, 
  • unde:  „a” se numeşte descăzut;
  • „b”  se numeste scăzător;
  • „c” se numeşte diferenţă;

 

  • Scăderea nu este comutativă, nu este asociativă şi nu are element neutru.

O greşeală frecventă facută de elevi la această lecţie este confuzia între denumirea termenilor adunării şi scăderii numerelor naturale.

De asemenea, elevii mai fac frecvent greşeala de a spune că scăderea are proprietăţi de:

  • asociativitate;
  • comutativitate;
  • element neutru.

 

Dacă dorești să ai acces la mai multe exemple de exerciții cu un grad de dificultate ridicat rezolvate și explicate pas cu pas accesează link-ul de mai jos:

http://mathmoreeasy.ro/exercitii-rezolvate-la-adunarea-numerelor-naturale-suma-gauss/

 

§ Dragul meu părinte, sper din tot sufletul ca aceste informaţii să îţi fie utile atunci când îţi ajuţi copilul la temele pentru acasă la matematică.Dacă ai întrebări sau comentarii le poţi lăsa aici în rubrica de comentarii sau îmi poti trimitre un e-mail la adresa:nistor_madalina2005@yahoo.com

§ De asemenea, te invit să apreciezi şi pe pagina de facebook a blogului

§https://www.facebook.com/MathMoreEasy.

§ Pe mine mă poţi găsi şi aici: https://www.facebook.com/alinamadalina.nistor dacă ai întrebări sau nevoie de ajutor.

 

Cu mare drag şi mult respect Alina Nistor!

Exerciții Rezolvate la Mulţimi. Operaţii cu Mulţimi.

clasa a VII-a

La această lecţie vom recapitula din anii trecuţi câteva noţiuni pe care le vom aplica în exerciţii simple la lecţia „ Mulţimi. Operaţii cu Mulţimi.”

(mai mult…)

EXERCIŢIUL 1:

Enumeraţi elementele mulţimii: A=\left \{ x/x\in N,x<8 \right \}

Rezolvare:

Exerciţiul ne cere să găsim elementele mulţimii „A” care este formată din toate valorile pe care le poate lua necunoscuta „x”, ţinând cont de faptul că:

  • x” este un număr natural;
  • x” este strict mai mic decât 8, adică poate lua toate valorile de la 0 la 7, fără a lua valoarea 8.

Răspunsul corect în acest caz este că: „x” poate lua următoarele valori: 0,1,2,3,4,5,6,7.

Obţinem astfel mulţimea:  A=\left \{ 0,1,2,3,4,5,6,7 \right \}

  •  Răspuns corect:A=\left \{ 0,1,2,3,4,5,6,7 \right \}

EXERCIŢIUL 2:

Enumeraţi elementele mulţimii: B=\left \{ y/y\in N^{{*}},1\leq y<9 \right \}

Rezolvare:

Exerciţiul ne cere să găsim elementele mulţimii „B” care este formată din toate valorile pe care le poate lua necunoscuta „y”, ţinând cont de faptul că:

  • y” este un număr natural nenul (nu poate lua valoarea 0 deoarece avem în

enunţul problemei condiţia y\in N^{{*}}, care este mulţimea numerelor naturale mai puţin valoarea 0);

  • yeste mai mare sau cel mult egal cu 1 şi strict mai mic decât 9, adică „y” poate lua toate valorile cuprinse între 1 şi 8.

Răspunsul corect în acest caz este că: „y” poate lua următoarele valori: 1,2,3,4,5,6,7,8.

Obţinem astfel mulţimea: B=\left \{ 1,2,3,4,5,6,7,8 \right \}

  • Răspuns corect :B=\left \{ 1,2,3,4,5,6,7,8 \right \}

EXERCIŢIUL 3:

Enumeraţi elementele mulţimii:D=\left \{ z/z\in N,2\leq 2z-6<14 \right \}

Rezolvare:

Exerciţiul ne cere să găsim elementele mulţimii „D” care este formată din toate valorile pe care le poate lua necunoscuta „z”, ţinând cont de faptul că:

  • z” este un număr natural ;

  • pentru a afla intervalul de valori pe care îl poate lua necunoscuta z”, este necesar să rezolvăm inecuaţia: 2\leq 2z-6<14 .

Să rezolvăm inecuaţia:     2\leq 2z-6<14

Pentru a-l elimina pe 6 din inecuaţie ne folosim de opereţia inversă scăderii şi anume operaţia de adunare şi îl adunăm pe 6 în toate părţile inecuaţiei, astfel:2+6\leq 2z-6+6<14+6

Astfel obţinem următoarea inecuaţie  :8\leq 2z<20

Pentru că pe noi ne interesează valoarea pe care o poate lua necunoscuta „z”, trebuie să împărţim întreaga inecuaţie la 2 şi astfel obţinem:8\leq 2z<20 / : 2

Rezultatul va fii:  4\leq z <10

Astfel obţinem mulţimea :D=\left \{ z/z\in N,4\leq z<10 \right \}

Răspuns corect: D=\left \{ 4,5,6,7,8,9 \}

EXERCIŢIUL 4:

Determinaţi elementele mulţimii:F=\left \{ x/x\in N,\frac{12}{x+3}\in N \right \}

 Rezolvare:

Exerciţiul ne cere să găsim elementele mulţimii „F”, formată din toate numerele naturale „x”cu proprietatea că:\frac{12}{x+3}\in N

Această condiţie ne indică faptul că rezultatul împărţirii lui 12 la „x+3” să fie un număr natural, deci trebuie să fie o împărţire exactă.

Dar să vedem cum să aflăm rezultatul împărţirii lui 12 la un număr care conţine o necunoscută.

Pentru ca 12 să se împartă exact la „x+3”, este neapărat ca „x+3” să îl dividă pe 12.

Cu alte cuvinte:   x+3\in D_{{12}}=\left \{ 1,2,3,4,6,12 \right \}

Pentru a afla ce valori poate lua „x” egalăm „x+3” cu fiecare valoare a

mulţimii : D_{{12}}=\left \{ 1,2,3,4,6,12 \right \}

Astfel avem:

x+3=1 /(-3)

x+3-3=1-3

x=-2

x+3=2 /(-3)

x+3-3=2-3

x=-1

x+3=3 /(-3)

x+3-3=3 -3

x=0

x+3=4 /(-3)

x+3-3=4-3

x=1

x+3=6 /(-3)

x+3-3=6-3

x=3

x+3=12 /(-3)

x+3-3=12-3

x=9

Obţinem astfel drept rezultat mulţimea:F=\left \{ -2,-1,0,1,3,9 \right \}

  • Răspuns corect:   F=\left \{ -2,-1,0,1,3,9 \right \}